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Abstract— This paper discusses variable-scale bilateral con-
trol for micro teleoperation. A method is proposed to synthesize
robust variable-scale controllers that guarantee system stability
and realize robust performance in contact with any arbitrary,
but passive, operator and environment. The proposed method is
based on the formulation as a robust output feedback constant
scaled H∞ problem. A variable scaled teleoperation system
appears as a polytopic linear parameter-varying (LPV) plant,
with an affine relation on the scale factors. Gain-scheduling is
used to derive robust stable time-variant H∞ controllers for
online variable scaling. Improved controller performance is
obtained through the introduction of an affine and scheduled-
parameter-dependent weighting. The controller synthesis prob-
lem is formulated as a set of linear matrix inequalities (LMI’s)
augmented with a nonconvex rank condition. An efficient
algorithm is constructed to synthesize a set of sub-optimal
controllers over the parameter space. The validity of the
proposed methods are confirmed experimentally.

I. INTRODUCTION

Recently, scaled teleoperation is receiving an increased
amount of attention within the teleoperation community.
Especially the demands from maturing fields like micro-
assembly or surgical robotics stimulate the renewed interest.
The success of scaled teleoperation applications in these
domains will depend on the usefulness and user-friendliness
of these systems.

Indeed, intuitivity of use, sometimes described as ‘telep-
resence’ [1] or ‘tele-existence’ [2], which forms already a
major issue in normal teleoperation, becomes an even more
stringent requirement for scaled teleoperation. This is so
because together with the scaling of forces and velocities
also the feeling (impedance) of the remote environment is
being distorted. Only some combinations of scale factors will
result in an intuitive feeling. Note that these, typically task-
dependent, scalings manage to capture only some physical
phenomena occurring in the micro-world and translate them
to the macro-(or human-scaled) world [3],[4]. Another reason
follows from the fact that a certain set of scale factors also
implies a specific choice for the trade-off that exists between
the resolution and the range of operation in the micro-world.
Also this choice benefits from a task-dependent answer.

When developing a flexible teleoperator to tackle various
tasks, one might design a set of controllers for different scale
factors and switch between them according to the task at
hand. A first problem appearing here is the ease to loose
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Fig. 1. Variable-scale 1-d.o.f. master-slave system

the ‘big picture’. This problem also occurs in microscope
visualization tasks; once something disappears from our view
(or reach) in the magnified view, it becomes difficult to find
it back. A second problem is that such a controller switch
also requires the operator to make a ‘mental switch’. As long
as he/she is not fully accustomed to the new scale factors,
his/her commands will divert from the intended ones. When
controller switches occur e.g. during tissue manipulations,
this could lead to tissue damage and so on.

This article advocates the use of online, continuously
adaptable, user-commanded variable-scale teleoperation, pre-
sented schematically in Fig.1. The operator can determine at
any moment which set of scale factors leads to intuitive ma-
nipulation (feeling, range, resolution) for a specific task, and
let him/her adapt these scales swiftly to tackle the subsequent
task. Also the effect of mental switches is less outspoken as
changes are gradually and commanded by the operator self.
Next to improvement in user-friendliness also increase in
system flexility is expected. To see this, simply recall the
parallel with pure visualization tasks; here, a variable-scale
system would correspond to a modern camera with adaptable
zoom lens, whereas a fixed-scale device would correspond
to a classic camera with constant focal length.

Although the usefulness of variable-scale teleoperation
might be clear, the fact is that such a system is time-
variable and thus more complex to analyze and control.
This is one of the main reasons why the vast majority of
current scaled teleoperation research such as [3]-[5] treats
fixed-scale systems. Just a few works discuss variable-scale
teleoperation. Dubey [6] adapted velocity scale factors ac-
cording to an offline determined, position-dependent scale-
pattern. Boukhnifer [7] developed task-based time-variable
H∞ -based controllers which are robust against a varying
time delay. Online adaptation of the scale factors is claimed,
but it is unclear how this affects the stability of the approach.
Sano [8] proposed gain scheduling to vary scale factors
online. However, operator dynamics are not accounted for
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during the controller synthesis and also the remote environ-
ment is assumed to be known.

