
Landing a UAV on a Runway Using Image Registration

Andrew Miller and Mubarak Shah and Don Harper

University of Central Florida

4000 Central Florida Blvd, Orlando FL, 32816

{amiller,shah,harper}@cs.ucf.edu

Abstract— In this paper we present a system that uses only
vision to land a UAV on a runway. We describe a method
for estimating the relative location of the runway as an image
by performing image registration against a stack of images in
which the location of the runway is known. An approximation
of the camera projection model for a forward-facing view of a
runway is derived, allowing the course deviation of the UAV to
be estimated from a registered image. The course deviation is
used as input to a linear feedback control loop to maintain the
correct flight path. Our method is implemented as a real-time
multithreaded application, which is used to control an aircraft
in Microsoft Flight Simulator. We also show results of applying
the vision component of the system to video recorded from an
actual UAV.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) traditionally rely on a

GPS receiver for navigation, and solid state inertial sensors

for control. Color video cameras are a tempting alternative

sensor choice because they are light, inexpensive, and easy

to use. Cameras are most often used on UAVs for high-

level functions, such as target recognition or surveillance.

If the low-level functions could also be performed by the

camera, then the number of needed sensors could be reduced,

especially in a small or micro UAV where component weight

is tightly constrained.

For a successful landing approach, the UAV should de-

scend at a constant angle (conventionally 3 degrees below

the horizon), point in the direction of the runway centerline,

and touch down with the wings level at the beginning of the

runway. Our proposed method is to steer the UAV towards

the runway and maintain these constraints by using visual

information about the horizon and the relative position of the

runway as observation inputs to a linear feedback controller.

The unique contributions of this paper are a simplification

of the camera projection model that allows linear estimates

of the UAV’s position to be obtained by measuring image

geometry, and a method for estimating the position of the

UAV relative to the runway by performing image registration

against a stack of reference images with a known runway

location.

This is a suitable problem for vision because the geometry

of the horizon and runway in the image map directly to world

coordinates. Human pilots navigating by Visual Flight Rules

have been landing aircraft on runway since the beginning of

aviation using only visual cues. Our method for finding the

runway is based on performing image registration against a

set of prerecorded images from different points along the

glide path in which the location of the runway is known.

Our method differs from other approaches that recognize

a runway based on visual features of the runway itself. Our

method uses information about the terrain surrounding the

runway at different scales and distances, so it can steer

the UAV towards the runway even before the runway itself

becomes visible.

Our approach also does not make use of physical flight

dynamics models or intrinsic camera calibration. Instead

we obtain geometric features that are approximate linear

indicators of the physical quantities we want to measure,

i.e. angular deviation from the ideal glide path. The lin-

ear controllers have gains that are tuned to simultaneously

compensate for the parameters of the camera and the flight

characteristics of the UAV.

II. PREVIOUS WORK

There have been several projects involving the autonomous

landing of a UAV. Most involve a downward facing camera,

which is appropriate for landing a helicopter [1], [2] or a

balloon [3]. The orientation of the camera is important in

these examples because the ground plane is nearly parallel

to the image plane, so there is a minimal effect of perspective

distortion. Other projects involving the use forward looking

cameras on a UAV use a reduced amount of information,

such as the controlling the UAV based on the orientation of

the horizon [4], flying towards features that can be detected

using with linear classifiers [5], or avoiding obstacles by

steering away from areas of high optical flow [6]. The

cameras on UAVs are traditionally used for higher-level

tasks such as tracking target objects in real-time [7], or

determining a safe place to land in an unfamiliar location

[8].

