
 
Fig 1.  An MBARI AUV at sea 

Fig. 2:  A 4-reactor T-REX agent. 
 

 
Abstract—Autonomous Underwater Vehicles (AUVs) are an 

increasingly important tool for oceanographic research 
demonstrating their capabilities to sample the water column in 
depths far beyond what humans are capable of visiting, and 
doing so routinely and cost-effectively. However, control of 
these platforms to date has relied on fixed sequences for 
execution of pre-planned actions limiting their effectiveness for 
measuring dynamic and episodic ocean phenomenon. In this 
paper we present an agent architecture developed to overcome 
this limitation through on-board planning using Constraint-
based Reasoning. Preliminary versions of the architecture have 
been integrated and tested in simulation and at sea. 

I. INTRODUCTION 
Oceanography has traditionally relied on ship-based 

observations. These have recently been augmented by 
robotic platforms such as Autonomous Underwater Vehicles 
(AUV) [1-3], which are untethered powered mobile robots 
able to carry a range of payloads efficiently over large 
distances in the deep ocean. A common design relies on a 
modular tube-like structure with propulsion at the stern and 
various sensors, computers and batteries taking up the bulk 
of the tube (Fig. 1). AUVs have demonstrated their utility in 
oceanographic research in gathering time series data by 
repeated water-column surveys [4], detailed bathymetric 
maps of the ocean floor in areas of tectonic activity [5,6] and 
performed hazardous under-ice missions [7]. 

Typically AUVs do not communicate with the support 
ship or shore while submerged and rely on limited stored 
battery packs while operating continuously for tens of hours. 
Current AUV control systems [8] are a variant of the 
behavior-based Subsumption architecture [9]. A behavior is 
a modular encapsulation of a specific control task and 
includes acquisition of a GPS fix, descent to a target depth, 
drive to a given waypoint, enforcement of a mission depth 
envelope etc. An operator defines each plan as a collection 
of behaviors with specific start and end times as well as 
maximum durations, which are scripted a priori using simple 
mission planning tools. In practice, missions predominantly 
consist of sequential behaviors with duration and task 
specific parameters equivalent to a linear plan with limited 
flexibility in task duration. Such an approach becomes less 
effective as mission uncertainty increases. Further, the 
architecture offers no support to manage the potentially 
complex interactions that may result amongst behaviors, 
pushing a greater cognitive burden on behavior developers 
and mission planners. This paper describes an automated 
onboard planning system to generate robust mission plans 
using system state and desired goals. By capturing explicit 
interactions between behaviors as plan constraints in the 

domain model and 
the use of goal-

oriented 
commanding, we 
expect this approach 
to reduce the 
cognitive burden on 

AUV operators. Our 
interest in the near 

term is to incorporate decision-making capability to deal 
with a range of dynamic and episodic ocean phenomenon 
that cannot be observed with scripted plans.  

The remainder of this paper is laid out as follows. Section 
II lays out the architecture of our autonomy system, section 
III details the experimental results to date, related work 
follows in section IV with concluding remarks in section V. 

II. THE T-REX ARCHITECTURE 
T-REX (Teleo-Reactive EXecutive) is a goal-oriented 

system, with embedded automated planning [14,15] and 
adaptive execution. It encapsulates the long-standing notion 
of a sense-deliberate-act cycle in what is typically 
considered a hybrid architecture where sensing, planning 
and execution are interleaved. In order to make embedded 
planning scalable the system enables the scope of 
deliberation to be partitioned functionally and temporally 
and to ensure the current state of the agent is kept consistent 
and complete during execution. While T-REX was built for 
a specific underwater robotics application, the principles 
behind its design are applicable in any domain where 
deliberation and execution are intertwined. 

