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Abstract— This paper presents a bounded control of a
flapping Micro Aerial Vehicle (MAV) in three dimensions.
First, a simplified model of the flapping MAV is presented
aiming to test the control law. The averaging theory shows
that for high frequency systems, only the mean aerodynamic
forces and torques over a period affect the movement of the
body. Therefore, a bounded nonlinear state feedback control,
calculated using the averaged model, is applied to the time
varying system in order to stabilize it at a desired position
in hovering mode. The robustness of the control is tested
with respect to the aerodynamic coefficient and to external
disturbances.

I. INTRODUCTION

The flapping flight has been a large domain of exploration
in the last few years, aiming to understand and mimic the
ingenious strategies developed by animals during the navi-
gation in three dimensions. The big interest in insect flight is
driven by the advantages that it presents relative to the rotary
and fixed airfoils. For example, flapping MAVs should have
a greater maneuverability, develop more lift, produce less
noise and get benefit from their small size and biomimetic
behavior. The major disadvantages of flapping airfoils are,
on one hand, the difficulty to conceive the mechanisms
developed by insects during complex maneuvers [1], and on
the other hand, the necessity of using low computational
embedded systems, tiny sensors and actuators to ensure
the free autonomous flight. The progress in microelectronic
technologies, materials and communication tools, in addition
to the researches held all over the world is helping the
development of such airfoils. MAVs have several applications
like surveillance, seismic and high voltage lines monitoring,
intervening in dangerous environments, searching and rescu-
ing, spying, investigating or just gaming.

The present work lies within the scope of the OVMI
project, which aims to design and develop a flapping wings
micro robot (see Fig. 1) capable of autonomous flight, by
taking into account fluid mechanics and energetic aspects.

The goal of the present paper is to develop control
laws able to ensure the flight in 3D space, i.e. the at-
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titude stabilization and the linear displacements. Few of
previous works have treated this problem. State feedback
controllers are proposed, one acting directly on the po-
sition [2] and the other, bounded, acting on the vertical
force and torques, is based on poles placement using the
linearized dynamics of the system [3]. In [4], a Linear
Quadratic Gaussian (LQG) optimal state feedback controller
is determined. Couplings between the pitch and the for-
ward movements on one hand, the roll and the lateral
movements on the other hand are considered [2], [3].

Fig. 1: Centimetric scale
prototype of the “OVMI”
project

In the present work,
bounded state feedback
nonlinear control laws of the
flapping body’s position and
orientation are proposed.
In fact, the linear control
laws used in previous works
are not sufficiently robust
with respect to external
disturbances like a drop of
rain, wind, etc. Moreover,
the proposed control is
bounded in order to respect
the maximum limit of
the actuators driving the
flapping wings. Besides,
the attitude is determined
by the quaternion [5], which presents more simplicity in
computation and prevents numerical singularities induced
by Euler angles.

The paper is organized as follows. Section II presents a
simplified model of the flapping MAV with limited wings
kinematics. In section III, bounded non linear control laws
of the MAV’s orientation and position are proposed, and the
global stability is proven based on averaging and systems
cascade theories. These control laws are validated by some
simulations and robustness tests in section IV. Finally, sec-
tion V presents conclusions and introduces future works.

II. INSECT FLIGHT MODELING

A simplified model of a flapping MAV with limited wings
kinematics is proposed in this work in order to validate the
control strategy. Translational and rotational motions of the
body are computed based on the body’s dynamic equations
and the aerodynamic theory.

A. Wings movement parametrization

A wing is considered as a rigid body associated to a frame
Rw(−→r ,−→t ,−→n , ψ, φ, θ) (see Fig. 2). The axis −→r is oriented
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Fig. 2: Frames and wings angles

