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Abstract— This paper presents a new bilateral control scheme
for time-delayed teleoperation designed to achieve transparency.
The control scheme allows that the slave follows the master in
spite of the time delay, ant that the force displayed to the
operator was exactly the reaction force from the environment.
In addition, the interaction force of the slave with the environ-
ment is adapted to the master/slave ratio when it is reflected
to the operator, improving the transparency of the system.
The bilateral control scheme can be used in contact situations
or non-contact situations of the slave with the environment.
Together with the control scheme, the paper describes an
analytical design method that allows the obtaining of the control
gains.

I. INTRODUCTION

In a telerobotics system the slave is controlled to follow
the motion of the master that is manipulated by the human
operator. Habitually, the interaction force of the slave with
the environment is reflected to the operator to improve the
task performance. In this case, the teleoperator is bilaterally
controlled [1]. The existence of time delays in the com-
munication channel between the master and the slave can
destabilize the bilateral teleoperation systems [2]. A lot of
bilateral control systems have been proposed to overcome
the time delay problem [3].

From a control point of view, the main goals of the
bilateral control schemes are to maintain the stability of the
closed-loop system, and to achieve the transparency of the
system between the environment and the operator [4]. The
teleoperation system is transparent if, ideally, the human feels
as if he/she is directly performing the task in the remote
environment [5]. Or alternatively, the system is transparent
if the master and slave positions are equal, and the force
displayed to the human is exactly the reaction force from
the environment [6]. In order to design the bilateral control
schemes, a tradeoff between stability and transparency must
be achieved.

In [7] a design and bilateral control method of teleop-
eration systems with constant time delay was presented.
The design method allows that the slave follows the master
in spite of the time delay, and to establish the dynamics
of the teleoperation system. However, the transparency of
the teleoperation system is drastically reduced in order to
assure the stability with time delay. This paper describes a
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new bilateral control scheme, based in the previous control
scheme, that achieves the transparency and improves the
performance of the teleoperation system.

The paper is organized as follows. Section 2 explains
the limitations of the previous bilateral control scheme by
state convergence that have motivated the development of
the new control scheme. In Section 3, the new transparent
bilateral control method of telerobotics with time delay is
described. Section 4 shows some simulation results to verify
the performance of the new control scheme. Finally, Section
5 summarizes the key features of this control scheme.

II. MOTIVATION

In [7] a bilateral control scheme of teleoperation systems
by state convergence was presented. Fig. 1 shows the mod-
elling on the state space of this control scheme, where Fm

is the operator force, and Delay represents a constant time
delay of T seconds.
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Fig. 1. Modelling of the previous bilateral control scheme

A teleoperation system of one dof was considered to
explain the design and control method. The simplified linear
model of an element with one dof is:

Jθ̈(t)+bθ̇(t) = u(t) (1)
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where J is the inertia of the element, θ(t) is the rotate angle,
b is the viscous friction coefficient, and u(t) is the control
torque applied. The representation on the state space of the
master and the slave is obtained considering as state variables
the position (x1(t) = θ(t)) and the velocity (x2(t) = θ̇(t)).

The environment was modelled through a stiffness ke and
a viscous friction be. In this way the reaction force of the
slave with the environment is given by:

fs(t) = keθs(t)+beθ̇s(t) (2)

The structure of the matrix Ks to incorporate the inter-
action of the slave with the environment in the modelling
is:

Ks =
[

´ks1 − ke ´ks2 −be
]

(3)

And the structure of the matrix Rm to consider force feedback
from the slave to the master is:

Rm =
[

rm1 rm2

]
=

[
k f ke k f be

]
(4)

where k f is the force feedback gain.
Km, Ks, Rs, and G2 = g2 are the control gains. The design

method to obtain these control gains is based on the state
convergence between the master and slave states.

This control method has some important advantages: the
slave follows the master in spite of the time delay, and
it is able also to establish the desired dynamics of this
convergence and the dynamics of the slave manipulator.
However this control scheme has the next limitations:

• From the control scheme shown in Fig. 1, the master
control signal is:

um(t) = Kmxm(t)+Rmxs(t −T )+Fm(t)
= Kmxm(t)+ k f fs(t −T )+Fm(t) (5)

Therefore, the force displayed to the human is not ex-
actly the reaction force from the environment fs(t−T ),
but it is affected by the master state feedback Kmxm(t).
So, the transparency is not achieved in the bilateral
control scheme by state convergence.

