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Abstract— This paper reports the development and experi-
mental evaluation of a complete model-aided inertial navigation
system (INS) for underwater vehicles. The navigation system
is novel in that accurate knowledge of the vehicle dynamics is
utilized for aiding the INS, and the performance is evaluated
using real data collected by an autonomous underwater vehicle
(AUV). Together with real-time sea current estimation, the
output from a kinetic vehicle model describing the dynamics is
integrated in the navigation system. The presented experimental
results verify that with merely an addition of software and no
added instrumentation, it is possible to significantly improve
the accuracy and robustness of an INS by utilizing the physical
insight provided by a kinetic vehicle model. To the best of our
knowledge, this paper is the first report on the implementation
and experimental evaluation of a complete model-aided INS for
underwater vehicle navigation. The proposed approach shows
promise to improve underwater navigation capabilities both
for systems lacking disparate velocity measurements, typically
from a Doppler velocity log (DVL), and for systems where
the need for redundancy and integrity is important, e.g. during
sensor dropouts or failures, or in case of emergency navigation.
The reported methodology is applicable to a large group of
submersibles, as well as land and aerial crafts and robots.

I. INTRODUCTION

A typical navigation sensor outfit for an underwater ve-
hicle may consist of standard components such as compass,
pressure sensor, and some class of inertial navigation system
(INS). In addition, various sources of position aiding may
be available, for instance long baseline (LBL) or ultra short
baseline (USBL) acoustics, terrain-based techniques, and
surface GPS. For an extensive survey on sensors and sensor
systems, the reader should refer to [1] and references therein.

In practice, a submersible does not have continuous posi-
tion updates, hence a navigation system based on INS, and
especially low-cost INS, will have an unacceptable position
error drift without sufficient aiding. While most high-end
systems incorporate a Doppler velocity log (DVL) in order
to limit the drift [1], [2], [3], [4], this additional expense
is not always feasible. Even when a DVL is included,
situations will occur where it fails to work or measurements
are discarded due to decreased quality. In either case, in the
absence of DVL measurements, alternative velocity informa-
tion is required to achieve an acceptable low drift navigation
solution between position updates. One possibility is to
utilize mathematical models describing the vehicle dynamics,
in conjunction with real-time sea current estimation.
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To date, the application of state estimators to underwater
navigation has primarily focused on employing purely kine-
matic plant models, i.e. models describing the vehicle motion
without the consideration of the forces and moments causing
it [5], [6]. State estimators incorporating kinetic underwater
vehicle models are rare. Model-based deterministic observers
utilizing knowledge of the vehicle dynamics together with
disparate measurements are reported in [7], [8]. As for
work on model-aided INS, where the output from a kinetic
vehicle model is used to aid the INS, the literature is
scarce. Some reports are found related to aerial vehicles,
where the navigation performance is assessed in simulation
[9], [10], [11]. To the best of our knowledge however,
no results have been reported on the implementation and
experimental evaluation of a complete model-aided INS, nor
has its practical application to underwater vehicle navigation.

In this paper, an aided INS also incorporating velocity
measurements from a kinetic vehicle model is investigated.
The proposed methodology, which is applicable to a large
group of marine, land and aerial crafts and robots, is applied
to underwater vehicle navigation, and the performance is
experimentally evaluated using real data collected by an
autonomous underwater vehicle (AUV). Preliminary experi-
mental results have only recently been reported in [12]. This
paper gives a further analysis and extends these results in
that the navigation system Kalman filter (KF) accommodates
simultaneous estimation of vehicle model output error and
sea current. The enhanced KF also permits process and mea-
surement noise level switching, e.g. varying sensor quality.

The remainder of this paper is organized as follows.
Section II presents the mathematical vehicle model utilized
in this paper. The integrated navigation system with model-
aiding included is described in Section III. Section IV
presents the experimental setup and experimental results.

II. UNDERWATER VEHICLE MODELING

Modeling of underwater vehicles is fairly complicated,
and even when considered as a rigid body, an exact analy-
sis is only possible by including the underlying infinite-
dimensional dynamics of the surrounding fluid. While this
can be done using partial differential equations, it still
involves a formidable computational burden, infeasible for
most practical applications. As a result, the conventional
approach has been to use finite-dimensional approximations.

