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Abstract— The problem of showing that Lagrangian Coher-
ent Structures (LCS) are useful in determining near optimal
trajectories for autonomous underwater vehicles (AUVs) known
as gliders is investigated. This paper extends our preliminary
results in couple ways. First, the ocean current flows are
modeled by 3D B-spline functions in which the input variables
are latitude, longitude and time, and the output variable is the
ocean current velocity in 2D. The 3D (2D and time-varying)
B-spline model of the ocean current is utilized in the Nonlinear
Trajectory Generation (NTG) algorithm to find the optimal
trajectory of the glider. The trajectories found using the 2D
and time-varying B-spline ocean flows model are compared
with the trajectories from 2D B-spline model in which the
time is assumed to be constant in the ocean current model.
In the second part of the paper, the dynamical glider model
is established and controlled by gyroscopic forces rather than
the simplified kinematic glider model as in the previous work.
Finally, numerical solutions of several scenarios and animations
of glider trajectories are presented. The results show that the
2D and time-varying B-spline ocean model not only can make
the whole trajectory generating process much easier, but also
the glider can reach the same destination in a comparable time
and with much less energy than it does with the previous 2D
ocean current model for both the kinematic and dynamic glider
models. Both of the kinematic and dynamic glider optimal
trajectories, successfully generated with 2D and time varying
ocean current B-spline models, are shown to correspond to
LCS.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) including glid-

ers are becoming more and more popular [1], [2], [3]. For

example, the oil and gas industry can use the gliders to

make the detailed underwater environment map or search

mine-like objects before it decides the next step to exploit

the resources. The Autonomous Ocean Sampling Network II

project (AOSN-II) [4], [5], [6], [7], [8] aims to advance our

ability to observe and predict the ocean by bringing together

sophisticated new robotic vehicles (gliders) with advanced

ocean models. In this paper, we extend our previous work

[6] showing that Lagrangian Coherent Structures (LCS) are

useful in determining near optimal trajectories for a class of
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Fig. 1. The SLOCUM glider [9]

gliders. The ocean current flows are modeled by the 3D (2D

and time-varying) B-spline functions and the near optimal

trajectories of the gliders are obtained using the Nonlinear

Trajectory Generation (NTG) method [12]. The results are

compared with the trajectories from the 2D ocean flow

model in which time is only updated hourly. Furthermore,

dynamical glider model is established and controlled by

gyroscopic forces so that position and orientation of the

glider are obtained in several numerical simulations.

The paper is organized as follows. Next the problem

definition is presented. In Section III, the 3D B-spline ocean

flows model is established. Then in Section IV the 3D current

model is applied in NTG [12] to determine the kinematic

glider optimal trajectory. Section V presents the comparison

made between the trajectories from 2D current model and

those from 3D model. In Section VI, the dynamical glider

model is utilized to obtain more realistic trajectories. Finally

we compare our results with the corresponding LCS through

animations.

II. PROBLEM DEFINITION

The problem considered here is to extend our previously

proposed method [6] for quickly determining near optimal

glider trajectories between two fixed points in the ocean

based on approximate ocean current data. It will be shown

that optimal trajectories computed using NTG software

corresponds to LCS obtained using the Direct Lyapunov

Exponent method [13]. There are two parts are tackled in

this paper. One is to improve the previous 2D (assume

the 2D ocean current flows stay constant in one hour)

analytical ocean flows model [6], which is required in the

NTG formulation, to a 3D (2D current and time-varying

model) using B-spline functions. The other is to establish

a new dynamical model of the glider. Then, these models

are used in the NTG to find near optimal trajectories for the

glider.
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a) u(x,y,t)model,t=10 b) v(x,y,t) model,t=10

c) u(x,y,t) model,t=13 d) v(x,y,t) model,t=13

Fig. 2. The ocean current data and 3D B-spline model at t=10, 13 (hrs)

III. 2D AND TIME-VARYING OCEAN CURRENT FLOWS

MODEL

The ocean flows velocity data was obtained hourly from

High Frequency Radar stations measuring surface currents

around Monterey Bay, CA [14] and processed by Open-

Boundary Modal Analysis [15] to smooth the data and

fill in the missing data points. In the NTG formulation

[6], [12], the cost and the constraints in terms of outputs

and their derivatives need to be specified. Therefore, the

derivatives of the velocity field with respect to the outputs are

required. Numerically computing these derivatives directly

from the velocity data sets can easily create convergence

problems. Thus, it is best to use approximation techniques

to find a smooth analytical model for the data. For this, the

B-spline functions are employed, allowing straightforward

computation of derivatives.