A vision system for landing a UAV is essentially a specific

application of the well-known pose estimation problem,

where the goal is to determine the location and orientation

of the camera given test images [9], although these methods

typically require a larger number of points to be found with

known GPS locations. There has also been research into the

specific problem of a camera view of perspective-distorted

planes, such as detecting the orientation [10] or the vanishing

line [11] using texture information.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 182

183

Fig. 2. Reference frames taken from a video as the UAV gets closer to
the runway. The reference frames are sampled from the video at increasing
frequency as the altitude decreases, since the ground appears to move faster.
The vanishing point and a point at the beginning of the runway (the spot
where the UAV should touch down) are annotated in each frame.

a b c

Fig. 3. In the middle frame the UAV is on the correct glide path; the
runway is perpendicular to the horizon, and the beginning of the runway is
approximately 3 degrees below the horizon. In the left frame, the UAV is
too high, and the beginning of the runway is further from the horizon. In
the right frame, the UAV is too far to the right, and the runway makes an
acute angle with the horizon.

images would differ greatly from the incoming video in terms

of scale, noise, perspective skew of feature points, etc.

The view from the UAV is very different when the UAV

is far away from the runway and high in the air than when

it is low to the ground and near the runway, so it is best to

store a rough sampling of keyframes from the reference video

with some overlap. Since the ground also appears to move

much faster when the UAV is lower, the keyframes for lower

altitudes should be closer together than keyframes for higher

altitudes. In our experiments, we used a quadratic sampling

strategy, i.e. the 2nd closest frame, 4th closest frame, 9th

closest frame, and so on, for a total of 100 reference images.

Some of these images are showin in Fig 2.

We describe the position and orientation of the runway

with two points: a point at the beginning of the runway

(the spot where the UAV should touch down), and the

vanishing point on the horizon made by the centerline of the

runway. There are several ways to obtain these points. The

most straightforward method is to manually annotate each

reference image by clicking the points, which is tedious and

somewhat imprecise. Another way is to annotate a single

reference frame and use image registration to estimate the

location in all of the other frames. As stated above, it is

difficult to register all of the frames in the video to a

single frame because the view varies substantially at different

altitudes. However, offline training is much less restrictive

than the real-time algorithm, so robust but time-consuming

registration techniques can be used [12].

B. Finding the Homography

From a high altitude, and ignoring effects of the spherical

lens distortion or the curvature of the Earth, the visible

features below the horizon lie on a ground plane. Any point

on the ground in one view can be related to the corresponding

point in a different view by a 3x3 projection matrix, H. Given

a reference frame with the two annotated runway points, we

can use this relationship to locate these points in a new frame.

The projection matrix can computed in several ways, the

most convenient of which is a combination of SIFT feature

point correspondence [13] and RANSAC [14] homography

fitting. An intuitive summary of this method is provided

below.

SIFT produces a set of distinctive feature points from an

image, typically between 100 and 1000 in our experiments.

SIFT also produces a 128-dimensional feature vector for each

of these points, which can be used to match corresponding

points between a reference frame and a test frame. The fea-

ture vector is essentially a histogram of gradient vectors from

the patch centered around the feature point, and is rotation

invariant and robust to small affine distortion. Usually this

method finds between 20 and 200 strong correspondences.

Any four point correspondences (except in a degenerate

case when three of the points are colinear) determine a

homography matrix, and a larger number of correspondences

can be used through least-squares-regression. If all of the

correspondences were correct, and the feature point locations

were very precise, then any four points could be chosen, and

the resulting homography could transform the coordinates

of every point in one image to the exact coordinates of

the corresponding point in the other image. In practice,

though, several of the correspondences are incorrect, and the

coordinates of some of the correctly corresponded points are

imprecise. The RANSAC approach is used to select at ran-

dom a small group of matched feature points, and compute

the homography matrix as a hypothesis. The hypothesized

homography is then tested by applying the homography

matrix to the rest of the feature points, and see how many of

the projected feature points end up near the corresponding

point in the other image. If a high percentage of these

points are inliers, then the hypothesis is accepted; otherwise,

another small group of points is selected.

The more similar two images are, i.e. the smaller the

change in viewpoint between them, the more SIFT points

will be matched. If we performed the matching process for

a given test frame against all 100 reference frames, we could

obtain a graph similar to the one shown in Fig 5. The

reference frame with the highest number of matching points

is the most similar to the test frame, and will produce the

most accurate registration. The index of the best matching

frame can also be used as a rough gauge of altitude and

distance to the runway.