This paper introduces a method to develop variable-scale
bilateral controllers for micro teleoperation. The controllers
are designed to interact stably with any arbitrary passive op-
erators and environments. Gain-scheduling is used to derive
the time-variable controller as a function of the schedule
parameters: the force scale ε and the velocity scale φ,
belong to a prespecified domain A shown in Fig.2. An affine
parameter-dependent weighting method is further introduced
to allow for a better tuning of the system performance over
the space of schedule parameters. Note that for simplicity this
article focusses on one dimensional systems. Also time-delay
is not treated here, although an expansion towards scheduling
according to the amount of time delay is also possible [9].

The layout of this article is as follows. The basic equations
of a master-slave system and the derivation of a general-
ized plant is done in section II. Section III explains gain-
scheduling for variable-scale teleoperation. A method to vary
the weights of the different controller objectives is introduced
in section IV. Then, experimental results are presented in
section V and finally conclusions and directions for further
work are sketched in section VI.

II. FORMULATION OF SCALED TELEOPERATION
IN H∞ FRAMEWORK

In this section some master-slave fundamentals are restated
and a generalized plant for H∞ -control is constructed. For
simplicity, the discussion is limited to a 1-d.o.f. master-slave
system, presented schematically in Fig.1.

A. Master-slave fundamentals

Master and slave are modeled by simple mass-dampers:

um(t) + fm(t) = Mmẍm(t) + Bmẋm(t), (1)

us(t) − fs(t) = Msẍs(t) + Bsẋs(t), (2)

with um(t) and us(t) the control inputs of master and
slave, fm(t) and fs(t) are the force exerted by the operator
on the master and by the slave on the environment. Mass
and damping are Mm, Bm, Ms and Bs. The velocity and
acceleration of master and slave are ẋm, ẍm, ẋs and ẍs.

The operator and the environment dynamics are typically
nonlinear and time-variant. The only assumption made in this
work, and which was also made by Hogan [10], is that

ASSUMPTION 1: the operator and the environment can
be treated as passive elements and they do not generate a
force that causes the system to become unstable. �

However, for notational convenience they are sometimes
described as LTI-systems in this paper, in such case:

fop(t) − fm(t) = mopẍm(t) + bopẋm(t) + kopxm(t), (3)

fenv(t) + fs(t) = menvẍs(t) + benvẋs(t) + kenvxs(t),(4)

holds, where the operator’s arm and the environment are
modeled as mass-spring-dampers with mop, bop, kop, menv ,
benv and kenv . The forces fop(t) and fenv(t) are then
exogenous forces realized by the operator’s muscles and an
active element at the remote site.
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Fig. 2. Variable scale factors within prespecified domain

B. Ideal response

We define the ideal response of variable-scale tele-
operation as ‘ideal scaled kinesthetic coupling’:

ẋm(t) = φ(t) ẋs(t), (5)

fm(t) = ε(t)fs(t), (6)

for time variable scale factors α(t) = [φ(t) , ε(t)]T. Note,
that the time variable nature of φ(t) makes that there is no
fixed relation between master and slave position. Instead

xm(t) = x̂s(t) (7)

should hold (ideally), for x̂s(t) �
∫ t

0
φ(τ)ẋs(τ)dτ . Also note

that in this work we assume that the vector of scale factors
α(t) = [φ(t) , ε(t)]T belongs to a closed convex set A ={
(φ , ε) | φmin ≤φ≤ φmax, εmin ≤ε≤εmax

}
, shown in Fig.2.

On the other hand, no assumptions are made on the rate of
variation of α(t).

C. Coupled stability

A good controller should achieve ideal scaled kinesthetic
coupling as close as possible, but should at the same time
guarantee the stability of the whole system. Since the stabil-
ity is not only a function of the teleoperator, but also depends
on the operator and environment, so-called ‘coupled stability’
should be considered.