from the wing base to its tip, the axis
−→
t is parallel to the

wing chord, oriented from trailing to leading edge and the
axis −→n is perpendicular to the wing plane oriented so that the
three-sided frame (−→r ,−→t ,−→n ) is direct. The angles (ψ, φ, θ)
are used to specify the position of the wing through three
rotations about the wings Euler axes (−→r ,−→t ,−→n ) respectively.
The flapping angle, φ, defines an up and down movement of
the wing. The rotation angle, ψ, defines a rotation of the wing
about its main axis. The deviation angle, θ, defines a forward
and backward movement of the wing parallel to the MAV’s
body. Angles φ and ψ are assumed to vary according to
saw tooth and pulse functions respectively, so that the wing
changes its orientation at the end of each half stroke (see
Fig. 3). In order to use actuators for 2 DOF only, the wings
are supposed to beat in the mean stroke plane, therefore angle
θ is taken to zero. Note that the reduction of the vehicle’s
size induces a reduction of its electronic and mechanical
components. For instance, the smallest MAV prototype is
driven by one actuated degree of freedom per wing [6].
The temporal variation of the wings trajectory is given by

φ(t) =
{
φ0(1− 2t

κT ) 0 ≤ t ≤ κT
φ0(2 t−κT

(1−κ)T − 1) κT < t ≤ T
ψ(t) = ψ0 sign(κT − t) 0 ≤ t ≤ T
θ(t) = 0 0 ≤ t ≤ T

(1)

where sign designates the classical sign function, T is the
wingbeat period, κ is the ratio of downstroke duration to the
wingbeat period, φ0 and ψ0 are respectively the amplitudes
of flapping and rotation angles. The last two parameters
considered for both left and right wings, will be taken as
control variables, as explained in the following.
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Fig. 3: Wings angles configuration over two wingbeat pe-
riods: flapping angle φ (dashed line) and rotation angle ψ
(continuous line)

B. Body’s dynamics

The equations of motion of a rigid body subject to external
forces and torques are given by

Ṗ f = V f (2)

V̇ f =
1
m
RT (q)fm − cV f − g (3)(

q̇0
−̇→q

)
=

1
2

(
−−→q T

I3q0 + q̂T

)
wm (4)

ω̇m = J−1
m (τm − ωm ∧ Jmωm) (5)

P f ∈ R3 and V f ∈ R3 are respectively the linear position
and velocity of the body’s center of gravity relative to the
fixed frame Rf . ωm is the angular velocity with respect to the
mobile frame Rm attached to the insect’s body on its center
of gravity. c is the viscous damping coefficient and g the
gravity vector. fm ∈ R3 and τm ∈ R3 are respectively the
aerodynamic force and torque. Jm ∈ R3×3 is the inertia ma-
trix of the body relative to Rm and I3 is the identity matrix.
q is the quaternion defining the attitude of the body relative
to Rf [5], q = [cos ν2 (−→e sin ν

2 )]T = [q0 −→q T ]T consisting
of a rotation of angle ν about the Euler axis −→e . q0 ∈ R is
the scalar part and −→q = [q1 q2 q3]T ∈ R3 the vector part of
the quaternion. q ∈ H where H = {q | q20 + −→q T−→q = 1}
is the Hamilton space. R(q) ∈ SO(3) = {R(q) ∈ R3×3 :
RT (q)R(q) = I, detR(q) = 1} is the rotation ma-
trix from the fixed frame Rf to the mobile frame Rm,
R(q) = (q20 − −→q T−→q )I3 + 2(−→q −→q T − q0q̂

T ). q̂ is the
skew symmetric tensor associated to −→q .

The delayed stall is considered as the unique aerodynamic
force applied on the wing’s aerodynamic center, which
coincides with its center of mass in practical cases. The force
is perpendicular to the wing and has the opposite direction
of the wing’s velocity. The module of the force is considered
proportional to the square of the wing’s velocity relative to
Rm. This assumption has to be checked on the prototype
under construction. The module fw of the force is given by

fw = −1
2
ρCwSwv

w|vw| (6)

ρ is the air density, Sw is the wing’s surface, vw is the
wing’s velocity, Cw is a coefficient of the aerodynamic force
applied on a wing. Cw = C(1 + Cf ) during downstroke
and Cw = C(1 − Cf ) during upstroke, where C ≈ 3.5
is the delayed stall force coefficient derived empirically in
[7], [8] and Cf is a damping coefficient chosen so that the
aerodynamic force is 20% greater during downstroke than
during upstroke. This dissymmetry between the two half-
strokes can be justified based on [1]. During downstroke,
the dorsal side of the wing is opposite to the air flow. The
supination opposes the ventral side of the wing to the flow.
Consequently, the effective area of the wing is reduced and
the orientation of air circulation about the wing reverses,
leading to a wing camber alteration. Therefore, downstroke
lift is likely to be higher than that of upstroke, so that the
averaged force over a single wingbeat period should at least
balance the body’s weight.
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The aerodynamic force relative to Rm is the sum of the
forces developed by the left and right wings

fm = fml + fmr (7)