The development and experimental validation of the finite-
dimensional kinetic vehicle model utilized in this paper
have been rigorously treated in [13]. The main results are
presented in the following. For a review and historical recap
of work related to modeling of underwater vehicles, the
reader should refer to the same paper and references therein.
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TABLE I
NOMENCLATURE

Description Variable Entries*
Local Cartesian vehicle position pm

mb (x, y, z)

Earth-relative linear velocity vb
mb = vb

eb (u, v, w)

Water-relative linear velocity vb
wb (ur, vr, wr)

Current velocity in body frame vb
mw = vb

ew (uc, vc, wc)

Current velocity vl
mw = vl

ew (ul
c, v

l
c, w

l
c)

Vehicle angular velocity ωb
mb = ωb

eb (p, q, r)

Attitude (roll, pitch, yaw) Θ (φ, θ, ψ)

* Based on SNAME notation

A. Preliminaries
Let {m} denote a local Earth-fixed coordinate frame

where the origin is fixed at the surface of the WGS-84 Earth
ellipsoid, and the orientation is north-east-down (NED).
Similarly, let {w} denote a reference frame where the origin
is fixed to, and translates with the water (due to current).
The current is assumed irrotational, hence {w} does not
rotate relative to {m}. Recall that it is possible for a fluid
traveling along a straight line to have vorticity, and similarly,
for a fluid moving in a circle (or which changes direction) to
be irrotational. The frame {b} is a body-fixed frame where
the axes coincide with the principal axes of the vehicle. The
origin is located at the vehicle center of buoyancy. A general
expression of the vehicle position can now be written as

pm
mb = pm

mw + Rm
w pw

wb, (1)

where pm
mb ∈ R3 is the position vector from {m} to {b},

represented in {m}, and Rm
w ∈ SO(3) is the coordinate

transformation matrix from {w} to {m}. The velocity of
{b} relative to {m}, is given as vm

mb := ṗm
mb, or decomposed

in {b} as vb
mb := Rb

mvm
mb. The interpretation of the other

variables follows directly. From (1) it follows that

ṗm
mb = ṗm

mw + Rm
w ṗw

wb, (2)

where Ṙm
w equals zero due to the assumption of irrotational

current. Substituting for the derivatives, and pre-multiplying
both sides of (2) with Rb

m gives the velocity relationship

vb
mb = Rb

mvm
mw + vb

wb. (3)

Analogous to the translational or linear velocities, their
angular counterparts are given as ωm

mb and ωb
mb := Rb

mωm
mb.

For navigation purposes, two additional reference frames
are common. The Earth-centered Earth-fixed (ECEF) frame
is denoted {e}. The frame {l} is a wander azimuth frame,
defined such that it has zero angular velocity relative to the
Earth about its z-axis. The initial orientation is NED and
its origin is directly above the vehicle at the surface of the
Earth ellipsoid. Note that {m} is fixed relative to {e}, and
that Rb

l ≈ Rb
m for limited geographical areas far from the

poles. In light of the new frames, (3) may be restated as

vb
eb = Rb

l v
l
ew + vb

wb. (4)

The correspondence between the variables above and the
notation established by the Society of Naval Architects and
Marine Engineers (SNAME) [14] is shown in Table I. Speed
entities along the x-axis of {b} are shown in Fig. 1.

Fluid

Seabed
u

uruc

Fig. 1. Water-relative speed ur , current speed uc, and Earth-relative speed
u, along the body x-axis. HUGIN 4500 AUV profile used for illustration.

B. Kinetic Vehicle Model
The HUGIN 4500 AUV is used as a case study in this

work. The profile of the vehicle is outlined in Fig. 1. The
bare hull is a body of revolution, and the cruciform tail
fin configuration is top-bottom, port-starboard symmetric.
A three degrees-of-freedom (3 DOF) model describing the
vehicle motion in surge, sway and yaw, can be written as

MRBν̇ + CRB(ν)ν = τ − MAν̇r − CA(νr)νr−
d(νr)νr − l(νr) − g(Θ). (5)

A description and complete expressions of the different terms
are given in [13]. The model in (5) was derived assuming
negligible coupling from heave, roll, and pitch, which is
a reasonable assumption for normal operations with the
HUGIN 4500 AUV. The generalized velocities ν = [u, v, r]>

and νr = [ur, vr, r]>, denote generalized Earth-relative and
generalized water-relative velocity, respectively. Since the
current is irrotational by assumption, only the translational
part of ν and νr differ. Recall the nomenclature in Table I.