• Considering that the operator exerts the same force,
the final position of the slave does not depend on the
environment, but it depends on the desired dynamics of
the slave [8].

• The control scheme by state convergence can be only
applied to contact situations of the slave with the
environment.

• Finally, it would be suitable that the reaction force of
the slave displayed to the human was adapted (amplified
or reduced) to the master/slave ratio.

III. TRANSPARENT BILATERAL CONTROL
SCHEME WITH TIME DELAY

This section presents the new bilateral control scheme for
telerobotics with time delay. This control scheme solves the
limitations described in the last section.

A. Modelling of the Teleoperation System

The next changes have been made in the modelling of the
teleoperation system shown in Fig. 1:

• The control by state feedback in the master has been
removed, i.e. the matrix Km has been eliminated.

• The force feedback gain (k f ) has been removed from
the matrix Rm:

Rm =
[

rm1 rm2

]
=

[
ke be

]
(6)

• A new control gain G1 = g1 has been inserted in the
control scheme. This gain adapts the reaction force of
the slave to the master/slave ratio.
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Fig. 2. Modelling of the master side in the new bilateral control scheme

Fig. 2 shows the changes in the master side of new control
scheme. The slave side has not changed. The elimination of
Km in the master improves the transparency of the system,
because the force displayed to the human is exactly the
interaction force of the slave with the environment. In
addition, the final position of the master (and the slave) is not
independent of the environment, but depends on the environ-
ment. If the slave does not contact with the environment, the
master (and the slave) will have free motion, and the final
position of the master and slave will not reach a established
constant value.

The master and the slave system are represented on the
state space like:

ẋm(t) = Amxm(t)+Bmum(t)
ym(t) = Cmxm(t) (7)

ẋs(t) = Asxs(t)+Bsus(t)
ys(t) = Csxs(t)

(8)

Considering one dof, the representation in the state space
of the master is:[

ẋm1(t)
ẋm2(t)

]
=

[
0 1
0 − bm

Jm

][
xm1(t)
xm2(t)

]
+

[
0
1

Jm

]
um(t) (9)

ym(t) =
[

1 0
][

xm1(t)
xm2(t)

]
(10)

and the slave is represented in a similar way.
In the new control scheme, the master control signal,

um(t), and the slave control signal, us(t), are respectively:

um(t) = Fm(t)−g1Rmxs(t −T ) (11)
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us(t) = Ksxs(t)+Rsxm(t −T )+g2Fm(t −T ) (12)

If the master and slave control signal in the master state
equation (7) and in the slave state equation (8) are replaced
respectively by the expressions (11) and (12), next state
equations are obtained:

ẋm(t) = Amxm(t)−g1BmRmxs(t −T )+BmFm(t) (13)

ẋs(t) = (As +BsKs)xs(t)+BsRsxm(t −T )+
+g2BsFm(t −T ) (14)

Using the Taylor expansion of first order to approximate
the time delayed signals in (13) and (14), and considering a
constant operator force, the next state equations are obtained:

ẋm(t) = Amxm(t)−g1BmRmxs(t)
+T g1BmRmẋs(t)+BmFm(t) (15)

ẋs(t) = (As +BsKs)xs(t)+BsRsxm(t)
−T BsRsẋm(t)+g2BsFm(t) (16)

Merging (15) and (16), the next state equation is obtained:
[

ẋs(t)
ẋm(t)

]
=

[
A11 A12
A21 A22

][
xs(t)
xm(t)

]
+

[
B1
B2

]
Fm(t) (17)

where

A11 = S(As +BsKs +T g1BsRsBmRm) (18)

A12 = S(BsRs −T BsRsAm) (19)

A21 = M(T g1BmRm(As +BsKs)−g1BmRm) (20)

A22 = M(Am +T g1BmRmBsRs) (21)

B1 = S(g2Bs −T BsRsBm) (22)

B2 = M(Bm +T g1g2BmRmBs) (23)

M = (I +T 2g1BmRmBsRs)−1 (24)

S = (I +T 2g1BsRsBmRm)−1 (25)

B. Design Methodology by State Convergence

There are six control gains in the new bilateral control
scheme: Ks =

[
ks1 ks2

]
, Rs =

[
rs1 rs2

]
, G1 = g1 and

G2 = g2. To calculate these control gains, six design equa-
tions must be obtained. In order to get these design equations,
the state convergence methodology is going to be applied [7].

