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Abstract—This paper considers the design of a novel closed-

loop trajectory tracking controller for an underactuated 

robotic airship having 6 degrees of freedom (DOF) and 3 

controls, on forward, yaw and pitch motions using two side 

thrusters. A backstepping methodology is adopted as a design 

tool, since it is suitable for the cascaded nature of the vehicle 

dynamics. It also offers design flexibility and robustness against 

parametric uncertainties which are often encountered in 

aerodynamic modeling and air stream disturbances. Indeed, in 

our simulations we assume a 10% error in all dynamic 

parameters and yet the controller performs position, 

orientation, linear and angular velocities tracking successfully. 

We also impose an additional air stream disturbance and the 

controller corrects the vehicle’s trajectory successfully too. 

I. INTRODUCTION 

OBOTIC (autonomous) airships [1], see Fig. 1, are 

employed in various missions such as observation of 

urban areas or battlefields, in fire detection, rescue, science, 

and even in planetary exploration [2]. They also present a 

useful experimental platform for inertial navigation, 

positioning, and visual sensors [3], and as testbeds for 

complex control algorithms since almost always such 

vehicles are underactuated, i.e., they have more DOF than 

control inputs. Although robotic airships have some 

advantages against the rest of the autonomous air vehicles at 

low speeds and low altitude applications [4], they too 

present a challenging control problem: underactuation 

imposes non-integrable acceleration constraints. 

Furthermore, their kinematic and dynamic models are highly 

nonlinear and coupled [4], [5], making control design a hard 

task. Underactuation rules out the use of trivial control 

schemes e.g. full state-feedback linearization [6], and the 

complex (aero)dynamics excludes designs based solely on 

kinematics. 

During many missions, robotic airships must track an 

inertial trajectory (a space curve with a specified timing 

law). This requires the design of control laws that guide and 

keep the vehicle on the trajectory regardless of external 

disturbances, modeling errors etc. 

Several researchers have addressed the issues of dynamic 

modeling, hovering, path following, and testing sensors for 

robotic airships. In [3], a hovering controller using visual  

 
Manuscript received September 14, 2008  

F. Repoulias is with the National Technical University of Athens 

(NTUA), Greece (e-mail: firepoul@central.ntua.gr).  

E. Papadopoulos is with the National Technical University of Athens 

(NTUA), Greece (corresponding author, phone: +(30) 210-772-1440; fax: 

+(30) 210-772-1455; e-mail: egpapado@central.ntua.gr). 

     

{B}

CM

u

v

w

p

q
r

{I}

X

Y
Z

xb

yb

zb

CB

T

control
surfaces

airship

propulsion
unit  

 

Figure 1.  The robotic airship with the controls and motion variables. 

 

servoing for an airship in monitoring tasks was designed. In 

[4], the physics of airship operation, along with its dynamic 

model for control design purposes, were presented. In [5], 

dynamic modeling of indoor airships was presented. In [7], a 

trajectory tracking controller was designed. In that work, the 

desired trajectories were constrained to be trimming, i.e., of 

constant linear and angular velocities. The dynamic model 

was supposed to be known accurately in control design and 

velocity errors response were not presented.  

The present work was inspired by the similarity of 

dynamic models and the control actuation of robotic airships 

and Autonomous Underwater Vehicles (AUVs) [4], [8], and 

our previous work [9]-[12]: In [9], the combined problem of 

trajectory planning and tracking control for an underactuated 

AUV in plane motion was studied. This was the first work in 

the control literature where trajectory planning, based on the 

AUV dynamics, was presented. In [10], tracking was 

designed for trajectories with time-varying velocities where 

parametric inaccuracies were considered. In [11], we 

designed a novel, trajectory tracking controller for a six 

DOF AUV, guided by one propeller and moving surfaces. 

Simulations showed robustness in dynamic parameters’ 

errors. In [12], we planned dynamically feasible trajectories 

for an underactuated robotic airship moving in 3D, also a 

new result. Trajectory planning generates desired variables 

consistent with vehicle dynamics, thus alleviating a 

controller in its tracking efforts. 