As the UAV approaches the runway, the best-index should

periodically increase, one frame at a time. Thus it is not

necessary to match against all of the reference frames if the

best-index is known for the previous frame. Instead, a counter

184

Fig. 4. The result of performing registration between a test frame (top)

and a reference frame (left) is a matrix that can map every point in the
reference image to a corresponding coordinate in the landing image, as
shown by the warped image (right). The matched feature points are shown
as line segments from the coordinate in the test frame to the coordinate in
the reference image.

0 10 20 30 40 50 60 70
0

20

40

60

Reference Frame

N
u
m

b
e
r

o
f

M
a
tc

h
e
s

Number of Matching SIFT Points for Each Reference Frame

Fig. 5. The number of matched SIFT feature points between each reference
frame and a test frame is an indication of the similarity between the
viewpoints in the two image. Thus the reference frame with the highest
number of points will produce the most accurate estimate of the runway
orientation. The index of the best matching frame can also be used as a
rough gauge of altitude and distance to the runway.

is used to represent the previous best-index, and each test

frame is only compared to the previous-best reference frame

and to its successor. If the successor has a higher number of

matches than the previous, then the counter is incremented.

C. Measuring the Image Geometry

We want to measure three geometric properties, the run-

way offset, the runway angle, and the runway distance. A

visual interpretation of these values is shown in Fig 6.

In the current reference frame, the annotated runway

beginning point and vanishing point are given by T and V :

T =





xT

yT

1





, V =





xV

yV

1



 (7)

The first step is to project the coordinates from the

reference frame into the current test frame, by applying the

homography H. The second step is to transform the frame

Fig. 6. Geometric interpretation of the three measured quantities (Offset,
Distance, and Angle) based on the beginning and vanishing points of the
runway image. The coordinate space has already been rotated and translated
so that the horizon lies on the X axis.

into a canonical representation that is invariant to the bank

and pitch angle of the UAV by applying the matrix MH to

any homogeneous coordinate in the frame, where θH is the

horizon angle and DH is the horizon distance, which is the

perpendicular distance from the horizon line to the center of

the image, measured in pixels. The horizon line is detected

using a quick iterative method described in [4].

MH =





cos(θH) sin(θH) 0

sin(θH) −cos(θH) −DH

0 0 1



 (8)

T ′ = MH ·H ·T, V ′ = MH ·H ·V (9)

The transformed vanishing point, V ′, will now lie on the

X axis. The offset is the horizontal distance in pixels from

the center of the image to V ′.

D. Controlling the UAV

There are five observations that we want to maintain for

a stable landing approach. We accomplish this by using five

cascading closed-loop PI (Proportional-Integral) controllers

in the arrangement shown by Fig 7. The control system uses

only two control surfaces on the UAV - the ailerons and

elevator; the other controls - the throttle and rudder - are

kept constant.

A PI controller has three signals: (1) feedback, or an

observation of a physical quantity we want to control, e.g.

the heading of the UAV; (2) a setpoint, or the target value

we want the observation to equal; and (3) an output that lets

the controller influence the physical system, e.g. the ailerons

of the UAV. The intuition behind the PI controller can be

summarized by the following two rules: (Proportional) If the

UAV is too far left, then it should turn right. (Integral) If it

is still too far left after some time has passed, then it should

turn right harder.

In a cascaded arrangement of controllers, the output of one

PI loop is used as the setpoint for the following controller.

For example, if the UAV is too far to the left of the runway,

185

Fig. 7. The UAV is controlled by two independent cascaded PI control
loops. The lower loops controlling the horizon are updated at 20Hz, while
the higher loops controlling the runway orientation are updated at 1Hz

the first PI controller will set the desired heading to the right.

The next control loop will set the desired horizon angle to

bank the UAV to the right, and the final loop will apply

forces to the ailerons to attain the desired bank angle.

We are not calculating the actual altitude and horizontal

position of the UAV, but instead we obtain measurements

that are linearly or near-linearly related to these physical

quantities. Put another way, the uncertainty about the actual

location and orientation of the UAV, arising from the un-

known sensor parameters, is addressed by tuning the gains

and setpoints of the control loops. In our simulation, the

gains were tuned manually, although a more sophisticated

method could be used if a flight model is available.