The aerodynamic force has two components, the thrust that
ensures a forward movement of the MAV, and the lift that
ensures a vertical movement.
The aerodynamic torque relative to Rm is defined as the
vectorial product of the force fm and the wing’s aerody-
namic center’s position pm (pm is the projection in Rm of
the position pw = [L 0 0] relative to Rw). Angular viscous
torques are negligible with respect to aerodynamic torques.

τm(t) = pml (t) ∧ fml (t) + pmr (t) ∧ fmr (t) (8)

The wing’s velocity is the center of mass position’s derivative
vm = ṗm, vw is the projection of vm in Rw [9].
Note that this simplified model is developed only to test the
control strategy.

C. Averaged model - Control constraints

The averaging theory has been largely studied in [10],
[11], [12] for high frequency systems. Flapping bodies are an
application of it [13]. The aerodynamic forces and torques,
generated by the high frequency beating wings, affect the
body’s dynamics only by their averaged values over a wing-
beat period, since the wingbeat frequency is much higher
than the bandwidth of the body’s dynamics. Moreover, a
stabilizing control law calculated using the averaged model
will stabilize the oscillating model too for sufficiently high
flapping frequency. Therefore, the averaged dynamics of the
time varying model (1-8) were calculated [9]

(fx, fz, τx, τz) = Λ(φl0, φ
r
0, ψ

l
0, ψ

r
0) (9)

The control of the flapping MAV’s position and orientation
is ensured by the aerodynamic force and torque applied to
the body over a wingbeat period.
The attitude stabilization of the MAV is ensured by the roll,
pitch and yaw control torques (τx, τy , τz). The MAV is
supposed to move forward due to a thrust control force fx,
vertically due to a lift control force fz (fx and fz are
expressed in Rm), sideway due to a coupling between the
roll and the vertical movements. The thrust and lift forces as
well as the roll and yaw torques are generated by the flapping
wings (9), whereas the pitch control torque τy is supposed
to be generated by a small mass moving inside the insect
body, and changing its center of gravity. Considering

0 ≤ φ0 ≤ φ0

−ψ0 ≤ ψ0 ≤ ψ0
(10)

for left and right wings, system (9) defines a convex set Ω in
the mean control variables (fx, fz , τx, τz) (see Fig. 4a and
4b, Ωτx,τz and Ωfx,fz are the projection of Ω on the planes
(τx, τz) and (fx, fz) respectively). Therefore, anywhere in
the set Ω, there exists a wing configuration (φl0, φr0, ψl0,
ψr0) producing the mean desired forces and torques (fx, fz ,
τx, τz). Considering the mean behavior over a wingbeat
period of system (2-5), the MAV is approximated by a rigid

body subject to external forces and torques. Therefore, the
averaged state of the time varying model x is equivalent to
a rigid body state xrb.
In this work, state feedback control laws, stabilizing the rigid
body’s position and orientation, will be proposed.

(fx, fz, τx, τz) = U(xrb) = U(x) (11)

By inverting (9), (11) can be written

(φl0, φ
r
0, ψ

l
0, ψ

r
0) = Λ−1(U(x)) (12)

This control law should respect the saturation set Ω, ensuring
that the amplitudes of the wings’ angles (φl0, φ

r
0, ψ

l
0, ψ

r
0)

remain within the saturation bounds (10).