In the present paper we design a novel, closed-loop, 

trajectory-tracking controller that stabilizes the errors of 

position, orientation, linear and angular velocities, in a small 

neighborhood around zero for a robotic airship in 3D 

motion, having only three controls. Backstepping is used as 

it suits the cascaded nature of the vehicle dynamics. It also 

offers design flexibility and robustness in parametric 

uncertainties and external disturbances. To the best of the 

authors’ knowledge, this is a first work in the robotics 

control literature where successful tracking results are 
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presented in full 6 DOF. Moreover, these results were 

obtained with significant dynamic parametric errors of 10%, 

in the controller and with an air stream disturbance such as 

those encountered during flight.  

II. AIRSHIP DYNAMICS AND KINEMATICS 

In this section, the kinematic and dynamic equations for a 

robotic airship moving in 3D space are presented. 

To describe the kinematics, two reference frames are 

employed, the inertial reference frame { }I  and a body-fixed 

frame , see Fig. 1. As shown, the origin of {  frame 

coincides with the airship center of mass (CM) while the 

center of buoyancy (CB) is on the negative b  body axis for 

static stability. The general motion of the airship in 6 DOF 

can be described by the following vectors: 

{ }B }B

z

  (1) 
1 2 1 2

1 2 1 2

[ , ] ;    [ , , ] ;    [ , , ] ;

[ , ] ;    [ , , ] ;    [ , , ] ;

T T T T T

T T T T T

x y z

u w p q r

I T \

X

   

   

� � � � �

v v v v v

In (1), 1  denotes the inertial position of the CM and 2  

the orientation of {  –using Euler angles– with respect to 

(wrt) the { }

� �

}B

I  frame. Vector v enotes the linear velocity of 

the CM and 2v he angular velocity of { wrt to {
1  d

 t }B  }I  

frame, both expressed in {  frame. For the representation 

of rotations, we use the 

}B

x � y � z  (roll-pitch-yaw) 

convention defined in terms of Euler angles. Hence, the 

velocity transformation between {  and frames {}B }I  is  

  (2) 1 1 2( ) � J � v�
1

where, 

 1 2( )

c c s c c s s s s c c s

s c c c s s s c s s s c

s c s c c

\ T \ I \ T I \ I \ I T
\ T \ I I T \ \ I T \ I
T T I T I

� � �ª º
« » � � �
« »�¬ ¼

J �  (3) 

The body-fixed angular velocities and the time rate of the 

Euler angles are related through 

  (4) 2 2 2( ) � J � v�
2

where, 

 
2 2

1

( ) 0

0 / /

s t c t

c s

s c c c

I T I T
I I

I T I T

ª
« «
«¬

J �

º
»� »
»¼

 (5) 

where , , . sin( )s�  � cos( )c�  � tan( )t�  �
The dynamic model of the airship used in the paper is 

taken from [4] and [7]. It is a simplified model developed 
for control design tasks capturing the main dynamical 
characteristics of a robotic airship in 3D motion, see Fig. 1. 
Modeling inaccuracies can be treated as small and bounded 
disturbances that along with air disturbances can be 
compensated for by a robust closed-loop tracking controller. 
The vehicle is underactuated, i.e., it has less control inputs 
than the number of DOF. Regarding the means of propulsion 
and actuation the following features are used: 

Aerodynamic control surfaces like rudders and elevators 
to control yaw and pitch motions respectively, Fig. 1. 

Vectored thrust, meaning the rotation of the propulsion 
units about an axis parallel to the body– b  axis providing 
thrust in the direction required. In this way, pitch torque 

control is achieved, Fig. 2a. Yaw is controlled using 
different thrust magnitudes of the side propellers causing a 
moment about the  body axis, Fig. 2b. 
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Figure 2.  (a) Rotation of the trust by an angle J  for surge force and pitch 

torque control. (b) Yaw torque control using differential thrust. 

 

Bow and/or stern thrusters are also used for landing and 

docking operations. 

Below a certain speed limit, control surfaces are not 
effective. Then, ascending or descending is realized by 
vectoring the thrust down or up, and heading change by 
using differential thrust in the port and starboard propellers. 