If the next linear transformation is applied to (17):
[

xs(t)
xs(t)− xm(t)

]
=

[
I 0
I −I

][
xs(t)
xm(t)

]
(26)

the next state equation is obtained:

˙̃x(t) =
[

Ã11 Ã12
Ã21 Ã22

]
x̃(t)+

[
B̃1
B̃2

]
Fm(t) (27)

where

x̃(t) =
[

xs(t)
xs(t)− xm(t)

]
(28)

Ã11 = A11 +A12 (29)

Ã12 = −A12 (30)

Ã21 = (A11 −A21)+(A12 −A22) (31)

Ã22 = −(A12 −A22) (32)

B̃1 = B1 (33)

B̃2 = B1 −B2 (34)

Let xe(t) be the error between the slave and the master,
xe(t) = xs(t)− xm(t), the error state equation between the
slave and the master will be:

ẋe(t) = Ã21xs(t)+ Ã22xe(t)+ B̃2Fm(t) (35)

If the error evolves as an autonomous system, the slave-
master error can be eliminated, and the slave will follow the
master. To achieve that the error evolves as an autonomous
system, the next equations must be verified:

B̃2 = B1 −B2 = 0 (36)

Ã21 = A11 −A21 +A12 −A22 = 0 (37)

From (36) the next design equation is obtained:

−Jmg2 +Trs2 + Js +T g1g2rm2 = 0 (38)

Operating in (37) the next design equations are obtained:

−Jmks1 −T g1rm1rs2 +T g1rm2ks1 −
g1rm1Js − Jmrs1 +T g1rm2rs1 = 0 (39)

−T 2g1rs2rm1 − Jmbs + ks2Jm −g1JsTrm1

+g1Trm2bs −g1Trm2ks2 +g1rm2Js + rs2Jm

−T Jmrs1 +Trs2bm +T 2g1rm2rs1 + Jsbm = 0 (40)

Therefore satisfying the equations (38) – (40) the error
will evolve as an autonomous system. In this case, the dy-
namics of the system will be given by the next characteristic
polynomial:

det(sI − (A11 +A12))det(sI − (A22 −A12)) = 0 (41)

where the first determinant defines the slave dynamics, and
the second establishes the error dynamics. The poles of the
error dynamics must be placed in the left part of the s plane
to eliminate the error between the slave and the master, and
the poles of the slave must be also placed in the left part of
the s plane to assure the system stability.

Operating in (41), the following equations must be verified
if it is wished that the characteristic polynomial of the slave
and the error would be, respectively, p(s) = s2 + p1s+ p0 and
q(s) = s2 +q1s+q0:

Jmks1 +T g1rm1rs2 + Jmrs1

JsJm +T 2g1rs2rm2
= −p0 (42)
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T 2g1rs2rm1 + Jmbs − ks2Jm −T g1rm2rs2

−Jmrs2 +T Jmrs1 −Trs2bm =

p1(JsJm +T 2g1rs2rm2) (43)

rs1(−Jm +T g1rm2)
JsJm +T 2g1rs2rm2

= −q0 (44)

T 2g1rm2rs1 + Jsbm −T g1rm2rs2 + Jmrs2

−T Jmrs1 +Trs2bm = q1(JsJm +T 2g1rs2rm2) (45)

Seven design equations have been obtained, equations (38)
– (40) and equations (42) – (45), and there are six control
gains (g1, g2, Rs and Ks). Therefore, the dynamics of the
slave and the error can not be completely established. Since
g1 must adapt the reaction force displayed to the human to
the master/slave ratio, it is calculated in this way:

g1 =
Jm

Js
(46)

As g1 has been calculated, there are seven design equations
that must be solved in order to calculate the five control
gains (g2, Rs and Ks). Therefore, five design equations can
only be considered. Since equations (38) – (40) must be
always satisfied to achieve the evolution of the error as an
autonomous system, only the dynamics of the slave or the
error can be established. Both dynamics can not be fixed. It
has been verified that the control gains can be only calculated
fixing the error dynamics. In this case the design equations
are (38) – (40), (44) and (45). Solving these equations, the
next control gains are obtained:

g2 = α(1+q1T +q0T 2)Js (47)

rs1 = αJsq0(T bm + Jm) (48)

rs2 = α(JsJm(q1 +q0T )−bmJs) (49)

ks1 = −αJs(g1rm1(1+q1T +q0T 2)
+q0(Jm +T bm)) (50)

ks2 = −α(g1rm2(Js +T (bs + Jsq1)+T 2(bsq1 + Jsq0)