Colgate formulated a condition for coupled stability [3]
based on the reformulation of the different elements towards
their scattering form, as shown in Fig.3. The scattering matrix
of the master-slave system Smss is connected to the operator
and the environment, Sop and Senv , under the form of
a structured uncertainty block ∆oe. Note that for passive
operator and environment ‖Sop‖∞ ≤ 1 and ‖Senv‖∞ ≤ 1
holds, so that ‖∆oe‖∞≤1. Colgate’s condition for coupled
stability is then that, for Smss(s) analytic in �(s)≥0,

µ∆oe
(Smss(s)) ≤ 1, ∀ω, (8)

where µ∆oe
(Smss(s)) is the structured singular value[11]

of the system Smss(s) against the structured uncertainty
block ∆oe. Note, that in the case of (one dimensional)
teleoperation, (8) reduces to:

inf
D

σ̄(DSmssD
−1) ≤ 1, (9)

for a block diagonal matrix D = diag
(
[d1(s), d2(s)]

)
which

has a structure similar to ∆oe with positive real frequency
dependent variables d1(s), d2(s).
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êp

êf
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Fig. 4. Generalized plant of a master-slave system

However, above condition provides only a necessary and
sufficient condition for stability in contact with arbitrary pas-
sive linear time-invariant (LTI) operators and environments.
As practical operators and environments are typically nonlin-
ear and/or time-variable, in this work, following theorem [3]
is adhered to:

THEOREM 1 (Robust stability): A necessary and suffi-
cient condition for the stability of a master-slave system
interacting with any arbitrary non-linear and time-variant op-
erator and environment is that the scattering matrix Smss(s)
is analytic in �(s) ≥ 0 and that the scaled H∞ norm

inf
D

σ̄(DSmssD
−1) ≤ 1, (10)

where the minimization happens over all matrices D =
diag

(
[d1, d2]

)
with a structure similar to that of the uncer-

tainty block ∆oe and frequency-independent d1 and d2. �

D. Generalized plant for variable-scale teleoperation

Although the reorganization of operator and environment
as a structured uncertainty is originally developed to analyze
the stability of a teleoperation system[3], it proves to be
equally useful to synthesize H∞ based coupled stable tele-
operation controllers. Indeed, Fig.3 can be rewritten easily
towards a typical H∞ structure of Fig.4, where the bounded
uncertainty block ‖∆oe‖∞ ≤ 1 captures the interaction
with passive operator and environment. A H∞ controller that
stabilizes P with respect to any ‖∆oe‖ ≤ 1 makes the
controlled plant ‘robust stable’ for every contact with passive
operator and environment. Note that this observation was
already made by Yoshikawa et al. [12] (only in Japanese).

To achieve the ideal response discussed in section II-B, the
control objectives can be specified as:

zperf=




ep

ef

um

us


�



ρ(xm(t)−x̂s(t))+(ẋm(t)−φ(t)ẋs(t))

fm(t)−ε(t)fs(t)
um

us


, (11)

where ρ denotes a constant weighting for the position error
relative to the velocity error. The last two elements in (11),
um and us, prevent the use of excessive control effort.

After some algebraic manipulations can the system (1),
(2), (3), (4), be transformed to its scattering form. Then, the
total system, together with the control objectives (11), can
be written as the following generalized plant P for variable-
scaled teleoperation:

P (α) :




ẋ = A(φ)x + B1w + B2u
z = C1(φ, ε)x + D11(ε)w + D12u
y = C2x + D21w

. (12)

Considering space limitations, the elements of matrices A,
B1, B2, C1, C2, D11, D12 and D21 are not described in
detail here. For the details, please refer to [13]. One impor-
tant point here is that the scale factors actually appear in an
affine way in the matrices A, C1 and D11. Above discussion
is now developed further to describe robust performance.