In this paper ocean current flows model are extended to

3D B-spline functions incorporating the time dependence of

the currents explicitly as shown in (1).

u(x, y, t) =
∑m

i=1

∑n

j=1

∑o

k=1
Bi,kux

Bj,kuy
Bk,kut

aijk

v(x, y, y) =
∑p

i=1

∑r

j=1

∑s

k=1
Bi,kvx

Bj,kvy
Bk,kvt

bijk

(1)

where aijk andbijk represent coefficients of B-spline for

u(x, y, t) and v(x, y, t), respectively. Bi,k, Bj,k and Bk,k

represent B-spline basis functions for the x– , y– and t–

direction, respectively. The order of the polynomials used

were kux = kuy = kvx = kvy = kut = kvt = 4 and the

number of the coefficients were m = p = 32, n = r = 22
and o = s = 25, which are determined by the original data.

In order to visualize the models, the time is fixed as it is 2D

function. The results in Fig. 2 are similar with the 2D case

shown in [6] as expected.

Fig. 3 and Fig. 4 show the 3D B-spline ocean flows models

changing with time where x is fixed at −122.3061 (deg) for

ease of visualization purposes only.
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Fig. 3. The ocean current data and 3D B-Spline model for u(x,y,t) when
x is fixed at (-122.3061)
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Fig. 4. The ocean current data and 3D B-Spline model for v(x,y,t) when
x is fixed at (-122.3061)

IV. OPTIMAL CONTROL OF KINEMATIC GLIDER

The optimal control problem considered here is to find

optimal glider trajectories, -in the case of time, or energy,

or time and energy -, between two fixed points in the ocean

utilizing recently developed NTG method. The same start

and destination points as in [6] are used for comparison.

x(t0) = (−122.178(deg), 36.8557(deg))
x(tf ) = (−122.242(deg), 36.6535(deg))

(2)

The kinematic glider model as in [6] is considered:

ẋ = V cos θ + u

ẏ = V sin θ + v
(3)

where V is the speed of the glider, θ is the orientation of

the glider, u(x, y, t) and v(x, y, t) are the components of the

ocean currents in the x and y direction, respectively. θ and
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V are the control inputs. The pair (u(x, y, t), v(x, y, t)) is

referred to as the (time-dependent) velocity field.

The Nonlinear Trajectory Generation (NTG) algorithm

developed by Milam et al. [12] solves constrained nonlinear

optimal control problems in real time. The main advantage

of NTG compared to other dynamic optimization methods

is that it can quickly provide sub-optimal solutions, which

makes it very useful for real-time applications. In addition,

linear as well as nonlinear constraints and cost functions can

be included in the problem formulation of NTG. The gen-

eral NTG framework can handle both spatial and temporal

constraints.

A. Cost Function

The cost function for this problem is a weighted sum of

a temporal cost and an energy cost as follows:

J = WtT (4)

+

∫

1

0

Wu

(

(

ẋ

T
− u

)2

+

(

ẏ

T
− v

)2
)

Tdτ

where ẋ = dx
dτ

, ẏ = dy
dτ

, Wt and Wu represent the weighting

on the total mission time and energy expenditure, respec-

tively. Note that the T terms in the integral, representing

the unknown final mission time, and the integral bounds

ranging from 0 to 1 are both due to introducing time as

a state variable in the NTG formation which is not straight

forward. This is explained in details in [6].

B. Constraints

Constraint functions are given as [6]:

• (Linear) Initial Constraints:

−122.1780 − ǫ(deg) ≤ x(0) ≤ −122.1780 + ǫ(deg)

36.8557 − ǫ(deg) ≤ y(0) ≤ 36.8557 + ǫ(deg)

0 ≤ T ≤ 48 hours

• (Linear) Final Constraints:

−122.2420 − ǫ(deg) ≤ x(T ) ≤ −122.2420 + ǫ(deg)

36.6535 − ǫ(deg) ≤ y(T ) ≤ 36.6535 + ǫ(deg)

• (Nonlinear) Trajectory Constraints:

1 ≤

(

ẋ

T
− u

)2

+

(

ẏ

T
− v

)2

≤ 1600

The properties of the trajectories are listed in TABLE. I.

In this table, min E, min TE and min T represent minimizing

the energy, time and energy and time, respectively. Tf is the

final mission time for the glider to travel from the start point

to the final point. Time represents the actual running time

of the NTG algorithm to find the (near) optimal solution.