Fig. 2 shows a conceptual view of a Teleo-Reactive 
Agent. An agent is viewed as the coordinator of a set of 
concurrent control loops. Each control loop is embodied in a 
Teleo-Reactor (or reactor for short) that encapsulates all 
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Fig 3: Information flow between timelines 
 

details of how to accomplish its control objectives.  Arrows 
represent a messaging protocol for exchanging facts and 
goals between reactors: thin arrows represent observations 
of current state; thick arrows represent goals to be 
accomplished. Reactors are differentiated in 3 ways: 
• Functional scope: indicating the state variables of concern 

for deliberation and action. 
• Temporal scope: indicating the look-ahead window over 

which to deliberate. 
• Timing requirements: the latency within which this 

component must deliberate for goals in its planning 
horizon. 
Fig. 2 for example, shows four different reactors; the 

Mission Manager provides high-level directives to satisfy 
the scientific and operational goals of the mission: its 
temporal scope is the whole mission, taking minutes to 
deliberate if necessary. The Navigator and Science Operator 
manage the execution of sub-goals generated by the Mission 
Manager. The temporal scope for both is in the order of a 
minute even as they differ in their functional scope. Each 
refines high-level directives into executable commands 
depending on current system state. The Science Operator is 
able to provide local directives to the Navigator. For 
example if it detects an ocean front it can request the 
navigation mode to switch from a Yo-Yo pattern in the 
vertical plane to a Zig-Zag pattern in the horizontal plane, to 
have better coverage of the area. Deliberation may safely 
occur at a latency of 1 second for these reactors. The 
Executive provides an interface to a modified version of the 
existing AUV functional layer. It encapsulates access to 
commands and vehicle state variables. The Executive is 
reasonably approximated as having zero latency within the 
timing model of our application since it will accomplish a 
goal received with no measurable delay, or not at all; in 
other words it does not deliberate. 

T-REX has a central and explicit notion of time with all 
reactors synchronized by an internal clock. The unit of time 
is a tick, defined in external units on a per application basis; 
tick boundaries signify when synchronization of all reactors 
must occur while between ticks reactors may deliberate. The 
agent-state is represented as a set of timelines, which capture 
the evolution of a system state-variable over time. A 
timeline is a sequence of tokens that are temporally qualified 
assertions expressed as a predicate with start and end time 
bounds defining the temporal scope over which it holds. The 
minimum duration of a token is a tick giving a discrete 
synchronous view of the state of the world. Token start and 
end times can be defined as intervals to express temporal 
flexibility.  

Agent timelines are distributed across reactors depending 
on their functional scope. Information exchange between 
reactors, where necessary, is provided through the following 
mechanisms: 
• Explicit timeline ownership: Each timeline is owned by 

exactly one reactor. Any reactor may request a new goal, 
or replan such requests in the event of a change of plan; 

but only the owner of the timeline can decide what goal to 
instantiate. 

• Observations: capture the current value of a timeline. 
Observations are asserted by the owner of a timeline.  

• Goals: express a desired future timeline value. They offer 
a way to delegate a task to a reactor. Goals are requested 
for expansion into sub-goals or commands and can be 
recalled on plan changes when replanning is triggered. 

• Dispatch and notification rules: define when information 
must be shared to ensure consistency and completeness of 
agent state at the execution frontier and to allow sufficient 
time for deliberation. 

The mapping between reactors and timelines is the basis for 
sharing information. If a reactor owns a timeline it is 
declared internal to that reactor;  if it uses a timeline to 
observe values and/or express requirements it is declared 
external to that reactor. Fig. 3 illustrates the flow of 
information in a system containing 3 reactors: The Mission 
Manager keeps track of science goals to give directives to 
the Navigator using the Path external timeline. The 
Navigator manages the navigation of the AUV with one 
internal timeline and three external timelines. The 
navigation route is used to select the appropriate commands 
to send to the Executive as an internal timeline while 
Position and Attitude timelines capture AUV navigation 
data. A Command timeline captures the command state of 
the Executive. These external timelines are internal to the 
Executive in turn. The Command timeline values are the 
actual commands that are managed by the AUV functional 
layer. The content of this last timeline at the execution 
frontier corresponds to the currently active behavior. 