E. Robust performance for scaled teleoperation

To specify the relative importance of the different and
competing control objectives in (11), frequency-dependent
weightings: W = diag

(
[Wp,Wf ,Wum,Wus]

)
are added as

shown in Fig.4. The weighted form of signal x is written as
x̂. System P (α) augmented with weights W is written as:

P̂ (α) :




˙̂x = Â(φ)x̂ + B̂1 w + B̂2 u

ẑ = Ĉ1(φ , ε)x̂ +D̂11(ε)w +D̂12 u

y = Ĉ2x̂ +D̂21w

. (13)

Where x̂ = [x ,xw]T contains the states of the generalized
plant x and of the weighting filters xw. Now, the controlled
and weighted system Paug , containing the generalized plant
P and the weighting filters W , together with the controller
K with state space representation:

K(α) :
{

ẋK = AK(α)xK + BK(α)y
u = CK(α)xK + DK(α)y , (14)

with controller state xK , is called ‘robust performant’, with
user-defined performance γ, if K can be designed so that
‖Tperf‖∞ ≤ γ holds, where Tperf is the matrix of transfer
functions from win = [fop , fenv]T to ẑperf . This problem
can be reformulated as a robust stability problem against an
augmented uncertainty block:

∆aug�
{[

∆oe 0
0 ∆perf

]
:∆perf ∈C

2×4 and ‖∆perf‖∞ ≤ 1
}

,

(15)
by closing a loop between zperf and win over an additional
uncertainty block ∆perf and by inserting the gain matrices

Γl =

[
I2×2 02×4

04×2
1

γ
1
2
I4×4

]
, Γr =

[
I2×2 02×2

02×2
1

γ
1
2
I2×2

]
(16)
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in the closed loop, as shown in Fig.5. To take full advantage
of the structuredness of ∆oe, rather than normal H∞ ,
constant scaled H∞ (in line with Theorem 1) is proposed
here. To this end, scaling matrices D−1

l and Dr, where

Dl =


 d1 0 01×4

0 d2 01×4

04×1 04×1 d3I4×4


, Dr =


 d1 0 01×2

0 d2 01×2

02×1 02×1 d3I2×2


, (17)

with real and frequency-independent scale factors di ∈
�+ (i = 1, 2, 3) are added. The scaled H∞ synthesis uses
the freedom in di to come up with less conservative
H∞ controllers. Finally, all the different elements are gath-
ered in Fig.5 and following theorem is constructed:

THEOREM 2 (Robust performance): A necessary and
sufficient condition for γ-performance of a master-slave
system whose input/output relations are described by the
transfer function Tperf , in contact with any non-linear and
time variable operator and environment is that Tperf is
analytic in Re(s) ≥ 0 and the scaled H∞ norm satisfies

‖DrΓrTperfΓlD
−1
l ‖∞ < 1. (18)

�
The solution to the constant scaled H∞ problem, summarized
by (18) can now be reformulated as a set LMI’s augmented
with some matrix rank conditions (see Appendix A). The
solution to these constraints with minimal γ will lead to a
robust controller with sub-optimal performance.

While the LMI’s are convex constraints and efficient
algorithms exist to solve them [14], the rank condition and
the minimization of γ are nonconvex. Fortunately, in the
design of reduced order controllers, similar conditions also
arise and quite a few heuristics have been proposed to derive
local solutions to this problem (e.g. [15],[16] and [17]).

In this article, the cone complementarity linearization
algorithm [15] by El Ghaoui is used to solve the noncon-
vex rank condition. It is a coordinate descent scheme that
alternatively and iteratively fixes parts of the coordinates
of the solution, while optimizing the remaining parameters.
Because each intermediate step is itself a convex LMI
program, it can be readily implemented. Although global
convergence is not guaranteed, in practice good and fast
convergence occurs. The local controller (14) for a specific
α can be calculated from the found solution.

III. VARIABLE-SCALE TELEOPERATION BY
GAIN SCHEDULING

A. Derivation of a gain scheduling controller

The minimization of γ under the LMI’s and rank condition
constraints requires substantial calculations. The realization
of variable-scale teleoperation by solving this problem for
every possible combination of scale factors (Fig.2) is a
nontractable problem. Even if all controllers were calculated
offline and switched online as fuctions of α(t), stability
cannot be guaranteed. Such method might only work for
sufficiently slow variations of α(t) [18].

