
Learning to Dribble on a Real Robot by Success and Failure

Martin Riedmiller and Roland Hafner and Sascha Lange and Martin Lauer
Dept. of Mathematics and Informatics

Institute of Computer Science and Institute of Cognitive Science
University of Osnabrück

Abstract— Learning directly on real world systems such as
autonomous robots is a challenging task, especially if the
training signal is given only in terms of success or failure
(Reinforcement Learning). However, if successful, the controller
has the advantage of being tailored exactly to the system it
eventually has to control. Here we describe, how a neural
network based RL controller learns the challenging task of
ball dribbling directly on our Middle-Size robot. The learned
behaviour was actively used throughout the RoboCup world
championship tournament 2007 in Atlanta, where we won the
first place. This contistutes another important step within our
Brainstormers project. The goal of this project is to develop
an intelligent control architecture for a soccer playing robot,
that is able to learn more and more complex behaviours from
scratch.

I. INTRODUCTION

The idea behind the RoboCup initiative is to provide
a testbed for the development of autonomous, intelligent
systems. By playing soccer in different leagues, the ability
of real and virtual systems to act reasonably in a highly
dynamical, noisy and competitive environment is tested.

The Brainstormers’s project was founded in 1998, with
the goal to create an intelligent software architecture, that is
able to acquire more and more of its behaviours by machine
learning techniques. Especially, we focus on Reinforcement
Learning methods, where the agent has to improve its be-
haviour by only being informed about its success or failure.
Particularly important for us is the fact, that we do not only
want to demonstrate that the methods work in principle, but
they are actually applied in our competition teams [2], [1].

Starting in the simulation league, we were the first team
to learn a very strong kicking behaviour by RL methods
(applied for the first time in the competitions in 2000 and
then ever since). Other behaviours, like quickly intercepting
the ball, running to a given position, dribbling around an
opponent where learned in the following years. Many of
the learned behaviours made it into the competition team,
since they were superior to all hand-coded and hand-tuned
methods known at that time. Starting in 2002, we extended
the RL approach to the question of multi-agent cooperation.
Our complete attack was guided by a neural network, that has
learned when and where to pass, where to dribble or where
to go for an open position [6], [7]. However, in simulation
one has the big advantage, that learning experience can be
collected with virtually no limitation. Therefore, it is no
problem to do hundreds of thousands of episodes, which
where sometimes needed to achieve a highly optimizied

behaviour.
The story is different, when one deals with real robots. Of

course, one possibility is always to make a good simulator of
the robot first, and then to train the behaviours by using this
simulator. However, many effects that occur on the real robot
are difficult to model and much effort has to be put into the
development of a good simulator. Even then, simulation and
real world may differ substantially. We entered the Middle-
Size league in 2003 and our first behaviour to be learned was
to intercept the ball. In these early approaches, we actually
developped a simulator first and after several adaptations,
the behaviour learned in simulation also behaved well on
the real robot [4]. This intercept behaviour was used for
the first time in our 2006 competition team, which won the
worldchampionship in Bremen.

Dribbling is an example, where it is much more difficult
to achieve a good simulator, since the interactions between
ball and robot are very difficult to model. This is an example,
where the advantage of being able to learn on a real robot
become obvious. However, in order to do so, much more
effective RL methods are needed.

In 2005, we proposed an off-line RL method called Neural
Fitted Q Iteration (NFQ) [5]. By storing transitions and
reusing them for every update of the Q function, this method
drastically reduces the number of interactions needed with
the system to be controlled. On our soccer robot, this method
was successfully applied to learn the motor speed controllers
on the real robot directly [3]. In the work presented here, we
applied this method to the challenging task of dribbling. In
only about 20 minutes of interaction with the real robot, we
acquired enough information to learn from scratch a highly
effective neural dribbling behaviour offline.

II. TASK DESCRIPTION

Dribbling here means to keep the ball in front of the
robot, while heading to a given target. Since by the rule of
the Middle-Size league only one-third of the ball might be
covered by a dribbling device, the dribbling behaviour must
carefully control the robot such that the ball is not lost or
running out of the device when the robot changes direction.
In previous years, we used a hand-coded and hand-tuned
routine for this, but it showed drawbacks in making quite
large movements when turning and by loosing the ball from
now and then.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2207

III. THE RL CONTROLLER

a) Goal: The goal of the dribbling controller is to turn
the robot as quickly as possible to a given target direction
without loosing the ball.

b) Controller structure: Control signals influencing the
behaviour of the robot are: speed in relative x direction,
the speed in relative y direction and the rotation speed. In
our approach, we used a hybrid controller architecture: The
rotation speed is set automatically by using a simple control
law, based on the the difference between actual rotation
angle and target direction. The learning part of the controller
decides upon the correct speed in x and y direction, such that
the ball is not lost, while the robot is turning.