III. INSECT FLIGHT CONTROL

Different control laws existing in the literature can be used
for flapping bodies. However, they present some disadvan-
tages. For example, linear control laws are not sufficiently
robust with respect to external disturbances. Thereby, nonlin-
ear control should be used. Two techniques are widely used:
the input output linearization and the backstepping control.
While the first one brings the problem back to the linear
case, the latter requires a knowledge of the system’s inertial
parameters which are difficult to identify.
In this section, a nonlinear bounded control strategy, that
stabilizes system (2-5) and guarantees the wings angles
limits, is proposed. It can be applied on a finer model
of the flapping body; only the relation between the mean
aerodynamic forces and torques over a wingbeat period and
the wings angles amplitudes (9) is needed. The control is
independent of the inertia matrix, robust with respect to
system’s parameters uncertainties, aerodynamic coefficient,
etc.
The attitude stabilization is ensured by applying control
torques for subsystem (4-5), taking the roll, pitch and yaw
angles called (η1, η2, η3) to 0. The control of the position
in Rf (2-3) is ensured by the control thrust and lift. The
lateral movement will be created by tilting the aircraft along
the roll axis. Therefore, (2-5) can be considered as cascade
of systems, it is of the form [14]{

ẋ = f(x, y)
ẏ = g(y, u) (13)

which means that the translational dynamics depend on the
rotational ones, but the rotational dynamics are independent
of the translational ones.

A. Attitude control

The control law applied in this paragraph is supposed to
drive the body to a desired orientation qd, while the angular
velocity should vanishes: q → qd, ω

m → 0 as t → ∞.
The error between the current and desired orientations
of the body is quantified by the quaternion error:
qe = q ⊗ q−1

d , where q−1 is the quaternion conjugate given
by q−1 = [q0 −−→q T ]T , ⊗ is the quaternion product defined
by q ⊗ Q = [(q0Q0− −→q

−→
Q) (q0

−→
Q+ Q0

−→q + −→q ∧
−→
Q)T ]T ,

and ∧ denotes the vectorial product.
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The proposed attitude stabilizing control torque is a bounded
state feedback based in its formulation on the model of a
rigid body [15] (equivalent to the averaged model of the flap-
ping body) and applied to the time variant model (flapping
MAV). This control law is extremely simple and therefore
suitable for an embedded implementation. Moreover, the
control law is robust with respect to aerodynamic coefficient
and does not require the knowledge of the body’s inertia. Let
τ = [τx τy τz]T be the roll, pitch and yaw control torques.

τ i = −αiσM2,i
(λi[γiωi + sign(qe0)σM1,i

(qei
)]) (14)

where i ∈ {1, 2, 3}, sign(q0) takes into account the pos-
sibility of 2 rotations to drive the body to its equilibrium
orientation; the one of smaller angle is chosen. ωi and
qi are the averaged angular velocities and quaternion over
a single wingbeat period (averaged state of the rotational
subsystem xr = {ωi, qi}, i = 1, 2, 3) representing the time
varying angular velocities and quaternion of a rigid body.
αi, λi, γi are positive parameters. Differently from [15],
γi has been added in order to slow down the convergence
of the torque relative to the angular velocity. Moreover, the
general case represented by the quaternion error (instead
of the current quaternion) is considered. σM1,i

and σM2,i

are saturation functions with M1,i and M2,i the saturation
bounds: M1,i ≥ 1, M2,i ≥ λ(2M1,i + εi) and εi > 1.
The M2,i’s are chosen in order to respect input saturations:
wings Euler angles and body’s length. Based on (9,10),
the maximum flapping and rotation amplitudes, φ0 and ψ0,
define a set Ωτx,τz

of admissible torques (see Fig. 4a). The
saturation bounds M2,1 and M2,3 are adjusted in (14) so that
τx and τz remain in the limits of Ωτx,τz

, which guarantees
not to exceed the maximum angles. M2,2 should respect the
saturation induced by the length of the body, since the pitch
torque is generated by a small mass moving inside it.

The asymptotic stability of the closed loop system has
been shown in [15] for rigid bodies using the following
Lyapunov function (the added parameter γi and the use of
the quaternion error do not change the proof)

V r =
1
2
ωrb

T
Jmω

rb + κ((1− qrbe0)2 +−→q rbe
T−→q rbe ) (15)

Therefore, ω → 0 and q → qd (based on the rigid body
case). By means of the averaging theory, ‖ω − ω‖ < k1T
and ‖q− q‖ < k2T for k1,2 > 0 and T the wingbeat period.