The observation that the generalized plant (12) has a
linear parameter-varying (LPV) dependence, with state-space
equations of the form:

P (p)=




ẋ=A(p(t))x+B1(p(t))w+B2(p(t))u
z=C1(p(t))x+D11(p(t))w+D12(p(t))u
y=C2(p(t))x+D21(p(t))w+D22(p(t))u

(19)
on the time-varying parameters p(t), is a crucial insight that
leads to the tractability of variable-scale teleoperation.

THEOREM 3 (Variable-scale teleop. as polytopic LPV):
A variable-scale teleoperation system described by (12),
where the scale factors may vary over the polytope
A:

{
[φ, ε]T :φ ∈ {φmin, φmax}, ε ∈ {εmin, εmax}

}
depicted

in Fig.2, is a polytopic LPV system as (19), for which the
scale factors α(t) are treated as the schedule parameters
p(t), varying over polytope P = A. �
Note that also the weighted and controlled plant Paug is a
polytopic LPV system. Now, Apkarian[19] showed that the
Bounded Real Lemma for a polytopic LPV system is valid
within each element of a polytope of the parameter space if
it holds at every vertex of the polytope, the so-called vertex
property:

LEMMA 1 (Vertex property): LPV systems, such as (19),
are stable with quadratic H∞ performance γ so that ‖y‖2 <
γ‖u‖2 along all possible trajectories of p, if there exist a
single matrix X > 0 so that

 AiT

X + XAi XBi CiT

BiT

X −γI DiT

Ci Di −γI


 < 0 (20)

holds for every vertex i of the polytope P . �
Therefore, robust performance (18) of the master-slave sys-
tem can be guaranteed over the whole range of scale factors
if one can find a suboptimal solution to the 2n sets of LMI’s
for Paug (in this work n = 2). The existence of a single
matrix solution X > 0 reflects the existence of one fixed
Lyapunov function over the whole range of scale factors. In
such case, the controlled system is stable for any ṗ(t). This
might be conservative in situations where knowledge on ṗ(t)
is available [20]. Since no assumptions on ṗ(t) are made in
this work, arbitrary fast variations of α(t) are allowed.
Now, the following result shows how controllers with
quadratic H∞ performance can be calculated efficiently [19]:
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Fig. 6. Simulation result: Interpolation of fixed-scale controllers

LEMMA 2 (Quadratic H∞ performance controllers):
For the polytopic plant of (19) and under the conditions that

(i) D22(p) = 0,
(ii) B2(p), C2(p), D12(p) and D21(p) are parameter-

independent, and
(iii) the pairs (A(p),B2) and (A(p),C2) are quadratically

stabilizable and quadratically detectable over P ,

the polytopic controllers with state-space matrices AK(p),
BK(p), CK(p) and DK(p) and given by :(

AK(p) BK(p)
CK(p) DK(p)

)
�

2n∑
i=1

aiΩi =
2n∑
i=1

ai

(
Ai

K Bi
K

Ci
K Di

K

)
(21)

give the closed-loop system a quadratic H∞ performance
with bound γ, if a single matrix X > 0 exists so that (20)
holds for every vertex of P . �
If such X > 0 can be found, a possible choice of the LPV
controller is then the polytopic controller given by (21),
where the values (a1, . . . , a2n) are the solution to the convex
decomposition problem :

p =
2n∑
i=1

aipi. (22)

After calculating matrices Ai
K , Bi

K , Ci
K and Di

K , it suffices
to solve (22) based on the measured values of the schedule
parameter p(t)∈P which is thus α(t)∈A in our case.

B. Gain scheduling vs. locally interpolated controllers

The derivation of a gain scheduling controller involves
the solution of a large LMI containing the LMI conditions
for every vertex of the parameter box. To avoid such com-
putational cost, one might be tempted to employ a naive
solution where the controller is obtained by deriving four
fixed-scale controllers at each vertex of the parameter box
and interpolate them similar to (21). This naive solution is
much easier to obtain but cannot guarantee the stability under
the variable scaling scenario.