For (5) one must decide upon using either ν or νr as the
velocity state. As discussed in [13], a reasonable assumption
at low vehicle angular rates or small current amplitudes is
that ν̇ ≈ ν̇r. This yields the final kinetic vehicle model

Mν̇r = τ − c(ν,νr) − d(νr)νr − l(νr) − g(Θ), (6)

where for simplicity we used M := MRB + MA and

c(ν,νr) := CRB(ν)ν + CA(νr)νr. (7)

As seen from (7), the Coriolis and centripetal term c(ν,νr)
depends on both ν and νr. If there is no current then ν =
νr. The linear Earth-relative velocity can be calculated from
(4), which implies that the current should be measured or
estimated. In the integrated navigation system studied herein,
the current is included as a state in the Kalman filter (KF).

The model in (6) is a typical grey-box model where the
vehicle motion is described by a set of ordinary differential
equations (ODEs) with unknown parameters. With excep-
tion of propulsion coefficients obtained from open-water
tests [15], the parameters were found from semi-empirical
relationships and from experimental data collected by the
HUGIN 4500. The parameter identification procedure was
carried out using the methodologies reported in [13], [16].

A standard numerical ODE integration routine can now
be used for solving (6) in order to recover the state. That
is, model-based measurements of the water-relative velocity
in surge and sway, as well as the yaw rate, can be attained
from known actuation signals, attitude and current.
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ž δz
−

z

δ̂x

x̂
x̌

Reset

(b)

Fig. 2. High-level system outline. (a) Traditional aided INS. (b) Model-aided INS. The vehicle model is treated analogously to an external aiding sensor.

III. MODEL-AIDED UNDERWATER NAVIGATION

Inertial measurement units, time of flight acoustics, ve-
locity logs, and global positioning systems, are all common
means for precision underwater navigation. As pointed out
in [1], none of these techniques are perfect however, and a
combination of them is usually employed in practice. This
section reports the concept and development of an integrated
model-aided INS, applied to underwater vehicle navigation.

A. Review of Traditional INS

The key components of any INS consist of an inertial
measurement unit (IMU) and a set of navigation equations
implemented in software. The equations take the gyro and
accelerometer measurements from the IMU and integrate
them to velocity, position and orientation. Due to inherent
errors in the gyros and accelerometers, the INS navigation
solution will have an unbounded drift, where the divergence
rate depends on the quality of the IMU. One performance
measure for an INS is given by its pure inertial drift in
position, typically stated in nautical miles per hour (nmi/h).
A good navigation grade INS drifts in the order of 1 nmi/h.
Note that the pure inertial drift is not linear with time.

Since an INS is a diverging system, it requires an aiding
system to bind the growth of its errors. Standard components
such as compass and pressure sensor are usually included,
where the latter effectively binds the vertical position drift,
i.e. along the z-axis of {m}, or more precisely {l}. Navi-
gation in the geographical horizontal plane is more compli-
cated, and the main aiding methods to date involve time of
flight acoustics, surface GPS, and DVL [1], [2]. The outline
of a traditional aided INS is shown in Fig. 2(a), where the KF
input is the difference between the output from the aiding
sensor and the INS. The KF output includes estimates of
the errors in the navigation equations, which are used for
resetting the INS and for obtaining an enhanced estimate of
the vehicle state; position, velocity and orientation. Besides
modeling the INS errors, additional KF states may also be
included, for instance colored noise in the aiding sensors.

B. Model-Aided INS

A DVL may or may not be part of the sensor suite, and
even when it is, situations will occur where it fails to work

or measurements are discarded due to decreased quality. As
for the acoustic positioning, it may be available often or
only sporadically. Both measurements are crucial for the INS
performance, and as shown in [12] and Section IV-B herein,
the solution from an INS without position and velocity aiding
quickly becomes useless. This leads back to the question
addressed in this work – can the output from a kinetic vehicle
model improve the robustness and accuracy of an INS?