B. Position control

The subsystem (2-3) can be considered as a chain of
integrators by neglecting the drag force represented by the
term cV f , therefore considering the system at low speeds. It
is considered as a disturbance term in simulations. Supposing
that, after a sufficiently long time, the subsystem (4-5) is
stabilized over the pitch and yaw axis (η2 = 0, η3 = 0),
then the normalized translational subsystem described by

equations (2-3) can be written (P f = [Px Py Pz]T ){
ṗ1 = p2

ṗ2 = vx
(16)

ṗ3 = p4

ṗ4 = −vh sin(η1)
ṗ5 = p6

ṗ6 = vh cos(η1)− 1

(17)

p = (p1, p2, p3, p4, p5, p6) = (P x, V x, P y, V y, P z, V z) is
the averaged state of the translational subsystem, xt = p,
vx = fx

mg , vh = fz

mg , η1 the roll angle and 1 is the
normalized gravity.
As in paragraph III-A, a bounded state feedback control law,
calculated using the averaged model over a wingbeat period
(equivalent to a rigid body model), is tested on the time
variant model. The proposed controller is extremely low cost
for an embedded implementation. Moreover, it is robust to
measurement delays and to system model uncertainty [16].

1) Stabilization of the forward movement: System (16)
define a double integrator, and can be stabilized using the
control developed in [16]. vx can then be chosen as

vx =
vx

εx + ε2x
(−εxσ(p2)− ε2xσ(εxp1 + p2)) (18)

where εx is a positive parameter lower than 1 and σ(.) is a
twice differentiable function bounded between ±1 parame-
terized by 0 < µ < 1 [17]

σ(s) =


−1 s < −1− µ
e1s

2 + e2s+ e3 s ∈ [−1− µ,−1 + µ[
s s ∈ [−1 + µ, 1 + µ]
−e1s2 + e2s− e3 s ∈]1− µ, 1 + µ]
1 s > 1 + µ

(19)

with e1 = 1
4µ , e2 = 1

2 + 1
2µ , e3 = µ2−2µ+1

4µ .

vx should respect the saturation bound represented by the set
Ωfx,fz

(see Fig. 4b) in order to guarantee admissible flapping
and rotation angles. The asymptotic stability of (p1, p2) is
then ensured (cf. proof [16]).

2) Stabilization of the lateral and vertical movements:
System (17) associates the lateral movement of the MAV to a
roll movement, inspired from the works on PVTOLs (Planar
Taking Off and Landing) aircrafts [17]. η1 is considered as
an intermediate input for system (17) and should respect a
desired angle η1d

:

η1d
= arctan(

−vy
vz + 1

) (20)

vy and vz will be determined later on.
The vertical normalized lift vh is given by

vh =
√
v2
y + (vz + 1)2 (21)

An appropriate control torque as defined in (14) will drive
the roll angle η1 to the desired value η1d

defined by the
corresponding quaternion qd, hence system (17) will be

167



transformed into the form of two independent second order
integrators [17].{

ṗ3 = p4

ṗ4 = vy

{
ṗ5 = p6

ṗ6 = vz
(22)

Therefore, the stability of the lateral and vertical movements
can be ensured following [16]:

vy =
vy

εy + ε2y
(−εyσ(p4)− ε2yσ(εyp3 + p4)) (23)

vz =
vz

εz + ε2z
(−εzσ(p6)− ε2zσ(εzp5 + p6)) (24)

0 < εy, εz < 1, and σ(.) is defined as in (19). vy and vz are
chosen such that:

vh =
√
v2
y + (vz + 1)2 (25)

and vh should respect the saturation bounds represented by
the set Ωfx,fz

(see Fig. 4b). The asymptotic stability of
(p3, p4, p5, p6) is then ensured [16], [17].

3) Stability of the translational movement of the time
varying system: Applying the proposed control law, P

f → 0
and V

f → 0 (based on the demonstration for rigid bodies).
By means of the averaging theory, ‖P f − P

f‖ < k3T and
‖V f − V f‖ < k4T for k3,4 > 0 and T the wingbeat period.