We added a heuristic to our implementation that allows

the UAV to reduce the throttle to idle and tilt back (a flare

maneuver) when it is very close to the runway, i.e. when

the last reference frame produces the highest number of

matching feature points. At this time, the measurements from

the runway estimator are ignored, and the UAV simply levels

its wings by keeping the horizon even.

VI. RESULTS

Our system was implemented as a multithreaded C++

program running on a 2.33GHz Macbook Pro laptop. The

control loop runs at 50Hz, the video capture and horizon

detection runs at 20 Hz, and the runway estimation runs

at 1Hz. Although the runway course corrections can only

occur intermittently, the horizon control keeps the attitude

of the UAV stable at a higher frequency. Additionally, the

loops controlling the ailerons and elevator are updated even

faster than their inputs, which makes the control surface

movements smoother rather than jerky.

We tested our method by having it land an airplane in

Microsoft Flight Simulator X, using the built-in scenery and

airports. The reference frames were generated by recording

the video of a landing controlled by the built-in autopilot,

which also serves as a performance benchmark.

In order to be as realistic as possible, the computer with

the vision system is separated by hardware interfaces from

the computer running the simulation program. The monitor

Fig. 8. The result of performing registration between a test frame (right)

and a reference frame (left) is a matrix that can map every point in the
reference image to a corresponding coordinate in the landing image, as
shown by the warped image (top).

−8 −7 −6 −5 −4 −3 −2 −1 0
0

50

100

150

200

Z−Axis

Y
−

A
x
is

 (
A

lt
it
u

d
e

)

Proposed Method

Ideal Glide Slope

−8 −7 −6 −5 −4 −3 −2 −1 0
−1.5

−1

−0.5

0

0.5

1

1.5

Z−Axis

X
−

A
x
is

Proposed Method

Ideal Course

Fig. 9. Polar plots of the UAV position relative to the runway over time,
controlled by our proposed method

−6 −5 −4 −3 −2 −1 0
0

50

100

150

Z−Axis

Y
−

A
x
is

 (
A

lt
it
u
d
e
)

Built−in Autopilot

Ideal Glide Slope

−6 −5 −4 −3 −2 −1 0
−1.5

−1

−0.5

0

0.5

1

1.5

Z−Axis

X
−

A
x
is

Built−in Autopilot

Ideal Course

Fig. 10. Polar plots of the UAV position relative to the runway over time,
controlled by the built-in autopilot

186

TABLE I

ERROR IN Y-AXIS (GLIDESLOPE)

Mean Abs Error Std Deviation

Built-in Autopilot 22.0 16.2

Proposed Method (Run 1) 10.5 11.9
(Run 2) 11.9 12.7
(Run 3) 12.9 15.1
(Run 4) 13.8 16.2
(Run 5) 12.6 14.1

output of the simulation computer is sent through a firewire

framegrabber that provides video for the vision computer.

The vision computer then sends commands to the simulation

computer over ethernet, where the commands are interpreted

as a virtual joystick device.

The estimated course deviation and glide slope for a

typical experiment are shown as a signals in Figure 9. For

clarity, we display the measured angles as distances by

assuming that horizontal distance is linear with respect to

time. Since the camera was not calibrated, and the altitude

and speed of the UAV was not measured, the signals do not

have actual units are estimates assumed to be linearly related

to the actual altitude and lateral deviation. For comparison,

the signals are also shown for the landing controlled by the

built-in autopilot in Figure 10. The mean absolute error and

standard deviation are also shown in Tables I and II.

Our method reliably lands the plane safely on the runway,

although it sometimes rolls off the runway into the nearby

grass. The greatest cause of error is that as the UAV gets

closer to the runway, a small deviation in the X axis causes

an increasingly larger angular deviation. Since the linear PI

controller operates on the angular deviation estimate, the

UAV overcorrects and oscillates as it gets closer. Another

note is that the curvature of the earth causes the runway to

appear closer to the horizon when the UAV is farther away.