The basic idea and concept of using a kinetic vehicle
model for aiding an INS is illustrated in Fig. 2(b), where
the output from the model is treated analogously to that
of an external aiding sensor. The model-aided INS clearly
resembles the traditional INS in Fig. 2(a), and both systems
may share many of the same aiding sensors. As implemented
herein, the DVL in the traditional INS is merely replaced
by the vehicle model, after doing necessary modifications in
the KF. Note that the integration of a vehicle model in the
navigation system does not require any additional instrumen-
tation. As studied herein, the integration of kinetic models
in underwater navigation systems is of particular interest for
configurations lacking external velocity measurements. Other
important implications involve systems (also having a DVL)
where redundancy and integrity is important, e.g. during
sensor dropouts or sensor failures, or emergency navigation.
An aided INS utilizing both external velocity measurements
and vehicle model output is subject to ongoing research.

A more detailed outline of the traditional and model-aided
INS evaluated herein is shown in Fig. 3, differing only in
the velocity aiding. The traditional INS aided with DVL and
DGPS-USBL serves as the basis when later evaluating the
performance of the model-aided INS in Section IV-B.

C. Measurement and Process Equations

A DVL measures the vehicle velocity relative to the bot-
tom, and is therefore unaffected by current. In contrast, the
velocity calculated by the kinetic vehicle model is relative to
the water, hence to better make use of this velocity estimate
for navigation purposes, the current must be accounted for.

In accordance to Fig. 2 and conventional KF notation, the
general discrete input to the KF is given as

δzk = zk − žk, (8)
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Fig. 3. Block diagram of model-aided (and traditional aided) INS. In
this paper, external velocity measurements are not included while utilizing
the output from the vehicle model, and the other way around when using
external velocity measurements. This is illustrated with a switch. The
position measurements may be available often or only sporadically.

where the accent (̌·) denotes a calculated variable, in this
case from the INS. For the linear velocity we then get

δzvel = zvel − žvel, (9)

where the time index is dropped for simplicity. As is standard
for an INS, the velocity is žvel = v̌l

eb. The corresponding
measurement is then zvel = ṽl

eb, where the accent (̃·) denotes
a measured quantity. When utilizing the vehicle model output
this is not the case, and the best we can do is to let

zvel := v̌l
ew + Řl

bv̌
b
wb, (10)

which after substitution in (9) yields the expression

δzvel = v̌l
ew + Řl

bv̌
b
wb − v̌l

eb. (11)

The definition in (10) clearly resembles the right hand side of
(4), pre-multiplied with Rl

b. The variables v̌l
eb and Řl

b stem
from the INS, v̌b

wb is given by the vehicle model, and v̌l
ew

can for instance be calculated from empirical tide or current
tables. If the current was measured it could be used in place
of v̌l

ew. In this paper we assume that v̌l
ew = 0, which is to

say that our best a-priori guess of the current is zero. It does
not mean that the true current is zero. Note that the current
is estimated in the KF. Also, since the model in (6) does
not include the water-relative vehicle velocity in heave as a
state, this model output is assumed to be zero. Similar to the
current, the water-relative heave velocity is estimated in the
KF. It is expected that the inclusion of a depth sensor in the
navigation system renders this state observable.

A true variable is given as the sum of its calculated or
measured value and a corresponding error, that is,

(·) = (̌·) + δ(·) and (·) = (̃·) − δ(·). (12)

Replacing the current velocity and the vehicle model velocity
in (11) with their errors and true values yields

δzvel = (vl
ew − δvl

ew) + Řl
b(v

b
wb − δvb

wb) − v̌l
eb, (13)

which after some manipulation and first order approxi-
mations lead to the final expression for the measurement
equation associated with the kinetic vehicle model output

δzvel = δvl
eb − S(v̌l

eb)e
l
lb − Řl

bδvb
wb − δvl

ew. (14)

The variable el
lb is a measure of the calculation error in Řl

b

and S(·) is a skew-symmetric operator. The variables in (14)
are all calculated by the INS or included in the KF process
equation. Similar measurement equations as in (9) and (14)
are also derived for the disparate aiding sensors in Fig. 3.