Fig. 7. Parameter dependent weight W

Fig.6 illustrates a simulation of such a naive controller.
Since the space is limited, the parameters used in the
simulation are not given here. But one can see clearly that
this naive controller works well locally at each vertex. Also
switching between controllers does not affect the stability.
But when the scaling parameters are adapted continuously
inside the parameter box, instability appears. From this
simulation result, the need for the gain scheduling approach
for the variable scaling scenario is clear.

IV. IMPROVING PERFORMANCE THROUGH USE OF

PARAMETER-DEPENDENT WEIGHTINGS

It is well-known that the performance of standard
H∞ controllers depends heavily on the quality of the selected
weighting filters. One should also note that the dynamics
of a system under scaled teleoperation vary greatly as the
scale factor changes. Thus, one can expect that controllers
designed for a certain constant set of weights W show only
good performance over a limited region of the parameter
space. Therefore, we propose to use parameter-dependent
weighting functions:

W (α) :
{

ẋw = Aw(α)xw + Bw(α)uw

yw = Cw(α)xw + Dw(α)uw
. (23)

This extra freedom is used to obtain a better performance
over the whole parameter space. However, care should be
taken not to violate the affine dependence of Paug on α.
For that reason, only the weights Wp and Wf can be made
parameter-dependent. Whereas the other weights Wum and
Wus must be kept parameter-independent.

Assume a set of ‘optimal’ weighting filters found through
optimization of local fixed-scale controllers, depicted in
Fig.7. Then, the parameter-dependent weightings are de-
signed according to following heuristic:

ALGORITHM 1 (Scale-dependent weighting): The
design of the weighting filters happens by solving a search
for locally optimal weight factors (controllers) in at least
three non-collinear locations of the parameter space. Then, a
planar ‘Approximated gain map’ is constructed, minimizing
the distance to the obtained local gains in a least-square
sense. Finally, the weights of the approximated gain map, in
the different vertices of the parameters space are calculated.

659



The planarity of the Approximated gain map is a first con-
dition to maintain the affine dependence on Paug . Secondly,
the state space matrices of the filters must be designed so that
all the terms Bw(α)C1(α), Bw(α)D11(α), Dw(α)C1(α) and
Dw(α)D11(α), which appear in P̂ (α) (13) with parameter-
dependent weights, written in full as:

P̂ (α) :




˙̂x =
[

A 04×5

Bw(α)C1(α) Aw(α)

]
x̂

+
[

B1

Bw(α)D11(α)

]
w+

[
B2

Bw(α)D12

]
u

ẑ =
[
Dw(α)C1(α) Cw(α)

]
x̂

+Dw(α)D11(α)w + Dw(α)D12u
y =

[
C2 06×5

]
x̂ + D21w

(24)

remain affine in the scale parameters. A smart choice of
the state space representation of the filters must be done to
preserve the affinity (see [13] for more details).

Now, the number and the locations where optimal local
weights are calculated are in fact design parameters. Further
research should be done to develop a solid strategy to
optimize this selection procedure. In this work 4 optimal
gains Wi (i = 1, . . . , 4) were calculated for the 4 vertices
αi (i = 1, . . . , 4). At present, only variations of gains of
weighting filters are being investigated, but also variations
in the locations of poles and zeros might prove useful.

The proposed method is also beneficial in the sense
that it drastically reduces the computation time. Since the
calculation of one variable-scale H∞ based controller takes
about 42 minutes on a Pentium IV , 3.4GHz processor, using
MATLAB’s LMI toolbox [14], it is clear that ‘blindly’ decid-
ing a combination of 6 weighting filters (for Wp and Wf at
three locations) will require a large amount of iterations and
a high computation time (42 × N minutes, where N � 1).
Indeed, many selections will fail to result in controllers with
sufficient performance. The calculation of a local controller,
on the other hand, only requires about 3 minutes. Therefore
the proposed heuristic requires

∑4
i=1 Mi × 3 + 42 minutes

for obtaining locally optimized controllers at 4 vertices and
a single run of calculation over the whole parameter space.
Note that Mi, i = 1, . . . , 4 is much less than N because only
2 weighting filters must be tuned towards a local optimum.