This is why the built-in autopilot is estimated to be too low

when it is further away. Our system controls the UAV to keep

the apparent distance between the horizon and the runway

constant, so it is actually too high when it appears to have a

constant glide slope. Both of these problems could be solved

by including into the algorithm estimates for the camera

calibration focal length, the initial altitude, and airspeed.

At this time, we were unable to fly an actual UAV under

autonomous control or over a real runway. Instead, as a way

of demonstrating the applicability of our method to real data,

we show that the approach can be used on a video that was

taken from while flying a UAV over a road. An arbitrary

point in the road is chosen to represent the beginning of the

runway. An example of estimating the position of the runway

is shown in Figure 8.

VII. CONCLUSION

We have proposed a system for landing a UAV on a

runway using only a camera as a sensor. Our method is

unique in that it uses the projective geometry of a forward-

looking camera to simplify the pose-estimation problem in

this situation. Some advantages of our approach are that it

TABLE II

ERROR IN X-AXIS (PARALLEL TO THE GROUND)

Mean Abs Error Std Deviation

Built-in Autopilot 74.5 36.6

Proposed Method (Run 1) 96.2 48.8
(Run 2) 100.9 46.5
(Run 3) 101.8 60.0
(Run 4) 111.7 59.3
(Run 5) 103.8 52.2

does not rely on a specific flight model for the UAV or

require camera calibration, nor is it necessary for the runway

to have a specific size, shape, or set of markings. Since the

terrain rather than the runway is used as visual information,

it is possible to control the UAV before the runway is visible.

Extensions of this system could include cross-country

navigation and waypoint-following that lead to a landing

approach. A higher-level vision method may be able to

recognize distinctive landmarks such as rivers or highways,

which would be more robust to varying viewpoints and

lighting conditions. This may also permit registration against

a satellite map, removing the need for a pre-recorded flight.

REFERENCES

[1] S. Saripalli, J. Montgomery, and G. Sukhatme, “Vision-based au-
tonomous landing of an unmanned aerial vehicle,” ICRA, 2002.

[2] C. Sharp, O. Shakernia, and S. Sastry, “A vision system for landing
an unmanned aerial vehicle,” ICRA, 2001.

[3] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and J. F.
Montgomery, “Vision-aided inertial navigation for pin-point landing
using observations of mapped landmarks: Research articles,” J. Field

Robot., vol. 24, no. 5, pp. 357–378, 2007.
[4] S. Ettinger, “Vision-guided flight stability and control for micro air

vehicles,” Masters Thesis, University of Florida, 2001.
[5] C. De Wagter, A. Proctor, and E. Johnson, “Vision-only aircraft flight

control,” Digital Avionics Systems Conference, 2003.
[6] P. Y. O. William E. Green and G. Barrows, “Flying insect inspired

vision for autonomous aerial robot maneuvers in near-earth environ-
ments,” ICRA, 2004.

[7] F. Rafi, S. M. Khan, K. Shafiq, and M. Shah, “Autonomous target
following by unmanned aerial vehicles,” SPIE Defence and Security
Symposium 2006, Orlando FL.

[8] A. Johnson, J. Montgomery, and L. Matthies, “Vision guided landing
of an autonomous helicopter in hazardous terrain,” ICRA, 2005.

[9] A. Hakeem, R. Vezzani, A. Yilmaz, M. Shah, and R. Cucchiara, “Using
spatiotemporal geometric constraints for estimating trajectories of
hand-held cameras,” Submitted to ISPRS Journal of Photogrammetry
and Remote Sensing, 2007.

[10] J. Krumm and S. Shafer, “Shape from periodic texture using the
spectrogram,” in Proceedings of the 1992 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR ’92),
June 1992, pp. 284 – 289.

[11] Y. Sheikh, N. Haering, and M. Shah, “Shape from dynamic texture
for planes,” in CVPR ’06: Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 2285–2292.

[12] Y. Sheikh and M. Shah, “Aligning dissimilar images directly,” Asian
Conference on Computer Vision, 2004.

[13] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” IJCV, 2004.

[14] M. A. Fischler and R. C. Bolles., “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Comm. of the ACM, Vol 24, pp 381-395,
1981.

187