It is assumed herein that both the vehicle model output
error δvb

wb and the a-priori current prediction error δvl
ew can

be modeled as the sum of colored noise and zero-mean white
noise. The entries of both δvb

wb and δvl
ew are considered

uncorrelated. If we let ∆v(·) and ξ(·) denote the colored and
white noises, respectively, the errors can be expressed as

δvb
wb = ∆vb

wb + ξvb
wb

(15)

δvl
ew = ∆vl

ew + ξvl
ew

. (16)

While white noise is isolated in time, a colored process is
local in time since its value at one instant also depends
on prior values. Numerous correlation models can be used,
depending on the studied noise characteristics [17], [18]. The
colored noise in (15)-(16) is implemented as zero-mean first
order Markov processes driven by white noise, that is,

∆̇vb
wb = −T−1

∆vb
wb

∆vb
wb + γ∆vb

wb
(17)

∆̇vl
ew = −T−1

∆vl
ew

∆vl
ew + γ∆vl

ew
. (18)

The colored noises are states in the KF process equation.
Note that the KF estimate of ∆vl

ew is also an estimate of
δvl

ew. This is again an estimate of the true current, since
v̌l

ew is zero by assumption, and consequently, vl
ew = δvl

ew.
The success of the Markov model relies on the determi-

nation of the parameters T(·) and the white noises γ(·). The
matrices T(·) are diagonal with non-zero terms equal to the
correlation time constants. As for γ(·) they are characterized
by their standard deviations. Similarly for ξ(·) above. The
desired standard deviations of ∆v(·) may be used together
with T(·) to find the steady-state standard deviations of γ(·).

D. Measurement and Process Noise Level Switching

The parameters describing the errors in the aiding sensors
are time-invariant by default. For some sensors however,
explicit knowledge of the measurement accuracy degradation
or improvement from one sample to another may be avail-
able, e.g. through quality numbers reported by the sensor
itself. If feasible, the quality of each single measurement
should be sent to the KF in order to enhance the overall
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Algorithm 1: Trajectory-based noise level switching
Input: Rudder deflection angle τ [deg]
Output: Adjusted KF noise characteristics for δvb

wb

if |τ | > threshold then
adjust appropriate entries of T ,γ and ξ

else
t: time since |τ | > threshold
if t < settle-time then

adjust appropriate entries of T ,γ, ξ
else

reset T ,γ, ξ to nominal values
end

end

navigation accuracy. Typically, the resulting effect is an
increase or decrease in the measurement white noise, and in
some cases, a change in the standard deviation or correlation
time constant for the colored noise. In this work, the position
measurements in Fig. 3 are accompanied by distinct quality
measures for each sample, as reported by the sensor.

Analogous to a conventional aiding sensor, the vehicle
model output varies in quality. In particular, the accuracy
during tight turning maneuvers is slightly lower than for
steady forward motion, as experimentally validated in [13].
In [19], the normalized innovation is monitored in order to
detect a maneuver, and if it exceeds a certain threshold the
KF process noise is adjusted. A related approach is applied in
this paper for adjusting the process and measurement noise
characteristics associated with the vehicle model output error
δvb

wb. In contrast to the systems in [19], a maneuver for
an underwater vehicle is detected directly from measured
actuation. This knowledge may be used for establishing a
noise level switching rule. An outline of the rule used in this
paper is given in Algorithm 1. While not considered in this
work, a similar criterion can easily be developed for stern
plane deflections and vertical maneuvers.

IV. EXPERIMENTAL EVALUATION

The model-aided INS was implemented and experimen-
tally evaluated using data collected by the HUGIN 4500
AUV, a field-deployed AUV designed for underwater sur-
veying and mapping. An overview of the experimental setup
is given subsequently, followed by experimental results.

A. Experimental Setup

1) Vehicle Description: HUGIN 4500 is the latest member
of the Kongsberg Maritime HUGIN AUV family. Figure 4
shows a picture from one of the sea-trials in October 2006.
The diameter and length of the vehicle are 1 and 6.5 meters,
respectively. The vehicle can operate for 60-70 hours at
depths down to 4500 meters, at a cruising speed of about
3.7 knots. The vehicle is passively stable in roll and close
to neutrally buoyant. For propulsion, it is fitted with a single
three-bladed propeller. A cruciform tail configuration with
four identical control surfaces is used for maneuvering.