To ensure a complete and consistent view of system state, 
the T-REX information exchange framework needs to 
impose further restrictions on the way timelines, 
observations and goals can be used: 
• No ’holes’ are allowed at the execution frontier i.e. all 

timelines must have a value at the end of the current tick.  
• If no update is provided via an observation, and in the 

absence of information to the contrary, a reactor assumes 
the previous value(s) on the timeline is/are still valid. We 
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Fig. 4: The T-REX agent algorithm 

handleTick(tick){ 
   synchronize (tick); 
   dispatchGoals(tick); 
   done = false; 
   while(!done && currentTick() == tick) 
       done = stepNextReactor(tick);} 

 

refer to this as the Inertial Value Assumption since it 
conveys some inherent inertia of current values. 
Contradictory information can come from the model or 
from a new observation. This has important implications 
for reducing the cost of synchronization since observations 
need only be published as timeline values change. 

• At the end of the current tick, all observations must be 
consistent, by requiring all reactors to hold the same view 
at the execution frontier. 

• The past is monotonic. All tokens that have finished or 
that have started but have yet to finish (i.e. they span the 
execution frontier) can only be restricted in time. 

• An observation received at a tick applies to that tick only. 
It cannot refer to the past except by restricting the values 
of a token that is actually running (i.e. with an end time in 

the future). It cannot refer to the future, as it would then be 
a goal, rather than observed reality. 
The algorithm at the heart of a T-REX agent in Fig. 4 is 

called at the start of every tick. There are three key steps in 
the algorithm; first, all timelines are synchronized at the 
current execution frontier which is followed by the dispatch 
of goals. And finally, the remaining CPU time can be 
allocated to reactors for deliberation in incremental steps. 
Each of these component algorithms operates over the entire 
set of reactors. 

A. Synchronization 
The goal of synchronization is to produce a consistent and 

complete view of agent state at the execution frontier. All 
reactors synchronize at the same rate – once per tick. While 
this may seem onerous, the actual cost of synchronization is 
based on how much information has actually changed. For 
example, in Fig. 3. the Position timeline is relatively volatile 
and will likely change on every tick. However, the Path 
timeline may hold a single value for many ticks. In this case, 
as a result  of the Inertial Value Assumption, if no new 
observation is received, the Path timeline will extend its 
current value simply by incrementing the lower bound of the 
end time of the current value. 

The strict rules of timeline ownership enable a clear 
policy for conflict resolution: observations dominate 
expectations. For example, if the Navigator expected the 
vehicle depth to be less than 0.3m in order in order to obtain 
a GPS fix but the actual depth observed by the Executive is 1 
meter, then the expected value is discarded. This may impact 
plan feasibility and force the Navigator to find an alternative 

solution by rejecting the current plan.  
To ensure global consistency the agent undertakes local 

synchronization of the reactors until quiescence. In principle, 
this operation is equivalent to solving a planning problem 
over the set of all internal timelines for a planning horizon 
restricted to a tick. If a reactor has an external timeline, it 
depends on its owner for such consistency. In this way the 
reactors form a dependency graph which in practice we 
require to be acyclic, allowing ordering of synchronization 
for purposes of efficiency. 

B. Dispatching Goals 
Where observations are the driver for reaction, goals are 

the driver for deliberation. The purpose of dispatching is to 
task reactors with new goals in a timely manner. To 
accomplish this, T-REX provides explicit parameters and 
rules to govern dispatching.  
• λ - The latency of the reactor or the worst-case number of 

ticks to deliberate over a request. 
• π - The planning horizon of the reactor quantifying the 

look-ahead for deliberation. 
• τ - The execution frontier expressing the boundary 

between the past and the future. 
To understand the implications of the above parameters, 

consider the example given in Fig. 5. To satisfy the goal 
Go(31.73, -121.80, 100) in its Path timeline the Navigator 
decides that it needs the vehicle to descend(100) at tick 10 
for a duration between 50 and 55 ticks and then to achieve 
waypoint(31.73,-121.80) on successful termination of 
descend. Since the Executive is the owner of the Command 
timeline, these two goals need to be dispatched by the 
Navigator to the Executive so that the latter can resolve 
them. The importance of λ is to ensure the Executive has 
sufficient time to complete deliberation prior to starting the 
requested goal. If the start-time for a goal dispatched to the 
Executive at τ were necessarily less than τ+λExec the 
Executive may be unable to deliberate to resolve the goal, 
leading to a plan failure. 