c) Inputs: Based on the camera input and the internal
sensors of the robots, the following state information is
computed: velocity of the robot in x and y direction, rotation
speed, heading direction relative to a given target direction.
This state information serves as input to the controller.
Additionally, the information whether the ball is within the
desired dribbling area of the robot (’robot owns ball’) or
not (’ball is lost’) is computed. This information is used to
compute the reinforcement signal for learning.

d) Actions: Actions are target speed vectors for the x
and y direction of the robot. Overall, 4 action pairs with
different combinations of x and y speeds are used.

e) Description of the learning task: The task of the
RL controller is to choose the x and y speed such that while
turning, the ball is not lost. The controller is punished by a
large negative reward, as soon as the ball left the dribbling
device. When it has successfully turned to the target direction
without loosing the ball, it is rewarded by 0 and the episode
is considered stopped. Every intermediate time step yields a
small constant negative reward. This formulation expresses
our desire for a quickly turning policy, that does not loose
the ball.

f) Learning procedure: The Neural Fitted Q Algorithm
(NFQ) requires samples of transition behaviour as inputs. In
principle, two extremes are possible to collect training data:

- collect data by always greedily exploiting the most recent
policy. After each episode, data collection is stopped, and the
neural Q function is updated by NFQ.

- collect the data completely randomly for several episodes
without updating the Q function. The Q function is only
updated at the end, using the NFQ procedure.

The first method always exploits the information contained
in the data by imroving the neural Q value function before
collecting new one. Therefore, data can be collected in a
rather ’goal-oriented’ manner. However, when the action set
becomes large, one NFQ iteration can take quite a long
time, so the human assistant, who has to survey the learning
procedure, will have a very boring job.

Therefore we decided to go for the second method here
(that’s the one used in the video): At the beginning, a
completely random behaviour was used to collect transition
samples. This is done for about 10 minutes, where the human
assistant just brings the ball back to the field, when the ball
was lost. Using this sample set, NFQ can now be applied

completely offline, without any further interaction with the
real robot. After about 100 NFQ iterations, the resulting
controllers were already very successful. They then were
used, to do another 10 minutes of data collection, now with
an already well behaving policy. Then the newly acquired
transition samples were added to the previous samples and
then again 100 NFQ offline iterations were performed. After
that, a highly effective dribbling behaviour resulted, which
was used in our 2007 world champion Middle-Size Team.
You can see examples of the reliable and highly effective
dribbling behaviour on the video (e.g. look at the space-
efficient turns).

g) Neural controller used: The neural network that
was used to learn and approximate the Q-function is a
multilayer perceptron with sigmoid activation functions. It
uses 5 input neurons (4 for the state information and 1 for
coding the action, i.e. an x/y speed-pair). The hidden layers
are two layers of 20 neurons each, and theres one output
neuron, coding the Q-value. Action selection then is done
by choosing the x-y pair, that results in the lowest Q-value
for the current state.

IV. CONCLUION

Being able to learn directly on a real system without using
an analytical model or a simulation, allows the controller to
be tailored exactly to the system that eventually has to be
controlled. We believe that this is a key feature for many
(industrial) real world applications.

The NFQ method was successfully applied to learn to
dribble a ball directly on our omni-directional soccer robot.
Dribbling is a crucial behaviour for the success in a robot
soccer game. Since our team can not kick very hard, this is
particularly true for our team. Becoming world champion in
2007 with a neural behaviour that was learned directly on
the real robot is therefore an important milestone in the RL
history of our Brainstormers team.

REFERENCES

[1] T. Gabel and M. Riedmiller. Learning a Partial Behavior for a
competitive Soccer Agent. Künstliche Intelligenz, 2:18–23, 2006.

[2] T. Gabel and M. Riedmiller. On Experiences in a Complex and Com-
petitive Gaming Domain: Reinforcement Learning Meets RoboCup. In
Proceedings of the IEEE Symposium on Computational Intelligence and
Games, Honolulu, USA, 2007.

[3] R. Hafner and M. Riedmiller. Neural Reinforcement Learning Con-
trollers for a Real Robot Application. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 07),
Rome, Italy, 2007.

[4] H. Müller, M. Lauer, R. Hafner, S. Lange, and M. Riedmiller. Making
a Robot Learn to Play Soccer Using Reward and Punishment. In
Proceedings of the German Conference on Artificial Intelligence, KI
2007, Osnabrück Germany, 2007.

[5] M. Riedmiller. Neural Fitted Q Iteration - First experiences with a
data efficient neural Reinforcement Learning Method. In Proc. of
the European Conference on Machine Learning, ECML 2005, Porto,
Portugal, October 2005.

[6] M. Riedmiller and A. Merke. Using machine learning techniques in
complex multi-agent domains. In I. Stamatescu, W. Menzel, M. Richter,
and U. Ratsch, editors, Adaptivity and Learning. Springer, 2003.

[7] D. Withopf and M. Riedmiller. Effective methods for reinforcement
learning in large multi-agent domains. it - Information Technology
Journal, 5(47):241–249, 2005.

2208