Fig. 4. The HUGIN 4500 AUV prior to sea-trial launch in October 2006.
DO NOT DISTRIBUTE - TO BE SUBMITTED TO THE IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA’08) 6

TABLE II
IMU SPECIFICATIONS

Model Gyro Technology Gyro Bias Accelerometer Bias
IXSEA IMU90 Fiber optic ±0.05◦/h ±500 µg

TABLE III
PRIMARY NAVIGATION AIDING SENSORS

Variable Sensor Precision Rate
Position Kongsberg HiPAP Range, Angle: < 20 cm, 0.12◦ Varying*
Velocity RDI 300kHz DVL ±0.4 %± 0.2 cm/s 1 Hz
Pressure Paroscientific 0.01 % full scale 1 Hz

* Approximately 1/3 Hz. In real-time position updates are received at about
1/30 Hz, from the surface vessel via an acoustic link.

HUGIN 4500 is equipped with a traditional aided INS, as
shown in Fig. 3. Some IMU specifications are listed in Table
II. A surface ship tracks the AUV with an USBL acoustic po-
sitioning system. By combining DGPS with USBL, a global
position estimate can be obtained, which is then transmitted
to the AUV. Additional navigation sensors include compass,
pressure sensor, and DVL. Primary aiding sensors and some
of their specifications are listed in Table III. For additional
information on the navigation system and the navigation
system accuracy, the reader is referred to [2], [20], [21].

2) Experimental Description: In September and October
2006, several sea-trials were conducted with HUGIN 4500
in the vicinity of 59◦ 29’ N, 10◦ 28’ E, in the Oslo-fjord,
Norway. Roughly 60 hours of data were collected, of which
a subset of X minutes is utilized in this paper.

************
The test area and the horizontal vehicle trajectory are

shown in Fig. ??. The vehicle followed a standard lawn-
mover pattern, typical for a survey AUV like the HUGIN
4500. During the entire run the vehicle was kept at a close
to constant depth at 140 meters. Note that no parts of
the experimental data used herein were used during the
development process of the vehicle model.

3) Data Post-Processing: The AUV position data were
wild-point filtering prior to being utilized in this paper. The
HUGIN navigation system then re-processed the appropriate
sensor data to get real-time estimates from the KF (this is
done using an exact copy of the at-sea navigation system).
The traditional INS with sensors specifications described in
section IV-A1 serves as the basis or ground truth when
evaluating the performance of the model-aided INS. The
basis solution was smoothed in order to enhance accuracy,
which for the vehicle position was estimated to be 0.75
meters (1σ) in north and east. In general, this accuracy
partly depends on the GPS on the surface ship. Both the
experimentally proven accuracy of the navigation system and
the post-processing steps are thoroughly described in [21].

B. Experimental Results

1) Discussion:
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HUGIN 4500 is equipped with a traditional aided INS, as
shown in Fig. 3. Some IMU specifications are listed in Table
II. A surface ship tracks the AUV with an USBL acoustic po-
sitioning system. By combining DGPS with USBL, a global
position estimate can be obtained, which is then transmitted
to the AUV. Additional navigation sensors include compass,
pressure sensor, and DVL. Primary aiding sensors and some
of their specifications are listed in Table III. For additional
information on the navigation system and the navigation
system accuracy, the reader is referred to [2], [20], [21].

2) Experimental Description: In September and October
2006, several sea-trials were conducted with HUGIN 4500
in the vicinity of 59◦ 29’ N, 10◦ 28’ E, in the Oslo-fjord,
Norway. Roughly 60 hours of data were collected, of which
a subset of about 3.5 hours is utilized in this paper. In the
first part, the vehicle was kept at a constant depth while
moving along square-shaped trajectories, as described in
[16]. In the second part, the vehicle followed a standard
lawn-mover pattern, typical for a survey AUV. The trajectory
corresponding to this data is shown in Fig. 5.