In the following equations of motion, the three control 

variables are propX  for surge propulsion, prop  for pitch 

torque, and 
prop  for yaw torque, [4]. These terms are 

functions of the geometrical arrangement of the propulsive 

units around the body axes, Fig. 2.  

M

N

 11 22 33 ( )su pm u m r m wq X u B mg X ropX T � � � � ��  (6a) 

 22 33 11 ( )m m wp m ur Y mg B c sXX X T I � � � ��  (6b) 

 33 11 22 ( )wm w m uq m p Z w mg B c cX T I � � � ��  (6c) 

 11 22 33 22 33( ) ( ) p CBI p I I qr m m w K p z c s BX T I � � � � ��  (6d) 

 22 33 11 33 11( ) ( ) q CB proI q I I pr m m uw M q z s B M pT � � � � � �� (6e) 

 33 11 22 11 22( ) ( ) r prI r I I pq m m u N r N opX � � � � ��  (6f) 

A brief explanation and the values in SI units, used for the 

simulations of the various terms in (6), follow: 9.07m   is 

the vehicle’s mass and  is the buoyancy force 

acting on the CB; 

72.2B  
0.041CBz  �  is the coordinate of the 

CB; 11 u

z �
m m X � � , 22m m YX � � , 33 w  are the 

combined mass and added mass terms, where 

m m Z � �

1.13uX  � , 

7.25YX  � , 7.25wZ  � ; 11 x p , 22 y qI I K � � I I M � � , 

33 z rI I N � �  are the combined mass and added moments of 

inertia terms, where , , 2.19xI  0pK  � 18.85yI  , 

8.87qM  � , 18.76zI  , 8.87rN  � ; u  X  YX   wZ   pK   

qM   10rN  �  are the drag, force and moment terms. The 

system is unactuated in sway X , heave w , and roll  

motions. 

p

III. TRAJECTORY TRACKING CONTROL DESIGN 

In this section, the tracking control design is presented. 

Bounded reference velocities and  are assumed. 0uz

A. Reference Variables 

The reference 6 DOF trajectory to be tracked by the 
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airship is generated by a trajectory planning algorithm 

developed in [12]. We briefly describe this methodology. 

Let a smooth 3D trajectory to be followed by the CM of 

the airship be given by its inertial coordinates Rx , Ry , and 

Rz . “R” denotes a reference (desired) variable. Associating 

the Frenet frame to every point of the curve, we also derive a 

trajectory-associated orientation. This orientation is not the 

reference one since the {  frame, during CM tracking of 

the reference path, undergoes a further rotation wrt Frenet 

frame due to the inherent dynamics. This rotation is 

described by the angles of attack and sideslip which are 

functions of the linear velocities. Hence, we also derive the 

reference angles 

}B

RI , RT , and R\ . The angular velocities 

Rp , Rq , and Rr  are then obtained by differentiation and the 

fact that the angular velocity of the {  wrt {}B }I  is the sum 

of the angular velocity of the {  wrt Frenet frame and the 

angular velocity of the Frenet frame wrt {

}B

}I . The linear 

velocities Ru , RX , and Rw  are obtained by the equality of 

the total airship velocity and the trajectory velocity, and the 

integration of the unactuated equations (6b) and (6c). 

We conclude that this planning methodology provides the 

full, 6 DOF trajectory, consistent with airship’s dynamics.  

B. Error Dynamics Formulation 

We define the tracking errors as  

 

,  ,  ,

,  ,  ,

,  ,  ,

,  ,  

e R e R e

e R e R e

e R e R e R

e R e R e

u u u w w w

p p p q q q r r r

x x x y y y z z z

R

R

R

X X X

I I I T T T \ \ \

 �  �  �

 �  �  �

 �  �  �

 �  �  �

 (7) 

From (2) and (4) it follows that, 

 1 1 2 1( )R R R � J � v�  (8a) 

 2 2 2 2( )R R � J � v�
R

R R

R R

 �v v v

1�

2�

 (8b) 

Then, the kinematics tracking errors are written as 

  (9a) 1 1 2 1 1 2 1( ) ( )e  �� J � v J � v�

  (9b) 2 2 2 2 2 2 2( ) ( )e  �� J � v J � v�

Substituting in these , , yields 1 1 1e R �v v v 2 2 2e R

  (10a) 1 1 2 1( )e e � J � v µ�

  (10b) 2 2 2 2( )e e � J � v µ�

where terms  and  are given by, 1µ 2µ

 1 1 2 1 2 1[ ( ) ( )]R R �µ J � J � v  (11a) 

 2 2 2 2 2 2[ ( ) ( )]R R �µ J � J � v  (11b) 

and are both treated as bounded time-varying disturbances. 