IV. SIMULATIONS

The numerical values, used in the simulations of the model
proposed in this work, correspond to the Hymenoptera insect
[18]. The wingbeat frequency is 100Hz and the body mass
500mg. The wing surface (Sw ≈ 1.5 cm2) is computed so
that a vertical ascendant movement can be achieved with a
flapping angle remaining lower than φ0 = 50 ◦ (maximum
flapping amplitude for Hymenoptera). The rotation angle
amplitude is taken to its maximum value ψ0 = 90 ◦.

Based on these numerical values, the saturation sets Ωτx,τz

and Ωfx,fz
can be determined explicitly (10).

Ωτx,τz has been approximated to the largest ellipse Er that
fits inside Ωτx,τz (see Fig. 4a) for calculus simplification
reasons. Therefore, the control torques τx and τz should
respect an ellipsoidal saturation defined by

yTPy = 1 (26)

where y = (τx τz)T and P is a diagonal definite positive
matrix representing the ellipse’s semi-axes. Practically, if
τx ≥ α1M2,1, τx could be saturated to α1M2,1 and τz = 0.
To avoid a null yaw control torque in this case, 70% of
α1M2,1 will be attributed to τx, τz will be calculated by
equation (26) defining a set Ωr (see Fig. 4a). This choice is
justified by the necessity to bring the MAV to its flat position
(horizontal plane) first.

The admissible set of thrust and lift forces Ωfx,fz is drawn
on Fig. 4b. Since vh will be decomposed in mgvy and
mgvz , rectangular saturation is chosen inside Ωfx,fz

in order
to simplify the calculation of the bounds at each iteration.
Saturation bounds are calculated so that more power is given
to the lateral movement since it is associated to the roll

τ
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(a) Rotational saturation set

f
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)

fx (N)
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(b) Translational saturation set

Fig. 4: Yaw torque versus roll torque (left), defining the
saturation set Ωτx,τz

approximated to an ellipse Er then to a
set Ωr. Lift versus thrust (right), defining the saturation set
Ωfx,fz approximated to the set Ωt.

movement: the MAV can be brought to the horizontal plane
rapidly. The final set is then given by Ωt (see Fig. 4b).

The convergence of the control laws is tested in simu-
lation. The MAV is taken to the equilibrium from an initial
position (2,−1,−3)(m) and orientation (−25, 45, 30) ◦. The
robustness of the control law is tested with respect to
external disturbances (forces of (10−2, 0, 10−2) and torques
of (10−4, 10−4, 10−4) in Rm) applied at t = 25 s. Control
torques and forces act synergetically to overcome the distur-
bances and ensure the MAV’s stability. The roll, pitch and
yaw angles, angular velocities, control torques and position,
linear velocities, thrust and lift control forces are plotted
on Fig. 5, 6, 7 and 8. The robustness of the control has
been successfully tested with respect to a bad estimation of
35 % of the aerodynamic coefficient Cw which is difficult to
identify.
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Fig. 5: The convergence of the roll, pitch and yaw angles
from initial orientation (−25, 45, 30) ◦ (left) and the corre-
sponding angular velocities (right) in presence of external
disturbances applied at t = 25 s during 5 wingbeats. Angles
and angular velocities zoomed to the first s (bottom).
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external disturbances applied at t = 25 s during 5 wingbeats
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Fig. 8: The displacement of the MAV along the 3 axes in Rf
from initial position (2,−1,−3) (left) and the corresponding
linear velocities (right) in presence of external disturbances
applied at t = 25 s during 5 wingbeats. Thrust and lift control
(in Rm) (bottom left) zoomed to the first 5 s (bottom right).

V. CONCLUSIONS AND FUTURE WORKS

The present paper has presented a control law to stabilize
the flapping flight in a hovering position. The proposed
control is based on the theory of cascade, aiming to stabilize
the attitude of the MAV then to drive the body to a desired
position based on the rotational stabilization. Bounded state
feedback control torques and forces were applied. The pro-
posed control laws are low cost in terms of computation,
therefore suitable for an embedded implementation. The
control law was tested with respect to aerodynamic errors and
to external disturbances. The control law will be tested on a
finer model, specifically the simulator “OSCAB” developed
by the ONERA, France. Then, it will be tested on the
prototype under construction.
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