3) Data Post-Processing: The position measurements
were wild-point filtered prior to being utilized in this paper.
The HUGIN navigation system then re-processed the appro-
priate sensor data to get real-time estimates from the KF
(this is done using a copy of the at-sea navigation system).
The traditional INS with sensor specifications described in
Section IV-A.1 serves as the basis or ground truth when
evaluating the performance of the model-aided INS. The
basis solution was smoothed in order to enhance accuracy,
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Fig. 5. Three dimensional vehicle lawn-mower trajectory. The trajectory
shows the smoothed local position, which is considered as ground truth.

which for the vehicle position was estimated to be 0.75
meters (1σ) in north and east. In general, this accuracy
partly depends on the GPS on the surface ship. Both the
experimentally proven accuracy of the navigation system and
the post-processing steps are thoroughly described in [21].

B. Experimental Results

This section evaluates the performance of the model-aided
INS described in Section III. With exception of the param-
eters associated with the vehicle model, all the KF tuning
parameters are identical for the traditional and model-aided
INS. Unless mentioned otherwise, the position measurements
are received regularly at about 1/3 Hz.

1) Estimation of sea current and vehicle model output
error in model-aided INS: Since the heave velocity from
the vehicle model is zero, it follows from (12) that the KF
estimate of δvb

wb,z is also an estimate of vb
wb,z . The estimated

heave velocity corresponding to square 3 in Table IV is
shown in Fig. 6. Similar results were obtained for the other
subsets of data as well. The good observability is due to the
inclusion of a depth sensor in the sensor suit. The model-
aided INS also estimates the x and y components of δvb

wb.
Both were found to be less than 1 cm/s throughout.

For the estimated current, the magnitude is the Euclidian
norm of δvl

ew, given in m/s. In this work it is assumed
that the vertical current, or equally, the third entry of δvl

ew

is negligible. Recall that the estimate of δvl
ew is also an

estimate of vl
ew. The current direction βw is calculated from

βw = atan2
(
δvl

ew,y, δvl
ew,x

)
, (19)

where βw ∈ [0, 360) is relative north with positive rotation
clockwise, i.e. βw = 90 degrees yields east direction. The es-
timated current magnitudes and directions from four distinct
square maneuvers are summarized in Table IV. The estimates
from the model-aided INS are compared to the least-squares
(LS) results reported in [16]. The two different approaches
show good agreement. The KF evolutions for square 3 and
4 are shown together with the corresponding LS solutions in
Fig. 7. The model-aided INS values in Table IV are taken as
the median of the last 8 minutes of the KF time sequences.

2) Position measurement dropout in traditional and
model-aided INS: This experiment was done in order to
evaluate the performance of the model-aided and traditional
INS (without external velocity aiding), in the case where
position measurements for some reason become unavailable.
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Fig. 6. Estimated vehicle water-relative heave velocity for square 3. The
blue (solid) is the estimate of vb

wb,z and the red (dashed) is the basis
vb

eb,z . From (4) it is straightforward to verify that vb
eb,z and vb

wb,z are
approximately equal for zero vertical current and small roll and pitch angles.

TABLE IV
SEA CURRENT ESTIMATION DURING SQUARE MANEUVERS

Square Estimation approach Log time RPM ‖vl
ew‖ βw

1 Least-squares Oct 06 @ 02:06-02:20 165 0.015 17.2
Model-aided INS Oct 06 @ 02:02-02:22 165 0.013 27.2

2 Least-squares Oct 06 @ 03:01-03:21 165 0.018 305.5
Model-aided INS Oct 06 @ 03:01-03:21 165 0.016 318.4

3 Least-squares Oct 06 @ 04:15-04:34 165 0.004 301.7
Model-aided INS Oct 06 @ 04:06-04:36 165 0.004 310.0

4 Least-squares Oct 06 @ 07:31-07:46 165 0.021 162.7
Model-aided INS Oct 06 @ 07:26-07:48 165 0.022 156.0

The scenario is best illustrated in Fig. 8(a), where the real-
time KF receives regular position measurements for about 62
minutes. The position aiding is then disabled for 30 minutes,
before again being enabled for the remainder of the survey.