Since the planning window of the Executive is πExec, the 
Executive should receive all goals that can start before 
τ+λExec+πExec. This will enable the Executive to leverage as 
much information as it can handle in making judicious 
decisions on how to accomplish the goals requested. Sending 
a goal with a start time strictly greater than τ+λExec+πExec 
will not be considered by the Executive. Moreover, such 
dispatch incurs a cost for transmission of information and 
may over-commit the Navigator unnecessarily. 

Fig. 5: Illustration of goal dispatching window 
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Fig. 7: A Deliberative reactor 

class Path extends AgentTimeline { 
  predicate At{Node location;} 
  predicate Go{Node from; Node To;} 
} 
class Position extends AgentTimeline { 
   predicate Holds{Node value}; 
} 
Path::At { 
   met_by(Go g); 
   eq(g.to, location); 
   contained_by(Position.Holds p); 
   eq(p.value, location); 
} 
Path::Go { 
  met_by(At p); 
  eq(p.location, from);} 

 Fig. 8. A Mission traversal graph 

Therefore the general rule is that the dispatching window 
for a timeline is a time window that depends on the latency 
and the look ahead of the reactor owning the timeline. This 
dispatch window, HD is therefore defined by: 

HD = [τ + λ, τ + λ + π] 
This implies that as soon as the start time of a goal on an 

external timeline intersects HD, it is dispatched to the owner 
of the timeline. This rule is necessary and sufficient to 
ensure that each reactor has sufficient time (λ) and 
information (π) to deliberate on goals provided by other 
reactors. In our implementation, we have an Executive, 
which is purely reactive and therefore λExec = πExec = 0 
implying that the Executive does not plan beyond the 
execution frontier. 

C. Deliberation 
The framework presented thus far makes the details of 

deliberation an internal concern for each reactor even if it 
has to capture different functional and temporal scope. Our 
own implementation of T-REX uses a Constraint-based 
Temporal Planning approach based on EUROPA-2 [10,11] 
employing a declarative model-based paradigm. The model 
describes state variables (e.g. position, battery level) and 
actions (e.g. ascend, descend, getGPS, takeWaterSample) of 
the system. Constraints can be specified to enforce 
relationships between state variables. For example, it is 
convenient to represent the vehicle as being at the surface, or 
not, which can be captured with a boolean state variable (e.g 
AtSurface). We define a relationship between this variable 
and the deph of the vehicle as follows: if depth <= 0.3 then 
AtSurface = true. The model also describes constraints 
between states and actions. For example, the vehicle must be 
at the surface during getGPS.  A sample domain model is 
shown in Fig. 6 with the Path timeline having two predicates 
At and Go; the example rules in the parameter specification 
express the constraint that to be at a location, the AUV needs 
to go to that coordinate and the position must be maintained 
for a temporal interval that is consistent with the rest of the 
model. A T-REX agent uses a single model for control at 
various levels of abstraction and at various speeds of 
execution. Different reactors reference subsets of this model 
according to their functional scope. 

The Deliberative 
reactor is a 
specialization of a 

Teleo-Reactor 
utilizing models, 
plans and planning to 
accomplish reactive 
and goal directed 
control. Fig. 7 
describes the main 
components of this 
reactor. The inward 
pointing arrows 

reflect the 

invocations of the 
agent control loop 

for 
synchronization, 

dispatch and 
deliberation. The 
Database is a 
source and sink for 
observations and 
goals based on the 
semantics of 