Considering the dynamics, and setting  

 33 22 11( )prop u uX m wq m r X u B mg s mX T � � � � � W  (12) 

11 33 11 33 22( ) ( )prop q CB qM I I pr m m uw M q z s B IT W � � � � � �  (13) 

 22 11 22 11 33( ) ( )prop r rN I I pq m m u N r IX W � � � � �  (14) 

we obtain the following partially linearized system: 

 e R uu u W � �� �

( / ) em m ur

 (15a) 

 11 22e XX H � ��

11 33( / )e e ww m m uq

 (15b) 

H ��

p

  (15c) 

 11( / )e p ep K I p H ��  (15d) 

 e Rq q qW � �� �  (15e) 

 e Rr r rW � �� �  (15f) 

where uW , qW , and rW  are auxiliary controls and XH , wH , and 

pH  are functions of the errors and reference variables. 

C. Error Dynamics Stabilization 

We firstly make a few observations regarding the control 

design: considering (15), we note that the controlled 

velocities are   and er , using u,eu ,eq W , qW , and rW  

respectively. In order to control the position (10a) and 

orientation (10b), we use in a first step, as virtual controls, 

the velocities , eu ,eX   and   respectively. 

Although 

,ew ,eq ,er

,eX  and  are not directly controlled, we exploit 

the couplings  and  –and the natural for tracking 

nonzero surge velocity assumption– with the controlled 

variables  and  for control;  is not controlled either, 

but exploiting the stabilizing negative term 

ew

eur euq

eq er ep

11( / )pK I  in 

(15d) and the decrease of pH  when the rest of the system is 

stabilized, the former is also stabilized around zero. 

In the sequel, we proceed to the design of a control law 

for the underactuated system of (10a), (10b), and (15a)-(15f) 

employing backstepping and nonlinear damping.  

Step 1. Considering (10a), we take as virtual control the 

vector , we ignore for now 1 [ , , ]T

e e e eu wX v 1µ , and set 

  (16) 1 , 1 1 1 1( ) [ , ,T T

e des e u wXD D D � �  
v

v J K K � .� ]

1

�

1

where  and 1 1 1  are positive 

definite gain matrices. The components of 1v
 are not true 

controls. Hence, we introduce appropriate error variables: 

( , , )diag k k kK� ( , , )diag k k kK �

.

  (17) [ , , ] [ , , ]T T

u u w e u e e wz z z u wX XD X D D � �z �

Then, the controlled subsystem so far becomes: 

 1 1 1[ ]e u � �
v

� J . z µ�  (18) 

To stabilize  using uz uW  and the position , we choose  1e�

  (19) 2

1 1 1( T

e e uV z �� � ) / 2

y c s s

Then, its time derivative becomes 

 

1 1 1 1 1 1( ) [ (

) ( )] [

( ) ( )]

[ ]

T T

e e e w e e

e e

e e

u u R u e e e

V z z c c

c s x s s c c s z z c s

y s s s c c x c s s c s

z u x c c y c s z s

X

I T I \
\ I I \ I \ T T I

I \ T I \ \ I T I \
W D \ T T \ T

 � � � � �
� � � �
� � � �
� � � � � �

� K K � � µ�

��

T

 (20) 

Young’s inequality [6], nonlinear damping [13], setting  

  3

1 3 ]u R zu u zu u u e e eu c z c z x c c y c s z sW D \ T T \ � � � � � ��� T

u u

 (21) 

and after some straightforward manipulations, (20) becomes 

  (22) 
2

1 1 1 1 1 1
2 2 2 4

1 3

( ) [|| || / 4 ]

[( ) / 4 ] [ (1/ 4 )]

T

e e

w zu u z

V k

z z c z c zX

J
O O

d� � � �
� � � � �
� K � � µ�

where ( , , )diag O O O��  is a positive definite gain matrix, 

k O! , and 1zuc , 3zuc  are positive constants with 

1 1/ 4zuc O! . Also, 1J  is a function position errors. 