+bsT
3q0)−T Jsg1rm1(1+q1T +q0T 2)

+(Jm +T bm)(q1Js −bs)) (51)

where

α =
1

Jm +T bm −T g1rm2(1+q1T +q0T 2)
(52)

C. Remarks

The control gains can be only calculated if the following
restriction is verified, see (52):

Jm +T bm −T g1rm2(1+q1T +q0T 2) �= 0 (53)

However, since q0 and q1 are selected to fix the error dynam-
ics, they can be selected in order to verify this restriction.

In addition, to calculate the matrix (24) and (25), and to
obtain the control gains, the next restriction must be also
verified:

Js �= T be (54)

If Js = T be the design method can not be used. In this case
there are two options:

• To use a time delay T for the design method slightly
different to the real time delay.

• To use a viscous friction be of the environment for the
design method slightly different to the identified viscous
friction. If the environment is only modelled using the
stiffness ke, i.e. be = 0, the restriction is always verified.

In order to apply the design method modifying one of the
design parameters, the robustness of the control method
against variations in these parameters must be previously
verified [8].

On the other hand, since the slave dynamics can not
be established, the stability of the slave dynamics must be
analyzed. The dynamics of the slave is given by the next
characteristic polynomial, see (42) and (43):

p(s) = s2 +
g1rm2 +bm −T g1rm1

Jm −T g1rm2
s+

rm1g1

Jm −T g1rm2
(55)

The slave dynamics will be stable if the next conditions are
verified:

Jm > T Jm
Js

be (56)
Jm
Js

(be −T ke)+bm > 0 (57)

From these conditions, the next comments are obtained:
• The increment of the environment stiffness ke and

viscous friction be, and the increment of the time delay
T affects negatively to the system stability.

• If the slave is bigger than the master (Jm < Js), the
system will be stable for longer time delay and more
stiff environments, than if the master is bigger that the
slave (Jm > Js).

The error dynamics and the slave dynamics, i.e. the dy-
namics of the teleoperation system, have been obtained and
analyzed considering the state equation of the teleoperation
system with the time delay approximation (17). However,
the stability of the teleoperation system must be analyzed
considering the state equation of the teleoperation system
without the time delay approximation:[

ẋs(t)
ẋm(t)

]
=

[
As +BsKs 0

0 Am

][
xs(t)
xm(t)

]
+

[
0 BsRs

−g1BmRm 0

][
xs(t −T )
xm(t −T )

]
+

[
0

Bm

]
Fm(t)+

[
g2Bs

0

]
Fm(t −T ) (58)

The asymptotic stability of the teleoperation system has
been analyzed using the criteria based in the frequency
domain proposed by Su, Fong, and Tseng [9]. These criteria
allow the testing of the asymptotic stability of a system with
time delay represented on the state space. They determine if
the system is asymptotically stable independently of time
delay and, if is not possible to assure the stability inde-
pendently of time delay, they establish the maximum delay
which guarantees the asymptotic stability. In the next section,
the stability of the teleoperation systems considered has been
analyzed using these criteria.
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IV. SIMULATION RESULTS

This section shows the simulation results obtained using
the new bilateral control scheme. A teleoperation system
where the slave is bigger than the master is considered. The
next parameters have been considered:

Jm = 1kgm2 bm = 2 Nm
rad/s

Js = 10kgm2 bs = 60 Nm
rad/s

In all cases, the force exerted by the operator over the master
has been simulated as a constant step of 1 Nm.

First it is considered that the slave interacts with a hard
environment (ke = 100Nm/rad and be = 0 Nm

rad/s ). If there is
a time delay of 0.1s and the error poles are placed in the
position −11 of the s plane, the system is asymptotically
stable for time delays smaller than 0.004245s. As the error
poles are placed nearer to the origin, the system is stable
for bigger time delays. For example, if the error poles are
placed in the position −1 of the s plane, the system is
stable for time delays smaller than 0.0849823s. However,
the teleoperation system can not be designed satisfying the
stability and transparency considering a time delay of 0.1s.