V. EXPERIMENTAL RESULTS

A. The experimental setup

The validity of the proposed method was experimentally
examined on a 1-d.o.f. setup. The setup consists of a direct-
drive DC motor SCARA type of 3-d.o.f. master, shown in
Fig.8. For the experiment only the elbow joint was actuated.
The shoulder joint was mechanically fixed, whereas the wrist
joint was left free to rotate. The link length of the actuated
arm is 30 cm. A six-axis force/torque sensor is mounted
at the tip of the master. The position of the elbow joint
is measured by encoder signals (120,000 pulses/rev.) and
the velocity is measured by a combination of the counts
of crystal clock pulses passed between every encoder pulse

Elbow joint

Hand grip

Shoulder joint

Wrist

Force sensor

Scale adjustment dials

Fig. 8. Master arm

Quarter

Sponge

Endeffector

Fig. 9. Slave arm and spongy environment

TABLE I

CONTROLLER PARAMETERS FOR THE EXPERIMENT

Mm 5.83 [kg] Ms 0.019 [kg]

Bm 13.3 [Ns/m] Bs 1.158 [Ns/m]

and the differentiated position signal. The slave is a one
dimensional system, shown in Fig.9, with linear voice-coil
actuator, span of 12 mm, a linear encoder with resolution of
0.5µm and a force sensor that has a resolution of 0.3mg, but
only accuracy of about 2g over a range of 20g.

Considering the hardware limitations, we set the range of
scaling as 5 ≤ φ ≤ 10 and 25 ≤ ε ≤ 100. Experiments were
done where contact with soft and rigid environments were
made. During the experiment the scale factors were adapted
by the user who turned two dials (Fig.10). The identified
parameters of the master and slave arms are given in Table
I. Weightings in W are set as shown in Table II, where
the gains of Wp and Wf are made scale-dependent. The
weighting parameter ρ in (11) was set to 50.

B. Experimental results

Figure 11 shows the experimental results for the interac-
tion with a spongy environment. The graphs on the left show
the position signals, the variation of the position scale factor,
the force signals and lastly the variation of the force scale
factor. The graph on the right shows the variation of the scale

Fig. 10. Scale adjustment dials
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(a) positions, forces and scale factors (b) locus of the selected scales

Fig. 11. Experimental result (Interaction with a sponge)

TABLE II

WEIGHTING FUNCTIONS FOR CONTROL OBJECTIVES (×103)

Wp Wf Wum Wus
Kp(α)

s+10

Kf (α)

s+10
Kum(s+100)

s+1000
Kus(s+100)

s+1000

vertex (φ, ε) Kp Kf Kum Kus

α1 (5, 25) 96 16.0 3 2.5

α2 (10, 25) 32 22.4 3 2.5

α3 (5, 100) 224 3.2 3 2.5

α4 (10, 100) 160 9.6 3 2.5

factor over the parameter space.
Each time the master signals are plotted together with the

scaled slave signals. It can be seen that these lines correspond
well, confirming the validity of the proposed methods. The
relative low accuracy of the force sensor of the slave, urged
us to set force gains lower than positional gains, reflecting
in the somewhat lower quality of the force sensing.

Stable behavior over the whole parameter space was
verified, both for independent variations of ε(t) and φ(t) (as
in ②, ③, ④ and ⑤) as in dependent variations, e.g. along the
line ①. Note, that the line ① is of practical interest, as here
the relation ε(t) ≈ φ2(t) holds. Practically, this combination
of scale factors will correctly scale the spring forces of the
remote environment [4]. Also a stable contact with a rigid
environment (metal stopper) was obtained.

VI. CONCLUSIONS AND FURTHER WORKS

This paper discussed variable-scale bilateral control for
micro teleoperation. First, we formulated the scaled tele-
operation system interacting with a passive operator and

environment as a generalized plant with a structured uncer-
tainty. Then, it was shown how robust performant controllers
for scaled teleoperation can be calculated by solving a set of
LMI’s, augmented with some nonconvex rank conditions.