Step 2. Considering the subsystems that are controlled by 

 and , i.e., the rotational kinematics and the errors er eq zX  

and  we have: for (10b), we take as virtual controls the wz
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vector  and ignore for now the term . We 

choose the first part of the desired expressions for these as 
2 [ , , ]T

e e e ep q r v 2µ

  (23) 1

2 , 2 2 3 2 2 1 1( ) [ , , T

e des e p q rD D D� � �  
v

v J K K � .� ]

( , , )diag k k kK �where 2 2 2 2  and 3 3 3  are 

positive definite gain matrices. The inversion of 2  results 

in the singular point 

( , , )diag k k kK � 3

J

/ 2T S r , but the vehicle will not 

operate near this point. Next, for the dynamics  

 11 22( / ) ez m m urX X XH D � � � ��  (24) 

 11 33( / )w ez m m uq w wH D � �� �

2

 (25) 

we choose 

 ,e wdes q w qq c uz D � �  (26) 

 ,e des r rr c uzX X 2D �  (27) 

where  and  are positive constants. Considering (23),  qc rc

 1q q q2D D D �  (28) 

 1 2r r rD D D �  (29) 

So far, the controlled subsystem of the rotational 

kinematics and the errors zX  and  is transformed as wz

 
2 2 3 2 2( )e e 2K � � � �� K K � µ f�  (30) 

 2

11 22( / )rz c m m u z fX X X � ��  (31) 

  (32) 2

11 33( / )w q wz c m m u z f � ��
w

where 2Kf , fX , and  are functions of the states. w

In order to stabilize the above subsystem, we choose  

f

  (33) 2 2 2

2 1 1 2 2( T T

e e e e u wV z zX � � � �� � � � ) / 2z

Taking into account (22), and using nonlinear damping, 

its time derivative becomes 

   

2

2 1 1 2 2 2 1 1

2 4 2 2

2 1 3
22 2 2 2

11 22 11 33 2 3

( ) [ / 4 ]

[ (1/ 4 )] [( ) / 4 ]

( / ) ( / ) [ / 4

T T

e e e e

zu u zu u w

r q w

V

c z c z z z

c m m u z c m m u z k

X

X

J O O
d� � � �

� � � � � �

� � �

� K � � � K � µ

µ

�

]

k

 (34) 

where 2J  is a function of 1J , 2Kf , fX , , discussed later. wf

Step 3. The variables ,  and  are not true controls. 

Thus, we introduce the errors 

ep eq er

p e pz p D�� , q e qz q D��  and 

r e rz r D��  in (15d) and in (30)-(32) yielding: 

 11 1( / )p p pz K I z pH � �  (35) 

with 1pH  function of pD  and pH . 

 2

11 22 11 22
( / ) ( / )

r
z c m m u z m m uz f

rX X � � �� X

w

2

 (36) 

  (37) 2

11 33 11 33( / ) ( / )w q w qz c m m u z m m uz f � � ��

 2 2 3 2 2 2( ) [ , , ]T

e e p q rz z z K � � � � �� K K � J µ� f

/T T

e e e e p u w q rV z z z z z zX � � � � � � �� � � �

 (38) 

We now choose 

  (39) 2 2 2 2 2 2

3 1 1 2 2( ) 2

and taking its time derivative we have 

   

2 4

3 1 1 2 2 2 1 1 3

22 2

11 2 3 1

2 2 2 2

11 22 11 33

11 22

11 33

( ) [ / 4 ]

( / ) [ / 4 ] [ (1/ 4 )]

( / ) ( / ) [

( / ) ( / )

] [ ( / )