internal and external timelines and the rules of information 
exchange. It is an extension of the EUROPA-2 plan 
database, augmented for specialized buffering for efficient 
access to timeline data for dispatch and synchronization and 
manages state information. Model rules are applied 
automatically through a combination of propositional 
inference and constraint propagation [21], to check 
consistency and prune infeasible elaborations of the plan 
maintained in the database. The Synchronizer is a 
specialized configuration of a EUROPA solver operating 
over a 1-tick horizon. It accomplishes local consistency and 
completeness. The database propagates the results of 
synchronization to the future. The Dispatcher is a simple 
algorithm that publishes goals to owner reactors of its 
external timelines according to the dispatch semantics 
previously defined. Finally, the Planner is yet another 
instance of a EUROPA solver used to deliberate over the 
specified temporal and functional scope of the reactor using 
a heuristic based chronological backtracking search for 
partial plan refinement. These entities together are used 
under different configurations for the Mission Manager, 
Science Operator and Navigator shown in the example in Fig 
3. Further details on EUROPA can be found in [10,11]. 

III. EXPERIMENTAL RESULTS 
Our experiments with T-REX at sea involved using two 

onboard computers on our AUV: a main vehicle computer a 
244 Mhz PC/104 stack running the QNX real-time operating 
system running the functional layer, and a separate 367 MHz 
EPIC EPX-GX500 AMD Geode stack running Linux and T-
REX. Communication between T-REX and the functional 
layer computer was with a socket-based protocol allowing 
the exchange of goals and state updates. For validation 
purposes we initially ran experiments on a high-fidelity 
AUV simulator based on [13] which captures vehicle 
dynamics to validate our missions. Sea trials with T-REX 

onboard an AUV 
were in the 
Monterey Bay, 
California using 
our support ship 
the R/V Zephyr. 
The tick duration 

was set to 1 
second. In this 
section we Fig. 6: A domain model in T-REX 
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Fig. 9. A mission to traverse to the South node 

Fig. 10. A Token flexibility example  

 

 

Fig. 11. CPU usage for the mission in Fig 9. 

  
Fig. 12. T-REX plan with heading changes 

discuss one such mission among many executed at sea, 
where we focused on demonstrating nominal mission 
scenarios where scientists orient observations along specific 
legs. 

 One such set of legs was encoded as a graph located in 
the northern end of the Bay (Fig. 8). Such a representation 
has a number of distinct advantages; first it accurately 
predicts lower bounds on traversals from one node in the 
graph to another and thereby quantifies time and resources 
towards goal achievement (or for shedding over-subscribed 
goals). Second, it allows us to naturally deal with shortest 
path computations using our planner’s existing constraint 
network algorithms and representation. Finally it allows 
scientists to clearly represent their requirements in a 
compact representation not unlike existing transect patterns 
with the important addition of specifying meta-level features 
such as goal priorities without concern for how the AUV 
would achieve these goals. 

In Fig. 9, the goal of the mission was to head to the south 
node of such a traversal graph. The straight-line transect 
planned was repeatedly interrupted in-situ during 
deliberation, with check-in windows forcing the vehicle to 
surface every 100 seconds with at least 40 seconds at the 
surface. The dynamics of the vehicle [24] resulted in the 
vehicle to damp its downward decent by compensating on its 
pitch axis prior to a straight and level move thru the water 
column. This was soon followed by an ascend to the surface 
for a GPS fix followed by a short burst by the AUV to 
accelerate to depth. The mission goals are decomposed to 
those on the navigation timeline as a series of Go(South) 
followed by check-in tokens. Further decomposition of the 
Go activity in turn, results in setpoint, descend and waypoint 
tokens also within the Navigator. The waypoint token tries 
to achieve reaching the South node; however the 100sec 
check-in window constraint preempts the achievement of 
this traversal making the AUV surface.These series of 
actions are successively generated till an observation from 
the executive determines that the vehicle is indeed at the 
South node. Within each set of these setpoint, descend and 
waypoint tokens there is an important issue T-REX has to 
deal with in terms of execution uncertainty; in this case the 

precise end time 
for descending to 
depth is 
uncontrollable, i.e 
only exogenous 
conditions can 

determine the 
precise duration 

of this activity. The waypoint token duration therefore is 
limited by the durations of the Go, setpoint and descend 
tokens and can only be executed when the descend token 
finishes.  Fig. 10 shows two examples where a descend 
could take longer (a) or shorter (b); modeled durations of the 

descend token however need to be able to reasonably 
encapsulate such variations which in practice are already 
considered when scripting plans a priori.  