Next, it was found that the scaled teleoperation robust
performance problem has an affine dependence on the scale
factors. The generalized plant of scaled teleoperation is
therefore a polytopic linear varying plant, for which efficient
gain-scheduling methods exist.

To improve the performance of the gain-scheduled con-
trollers, some of the weightings of the control objectives
are made a function of the schedule parameters. A simple
heuristic was proposed to maintain the polytopic nature of the
weighted plant. Further work should be done to investigate if
smarter choices of scale factor dependence of the weightings
can improve the performance even further.

Experimental results confirmed the validity of the pro-
posed approach. The system was kept stable under contacts
with a spongy as well as a rigid environment, while velocity
and/or force scaling factors varied.

For future works, the ranges of the scaling factor should
be set wider to get more benefit from the scale-dependent
weightings. To do so, a more sophisticated sensor and actu-
ator at the slave should be constructed. Extension to multiple
d.o.f. and integration of the system with an intuitive camera
guidance system should be performed as well. Extension
of the proposed framework to deal with master and slave
modeling errors should be trivial, but also uncertainty caused
by time delay must be dealt with.
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ÂX + XÂ
T

+ B̂2C̃ + (B̂2C̃)T Â + B̂2D̃Ĉ2 + Ã
T

B̂1 + B̂2D̃D̂21 (Ĉ1X + D̂12C̃)T

(Â + B̂2D̃Ĉ2)T + Ã Y Â + Â
T
Y + B̃Ĉ2 + (B̃Ĉ2)T Y B̂1 + B̃D̂21 (Ĉ1 + D̂12D̃Ĉ2)T

(B̂1 + B̂2D̃D̂21)T (Y B̂1 + B̃D̂21)T −


(
v1 0
0 v2

)
0

0 γv3I2×2


 (D̂11 + D̂12D̃D̂21)T

Ĉ1X + D̂12C̃ Ĉ1 + D̂12D̃Ĉ2 D̂11 + D̂12D̃D̂21 −


(
w1 0
0 w2

)
0

0 γw3I4×4







< 0 (25)

APPENDIX

A. Synthesis of constant scaled H∞ controllers by LMI’s

The H∞ constraint, described by (18), is now reformu-
lated as a set of LMI’s, augmented with some matrix rank
conditions. For a detailed procedure, please refer to [13].
Here, we limit us to say that after applying the Bounded
Real Lemma [21] on (18) and after performing two Schur
complements, (18) can be reformulated [22] as the algebraic
Riccati inequality (ARI) of (25), under constraints

vi = w−1
i > 0 (i = 1, 2). (26)

A positive definite solution of the ARI exists if (25) and[
X I8×8

I8×8 Y

]
> 0 (27)

hold. In this paper the order of the controllers are the same as
the order of the weighted plant. For a plant with 4 states and
first order weights Wp,Wf ,Wum,Wus, this gives controllers
of order 8. A suboptimal controller is then found by

v3w3 = γ2 → minimal. (28)

Note that (25) is affine in the variables X , Y , Ã, B̃, C̃, D̃,
which are defined as:

Ã = NAKMT+NBKĈ2X+YB̂2CKMT+Y(Â+B̂2DKĈ2)X,

B̃ = NBK+YB̂2DK, C̃ =CKMT+DKĈ2X, D̃=DK , (29)

for NMT=I8×8−Y X < 0. The constraints (26) can be
reformulated [23] as: [

vi 1
1 wi

]
≥ 0, (30)

and

rank
([

vi 1
1 wi

])
≤ 1, (i = 1, 2). (31)

The solution to the constant scaled H∞ problem can be found
by searching for the solution to the LMI’s (25), (27) and (30),
under rank condition (31), that minimizes (28).

After finding X , Y ,Ã, B̃, C̃, D̃, the state space matrices
of the controller: AK, BK, CK and DK can be found by
solving (29) for a certain choice of M and N .
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