T T

e e e e z

p p zu u

r q w

R r e e

e q q R q w e

V

K I z k c z

c m m u z c m m u z z

r m m uz c c s

c t z q m m uz c

X

X

O
W

D \ I T T

u u

r r

k c z

I
I I T W D T I

d� � � � �

� � � �

� � �
� � � � �
� � � � � �

� K � � � K � µ

µ

�

��

��

3
( / ) ]

e e
s c s t\ I T I I T J� � �

 (40) 

where 3J  is a smooth function of the states. We now set the 

controls qW  and rW  as follows: 

 
11 33

3

1 3

( / )

( / ) ]

q R q w e

e e zq q

q m m uz c

zq q
s c s t c z c z

W D T
\ I T I I T

I � � �

� � � �

��
 (41) 

 11 22
3

1 3

( / ) ( /r R r e

e e zr r zr r

r m m uz c c

s c t c z c z
X )W D \

T I I I T
 � � �
� � � �

�� I T
 (42) 

with 1zqc , 3zqc , 1zrc , 3zrc  positive constants; (40) becomes 

 

2 4

3 1 1 2 2 2 1 1 3

22 2

11 2 3 1

2 2 2 2

11 22 11 33

2 4 2 4

1 3 1 3 3

( ) [ /4 ]

( / ) [ /4 ] [ (1/4 )]

( / ) ( / )

T T

e e e e z

p p zu u

r q w

zr r zr r zq q zq q

V k

K I z k c z

c m m u z c m m u z

c z c z c z c z

X

O

J

d� � � � �

� � � �

� �

� � � � �

� K � � � K � µ

µ

�
u uc z

 (43) 

Before proceeding, we make the following assumptions 

concerning positive terms like , and terms with 

undefined sign, like the terms contained in 
1|| ||µ

3J . 

Assumptions: 1) Each of the time-varying terms (that stem 

from the reference trajectory) has a constant upper bound 

(e.g. ,max0 || ||R Rr r� d ). This is set during trajectory planning. 

2) The uncontrolled velocities have upper bounds, 

,max|| ||e eX Xd , 
,max|| ||e ew wd , and , where 

,max|| ||e ep pd ,maxeX , 

, and  are positive constants. We can think of 

these bounds as the maximum admissible operating limits 

(“flight envelope”) beyond which a guidance law is needed. 

,maxew ,maxep

3) The surge velocity has lower and upper bounds, 

max|| ||u ud , where  is a positive constant, and maxu 0uz  as 

already has been stated. 

After tedious but straightforward algebraic manipulations 

of the various terms in (43), and taking into account the 

above assumptions, we end up with the following: 

 

2 2

3 1 1 1 2 2 2 1 2

2 2 2 2

3 4 5 6( ) ( )

T T

e e e e p

w r q

V c

c u z c u z c z c z cX

d� � � �
u

o

z c z

� � � �

� � � � � ��

�

1

 (44) 

where 1 1 1( , , )diag S S S� �  and 2 2 2 2( , , )diag S S S� �  are 

positive definite gain matrices. The gain  is negative as 

and the gains  and  are positive when 
1c

3 ( )c u 4 ( )c u 0uz . 

Also,  is a positive constant, which can be made very 

small using an appropriate combination of the values of the 

various gains. Now, if we define 

oc

  (45) 1 2[ , , , , , , , ]T T T

e e u w p q rz z z z z zXz � ��

we find that 

 
2

32V  z  (46) 

1 2 5 6min{ , , , , , , , }c c c c c cTaking 1 2 3 4[ S S �

3 3
2

o
V V c[

, then 

d� ��  (47) 

which, by employing the Comparison Lemma [6], yields 

 2

3 3( ) (0) ( / 2 )t

oV t V e c[ [�d �  (48) 

for [0, )finalt t� . Doing the algebra, we conclude that 

 ( ) (0) / ,      [0, )t

o finalt e c t t[ [�d � �z z  (49) 

Eq. (49) means that the states of the error dynamics 

remain in a small, bounded set around zero, which can be 

reduced using an appropriate combination of the controller 
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gains. At this result we arrived using (12), (13), and (14), 

along with (21), (41), and (42). 