If a time delay T=0.01s is considered, and the error poles
are placed in the position −1 of the s plane, the system
designed is stable for time delays smaller than 0.08s, and
the slave poles are stablished in the position −0.95±3.0162i.
Fig. 3 shows the master and slave evolution. It can be verified
that the slave position and velocity follow without error the
master position and velocity, respectively, in spite of the time
delay. Fig. 4 shows the master and slave control signals (top
part), and the operator force and the reaction force displayed
to the human (bottom part). The reaction force displayed to
the operator is adapted to the master/slave ratio. This reaction
force opposes to the operator force. When the reaction force
displayed to the human is equal to the operator force, the
master and the slave stop in the same final position.
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Fig. 3. Position and velocity of the master and slave considering a hard
environment

Top part of Fig. 5 shows the master and slave position
considering that the slave interacts with a soft environment
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Fig. 4. Master and slave control signals (top part), and operator force and
reaction force displayed to the operator (bottom part) considering a hard
environment

(ke = 10Nm/rad and be = 0 Nm
rad/s ), there is a time delay of

T=0.1s, and the error poles are placed in the position −1
of the s plane. The system is stable for time delays smaller
than 0.35s, and the error poles are established in the position
−0.95±0.312249i. As in the previous case the slave position
follow without error the master position in spite of the time
delay. However, comparing with Fig. 3, as the environment
stiffness decreases, the final position of the slave (and the
master) increases because the opposition to the slave advance
is lesser. On the other hand, as the environment stiffness
decreases, the system is stable for bigger time delays . The
bottom part of Fig. 5 shows the master and slave position
when the slave does not interact with any environment (free
motion), there is a time delay of 0.5s, and the slave poles are
placed in the position −11 of the s plane. In this case the
slave follows the master and they do not stop in a constant
position because there is not any opposition to the slave
motion. Therefore the control scheme can be used in contact
and non-contact situations of the slave with the environment.

The new control scheme has been compared with the
previous control scheme by state convergence shown in
Fig. 1. It has been assumed that k f = 0.1, and the slave
and error poles are placed in the location −11 of the s
plane. Fig. 6 shows the simulation results when the slave
interacts with the hard environment and there is a time delay
of 0.01s. The slave follows the master, however, the final
position of the slave and the master does not depend on the
environment, but it depends on the desired dynamics of the
slave. If a different environment or free motion of the slave
is considered, similar results are obtained. On the other hand,
the force displayed to the operator is not only the weighted
reaction force, but it is the weighted reaction force plus the
master state feedback. Therefore the teleoperation system is
not transparent. Both problems have been solved with the
new bilateral control scheme.

Finally, some simulation results have been obtained con-
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Fig. 5. Master and slave position considering a soft environment (top part),
and free motion (bottom part)
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Fig. 6. Master and slave position (top part), reaction force weighted by
k f (central part), and force displayed to the human (bottom part) in the
previous scheme by state convergence

sidering that the master is bigger than the slave, the slave
interacts with a very soft environment (ke = 0.5Nm/rad),
e.g. in a telesurgical system, and there is a time delay of
0.1s. The next parameters have been considered:

Jm = 1kgm2 bm = 2 Nm
rad/s

Js = 0.1kgm2 bs = 0.06 Nm
rad/s

To design the control system, the error poles have been
placed in the position −1 of the s plane. Fig. 7 shows
the master and slave evolution. In spite of the fact that the
reaction force is amplified by g1 = 10 when it is displayed
to the human, the slave follows the master without any error,
and the system is stable.
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Fig. 7. Position and velocity of the master and slave

V. CONCLUSIONS AND FUTURE WORKS

A new transparent bilateral control scheme by state con-
vergence for telerobotics with time delay has been presented.
The characteristics of this control scheme are the next:

• The slave follows the master in spite of the time delay.
In addition, the error dynamics is established.

• The system is transparent because the force displayed
to the human is the reaction force of the slave with the
environment.

• The reaction force displayed to the operator is adapted
according to the master/slave ratio, improving the trans-
parency of the system.

Compare to the previous control scheme, the new scheme is
stable for shorter time delays, but assures the transparency.
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