Fig. 11 shows the CPU usage and the impact of 
synchronization and deliberation that lead to changes in 
multiple reactors. The spikes shown correspond to a 
dynamic plan repair associated with the insertion of a check-
in window. When the Executive terminates the waypoint 
activity, an observation is returned comparing the Goto 
location (South in metric units) with the (open-loop) 
distance traversed by the vehicle. If the vehicle is not at its 
desired Goto location, an additional Goto goal will be 
generated to make up the difference. The most common 
reason for waypoint terminating before reaching the target 
destination is due to duration constraints imposed by a 
check-in window. The Navigator inserts a check-in goal and 
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further decomposes the goal in-situ as mentioned above into 
ascend, getgps and setpoint activities as needed. If on 
completion of a waypoint the vehicle is within an expected 
distance of its target location the Navigator will terminate 
the higher-level navigation goal. An interesting feature of 
the localization activity is the requirement that the AUV stay 
on the surface for at least 40 secs. However, as shown in the 
second check-in window in Fig. 11, when the vehicle is able 
to obtain a GPS fix well under this time limit the planner 
reactively inserts an Idle activity. 

Fig. 12 illustrates a longer mission where T-REX received 
the goals to be At the West node and then GoTo the North 
node starting from the South node in the traversal graph. As 
before, we see the Navigator refining these goals with an 
interesting twist; when the AUV is at the West node, T-REX 
realizes that it had sufficient time to start the new goal 
before the next check-in and inserted a Go(North) token for 
the remaining duration. Such opportunistic decision-making 
is unrealizable with scripts designed a-priori and clearly 
demonstrates advantages of onboard deliberation. Additional 
data on T-REX test results can be found at [25]. 

IV. RELATED WORK 
T-REX is inspired from IDEA [16,17], which in turn is 

based on ideas in the Remote Agent Experiment (RAX) 
[14,15]. T-REX is similar to both in its formulation of a 
timeline-based representation, and in its use of planning and 
execution at its core. It is distinct from IDEA primarily in its 
formulation for exchanging and synchronizing state between 
reactors. The Autonomous Sciencecraft Experiment [18] 
conceptually borrows from RAX. The CASPER planner is 
not directly embedded in the execution as in T-REX. 
Further, temporal flexibility within and deals only with 
grounded plan representation. The 3-layered LAAS 
architecture [19] provides decisional capabilities using a 
constraint-based symbolic planner integrated with reactive 
components. However its disparate components are 
manipulating different representations using heterogeneous 
modeling languages. Such an approach tends to make system 
design and integration difficult [20]. In contrast, although T-
REX’s design leads to factoring of computation into layers, 
in practice a hierarchical structure is not inherent, nor is 
deliberation required or prohibited for any layer. 

While a number of control architectures have been built 
for AUV control [1,8] T-REX’s design philosophy is closest 
to DAMN [22] and ORCA [23]. DAMN is a reactive 
Subsumption based architecture with no inherent 
deliberation. ORCA uses schemas within a case-based 
planning framework; however the efficacy of ORCA’s 
approach is unclear in terms of scalability in the number of 
schemas since the literature does not indicate whether the 
system was actually fielded on an AUV. Further there is no 
indication that it reasons explicitly with time and resources.  

V. CONCLUSIONS AND FUTURE WORK 
Our results to date show that onboard planning and 

execution within the T-REX framework can handle 

uncertainty in the sub-sea domain gracefully well within the 
computational capacity available on our AUV’s. Our 
immediate next steps are to integrate resource constraints for 
deliberation in goal selection and to demonstrate dynamic 
re-planning onboard the vehicle to adapt to science 
observations opportunistically to enable characterization of 
dynamic and episodic phenomenon such as ocean Fronts and 
Thin Layers. 
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