IV. SIMULATION RESULTS 

In this section, we present simulation results to illustrate 

the effectiveness of the designed controller. The reference 

helix CM trajectory is described by the following equations  

  (50a) 30cos(0.01 )  mRx  t

t  (50b) 30sin(0.01 )  mRy  

  (50c) 0.025   mRz t 

The rest of the reference variables, computed as in [12], are 

, ,  in m/s, 0.3Ru  33.6 10
R

X � u 510
R

w �# 48.3 10
R

p � � u , 

,  in rad/s, and , 610Rq �# 210Rr
� 310RI

� 0.083RT  � , 

0.01R t\  �  in rad. The initial errors are set as || || 0.4ex  , 

,  in m, |||| || 0.33ey  || || 0.25ez  ||eI  || ||eT  || || 1e\   deg, 

, || || 0.1eu  || || 0.03eX  ,  in m/s, and || || 0ew  3|| || 10ep � , 

 in rad/s. The dynamic model used is that of 

(6). However, in order to investigate the robustness of the 

controller, we introduced errors of the order of 

|| ||eq  || || 0er  

10%r  in all 

dynamic parameters used in the control law. The simulations 

were obtained with controller gains chosen as: k   

3 , 1zq  , 2k  4zuc  1k  c  3zqc  1 3zuc  1zrc  3 1zrc  , 

, and .  0.1rc  0.5qc  
In Fig. 3, the reference and the resulting trajectory of the 

CM of the airship in the inertial space are displayed. We see 

the fast convergence of the CM trajectory to the desired one. 
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Figure 3.  The actual and the reference 3D space path. 

 

Fig. 4 shows the control force prop  and torques X prop , 

and 

M

propN . The errors in linear velocities which converge 

after  s, are depicted in Fig. 5(a, b, c, d, e, and f). In Fig. 

6(a, b, c, d, e, and f), the errors in the angular velocities 

which converge after  s are shown. In Fig. 7(a, b, c, d, e, 

and f), we can see that the inertial position errors converge 

in about  s, in a small neighborhood of zero, of the order 

of  mm, and slowly oscillate within. In Fig. 8(a, b, c, d, e, 

and f), we see the Euler angles errors to converge smoothly 

to a neighborhood of zero of the order of 0.3  deg, in about 

 s.  

20

25

20

2

25
We then conduct a simulation imposing a steady air 

stream disturbance of 1.5  in the inertial  m/s x  direction 
keeping the parametric uncertainties. We can see in Fig. 9, 
that the controller counteracts the disturbance and the airship 
follows the desired path. 
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Figure 4. Control force and torques. (a), (c), (e) First 2 s. (b), (d), (f) 1000 s. 
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Figure 5. Linear velocities tracking errors. (a), (c), (e) First 25 s. (b), (d), (f) 

1000 s. 
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Figure 6. Angular velocities errors. (a), (c), (e) First 20 s. (b), (d), (f) 1000 s. 
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Figure 7. Inertial position tracking errors. (a), (c), (e) First 20 s. (b), (d), (f) 

1000 s. 
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Figure 8.  Euler angles tracking errors. (a), (c), (e) First 30 s. (b), (d), (f) 

1000 s. 
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Figure 9.  The actual and the reference path in the presence of air stream. 

 

V. CONCLUSIONS 

In this paper, we presented a novel closed-loop tracking 

controller for an underactuated robotic airship, in 3D space, 

having only 3 control inputs. We adopted backstepping as 

our design methodology, as it offers flexibility and 

robustness against parametric uncertainties and 

environmental disturbances, which is inherent in Lyapunov 

techniques. To the best of the authors’ knowledge, this is a 

first work in the robotics control literature, where successful 

tracking results are presented in position, orientation and 

linear and angular velocities, i.e., in full 6 DOF. Moreover, 

these results were obtained with significant dynamic 

parametric errors of 10%, in the controller and with an air 

stream disturbance such as those encountered during flight.  

For future work, we intend to present results of the 

application of the developed tracking controller in the case 

of trajectories with time-varying velocities. We currently 

study the derivation of an analytical expression between the 

gains and the maximum errors of the unactuated variables 

and as well as between the gains and the neighborhood of 

zero that the tracking errors converge. 
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