Energy Cost is the energy of the glider to travel from start

to final point

Fig. 5 shows the trajectories and Fig. 6 shows that the

constraints on the glider velocities are satisfied. In these

figures, red, blue and green lines correspond to the min E,

min TE,and min T trajectories, respectively.

TABLE I

KINEMATIC GLIDER IN 3D B-SPLINE OCEAN CURRENT MODELS

In3Dmodel Tf (hrs) Time(s) EnergyCost(cm2/s)
minE 48.00 2.72 2.7538e4

minTE 39.38 1.43 9.0038e4

minT 22.60 0.5 1.3209e5
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Trajectories of kinematical glider in 2D time varying ocean current model

Start
x=−122.1780
y=36.8557

min TE
Wu=0.006, Wt=1
Tf=39.4 hours

min E
Wu=0.006, Wt=0
Tf=48.0 hours

Destination
x=−122.2420
y=36.6535

min T
Wu=0, Wt=1
Tf=22.6 hours

Fig. 5. Trajectories of kinematical glider in 3D ocean current model

V. COMPARISON OF KINEMATIC GLIDER TRAJECTORIES

IN 2D AND 3D B-SPLINE OCEAN CURRENT MODELS

In the following the trajectories of the kinematic glider

found using 2D and 3D (2D plus time-varying) B-spline

ocean models are compared. These two types of ocean

current flows models are applied into NTG with the same

kinematic glider model, refer to (3), cost and constraint

functions.

The optimal trajectories minimizing the energy by using

the two models are shown in Fig. 7. The dotted line shows

the concatenated trajectories found using 2D B-spline ocean

model by running the NTG algorithm several times, once for

every hour. The solid blue line shows the glider trajectory

found using the 3D B-spline ocean model. The properties

from the two models are listed in TABLE. II.

Fig. 7 indicates that the minimizing-energy trajectories

from 3D and 2D ocean current models are almost the same.

Hence, it shows that the assumption in [6] that the velocity

fields are constant over hourly intervals is reasonable in this

case. However, the minimizing-time-and-energy trajectories

obtained from 3D and 2D ocean models look different clearly

shown in Fig. 8. The reason is that for minimizing time-and-

TABLE II

KINEMATIC GLIDER IN 3D VERSUS 2D B-SPLINE OCEAN CURRENT

MODELS

3D/2D Tf (hrs) Time(s) EnergyCost(cm2/s)
minE 48.00/45.84 2.72/64.42 2.7538e4/4.039e5

minTE 39.38/39.31 1.43/42.77 9.0038e4/4.178e5
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Speeds of kinematical glider in 2D and time varying ocean current model
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Fig. 6. Kinematical glider speed in the new ocean current model
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Fig. 7. Kinematic glider min E trajectories in two models
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Fig. 8. Kinematic glider min TE trajectories in two models

energy when the start point and velocity field are different,

the glider might decide to choose a different way based on

the current flows and the position. It will not necessarily

move with the direction of the ocean flow as in the min E

case. Even though the trajectories are different in the case of

minimizing energy and time, the shapes and curves of these

two trajectories are still similar with each other.

VI. OPTIMAL CONTROL OF DYNAMIC GLIDER

In this section, the dynamics of the glider is taken into

account. The glider is assumed to be actuated by gyroscopic

forces Fgyr, which implies that the relative forward speed

of the glider is constant. And the orientation of the glider

cannot change instantly and the control force is the change

in the orientation of the glider. The dynamic model of the

glider is listed in the following:

ẍ = −V dθ
dt

sin θ + u̇

ÿ = V dθ
dt

cos θ + v̇
(5)

According to (3), then the dynamical glider model can be

expressed as:

ẍ = −dθ
dt

(ẏ − v) + u̇

ÿ = dθ
dt

(ẋ − u) + v̇
(6)

The gyroscopic force is given by:

Fgyr =







−
dθ

dt
(ẏ − v)

dθ

dt
(ẋ − u)






(7)

The gyroscopic force acts proportional to the relative velocity

between fluid and the glider.