When aided with high frequency DGPS-USBL, the model-
aided and traditional INS are found to perform compara-
bly in terms of calculated position errors, which is the
difference between the local basis position and the local
position estimated by the real-time navigation system under
consideration. The position covariance estimated by the
model-aided INS is found to be more reliable and slightly
lower than for the traditional INS. This is discussed in
more detail in [12]. For the part without position aiding,
the traditional INS breaks down quickly, as can be seen
in Fig. 8(b) where the maximum horizontal position error
is 961 meters. The model-aided INS continues to perform
excellently, and the maximum horizontal position error is 6
meters. From Fig. 8(d) the errors can be seen to be within
one standard deviation (1σ). The estimated trajectory is
shown in Fig. 8(c), closely following the basis data. Overall
the model-aided INS performs very well, and superior to
the traditional INS without velocity and position aiding.
In general, the performance of the traditional INS without
velocity aiding rapidly degrades with decreasing position
measurement update frequency. On the contrary, the model-
aided INS is more robust to the position update frequency.
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Fig. 7. Estimated current using LS and model-aided INS: (a) Estimated current for square 3 in Table IV. The model-aided real-time KF estimates are
shown in blue (solid). The red (dashed) lines are the corresponding LS solutions. (b) Estimated current for square 4 in Table IV. Similar labels as in (a).
The model-aided INS values in Table IV are taken as the median of the last 8 minutes of the KF estimates. The intervals are indicated with blue (o).

C. Discussion of Results
It should be pointed out that the navigation accuracy

obtained during time slots without position aiding is limited
to the accuracy of the KF estimated current and vehicle
model output error. In particular, if the current does not vary
significantly throughout the time period where position mea-
surements are absent, the navigation accuracy will remain
good. The importance of distinguishing between the vehicle
model output error and sea current is also emphasized, and
as is apparent from (14), an error represented in {b} is
distributed to {l} through the transformation matrix Rl

b.
Unless accounted for, an error in the vehicle model output
will result in a time varying error in the current estimate.
Depending on the size of the model output error, the effect
will be easily visible before and after large course changes.
Finally note the capability of estimating the current may be
of interest for oceanographic research. Another interesting
example includes autonomous mission planning [22].

V. CONCLUSIONS

This paper reports the development of a complete model-
aided INS for underwater vehicle navigation. The navigation
system is novel in that an accurate model of the vehicle
dynamics is utilized for aiding the INS, and the navigation
performance is experimentally evaluated using real AUV
data. The system accommodates simultaneous estimation
of vehicle model output errors and current. The estimated
current shows good agreement with an earlier reported LS
solution. It is found that the error in the model-aided INS
position estimate is significantly lower than that of the
traditional INS throughout time segments where position and
velocity measurements are absent. The model-aided INS also
performs equally well or better than the traditional INS (with-
out velocity aiding) in cases with regular position updates.
The difference in performance increases with decreasing
position update rate. The experimental results demonstrate
that it is possible to considerably improve the accuracy and

robustness of an INS by utilizing the output from a kinetic
vehicle model. The proposed navigation system does not
require any additional instrumentation. To the best of our
knowledge, the results are the first report on the implemen-
tation and experimental evaluation of a complete model-
aided INS for underwater vehicle navigation. The proposed
approach shows promise to improve navigation capabilities
both for systems lacking disparate velocity measurements,
and for systems where redundancy and integrity is important.
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Fig. 8. Performance of traditional and model-aided INS during position measurement dropout: (a) The red (solid) trajectory is the two dimensional local
basis position. The red square shows the initial position used in the KF. The blue (o) data show wild-point filtered position measurements logged at about
1/3 Hz. The segment without position measurements corresponds to 30 minutes. (b) Real-time navigation solution obtained with traditional INS shown
in green (dashed). Other data as before. The system shows poor performance without position measurements. (c) Real-time navigation solution obtained
with model-aided INS shown in green (dashed). Other data as before. The system shows excellent performance, also without position measurements. The
circles (red) indicate 47 and 100 minutes into the run. (d) The position errors (assuming basis is correct) for the model-aided INS in north and east are
shown in blue (solid). The corresponding estimated real-time KF position uncertainties (1σ) are shown in red (dashed).
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