A. Cost Function

For the dynamic glider model, the control force is the

Fgyr. Therefore, the cost function is shown in the following:

J = WtT + Wu

∫ T

0

‖ Fgyr ‖2 dt

The cost function can be further expressed utilizing (5) and
(7) as:

J = WtT + Wu

∫ T

0

(

(ẍ − u̇)2 + (ÿ − v̇)2
)

dt

When τ = t
T

, we obtain the cost function for the dynamic glider
after introducing the time as a state variable in the NTG formulation
[6] as:

J = WtT + Wu

∫

1

0

(

(

ẍ

T 2
− u̇

)2

+

(

ÿ

T 2
− v̇

)2
)

Tdτ
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B. Constraints

The constraints for the dynamic glider model are almost the same
as the ones in the kinematical glider model. One more constraint
related with the control force Fgyr is added since it cannot be
infinitely large. Therefore, the constraints for the glider orientation
change are arbitrarily introduced as shown in (8):

−18 (deg /s) ≤ dθ
dt

≤ 18 (deg /s) (8)

The constraint function (8) can be further expressed utilizing (3)
and (6), as:

−18 (deg /s) ≤ ÿ−v̇

ẋ−u
≤ 18 (deg /s) (9)

where

ẋ = dx/dt, ÿ = d2y/dt2 (10)

After applying the dynamic glider model (6) and 3D B-spline ocean
current models (1) in NTG, the trajectories of the dynamic glider are
plotted in Fig. 9. Fig. 10 shows the speed constraints of the glider.
The properties of the trajectories from the dynamic glider model
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Fig. 9. Trajectories of kinematical glider in 3D ocean current model
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Fig. 10. Dynamical glider speed in the new ocean current model

are listed in the following TABLE. III, 3D (Dyn) represents the
trajectories obtained from the 3D B-Spline ocean current models
and from the dynamic glider model. Tf, Time and Energe Cost
represents the same as in TABLE. I.

TABLE III

DYNAMIC GLIDER IN 3D B-SPLINE OCEAN CURRENT MODELS

3D(Dyn) Tf (hrs) Time(s) EnergyCost(cm2/s)
minE 48.00 17.87 5.642E3

minTE 42.12 17.60 6.9491E3

minT 22.60 0.95 1.1389E4

The orientation of the glider, shown in Fig. 11, is obtained by
using (11).

tan θ =
ẏ − v

ẋ − u
(11)

The figure of the orientation:
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y=1.4 deg

x=1827.0 min
y=180.0 deg

x=1821.0min
y=3.1deg

Fig. 11. Orientation of the dynamica glider in 3D ocean current model

The two sharp orientation changes shown in Fig. 11 do not
violate the constraint given in (8). Specifically, the sharp orientation
turn one on the left of green trajectory is

dθ

dt
= (1.4 − 215.9)/(64.4 − 59.6)/60

= −0.7deg/s ≥ −18deg/s (12)

The sharp turn on the right of the green trajectory is

dθ

dt
= (180.0 − 3.1)/(1827.0 − 1821.0)/60

= −0.5deg/s ≤ 18deg/s (13)

Therefore, the trajectory is satisfied with the constraints about the
glider orientation change.

VII. ANIMATION OF GLIDER AND OCEAN CURRENT

The animation of the glider and ocean current is obtained and
the results are shown in Fig. 12 and Fig. 13 for the kinematic and
dynamic glider models, respectively. These new results strengthen
our previous hypothesis [6] that LCS in the ocean reveal efficient
or near-optimal routes for glider transport. In Fig. 12 and Fig. 13,
we have superimposed instances of the min E trajectories given in
Fig. 7 and Fig. 9 with the corresponding LCS fields at that time,
respectively. These figures should be thought of as snapshots of a
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movie which shows the progression of the LCS and the progression
of the glider path together. One can see that there is indeed a good
correspondence between the optimal trajectory and the LCS.

a) t=5 b) t=15

c) t=30 d) t=45

Fig. 12. The figure shows the correspondence with the optimal trajectories
shown in Fig. 7 and an LCS. Note that the red and pink in the figures near
the LCS represents the location of the AUVs while the blue represents the
final target location.

a) t=5 b) t=15

c) t=30 d) t=48

Fig. 13. The figure shows the correspondence with the optimal trajectories
shown in Fig. 9 and an LCS. Note that the red and pink in the figures near
the LCS represents the location of the AUVs while the blue represents the
final target location.

VIII. CONCLUSION

In this paper, we have strengthened our previous hypothesis [6]
that LCS in the ocean reveal efficient or near-optimal routes for

glider transport. As an extension to our previous work [6], the
ocean current flows 3D (2D and time-varying) B-spline models
are established incorporating the time explicitly. These models are
applied in the NTG to find the optimal glider trajectories and the
results are compared with the previous 2D B-spline models. The
results show that the 3D ocean current model has produced similar
trajectories with less energy cost. Next, the dynamics of the glider
is considered in the glider model. The gyroscopic force is applied
to control the glider orientation. The results enhance our previous
hypothesis showing that the trajectory of minimizing energy is
reasonably consistent with the LCS.
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