
 

  

Video Abstract - Many approaches to the formation 
control problem for multi-robot systems have been 
proposed. In distributed consensus algorithm methods [1-3], 
and leader-follower structures [4] the robots are explicitly 
assigned positions within the desired formation. By contrast, 
artificial potential function (APF) control [5-9] generally 
does not specify a formation explicitly but rather drives the 
robots down the negative gradient of a potential field such 
that a formation emerges at a global or local minimum. The 
ad hoc emergence of the formation has several benefits, 
especially for a fleet of homogeneous vehicles: It allows for 
spontaneous adaptation of the formation to addition and 
removal of vehicles, and it allows for truly homogeneous 
control for each agent since no hierarchy or unique 
assignment in a constraint graph is needed. 

APF methods, however, are generally designed for 
and tested on robots that approximate fully holonomic 
double integrator point masses [6-8]. APF methods designed 
for nonholonomic robots have been limited to robots with 
single integrator dynamics [9] or to a single robot traveling 
at low speed [5].  This video 
presents the results of an 
effort to adopt APF methods 
for high-speed, dynamic, 
nonholonomic robots.  

The video describes 
the experimental testbed: a 
fleet of inexpensive 4-wheel 
drive skid-steered robots 
called Dynabots [10] capable 
of speeds up to 10 m/s and 
accelerations of at least 4 
m/s2. Three of the Dynabots 
are shown in Figure 1.  
These robots fuse GPS and 
inertial measurement to 
estimate their own state. 
They communicate via 
wireless 802.11b. 
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A potential field method developed in [6] is 
selected for its computational simplicity.  In the video, we 
provide a brief overview of this method, which incorporates 
radial potential functions centered at each robot and at a 
virtual leader located at the target position. The potentials 
described in [6] have been modified with a deadband c 
chosen to reduce settling time at the expense of increased 
steady state error. The APF centered at each robot is given 
by 
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where d is the distance from the robot, αh  is the controller 
gain, and h0  is the equilibrium distance. The potential 

centered at the virtual leader is 
of the same form but with 
different choices of αh  and 
h0 . The control force on each 
robot is the negative gradient 
of the sum of the potentials 
from all other robots and from 
the virtual leader. The overall 
effect of the combination of 
potentials is to maintain 
separation between robots 
while driving the fleet toward 
the virtual leader. The control 
force Fp  from the APF is 
mapped to the Dynabot’s left 
and right side wheel torque 
inputs, τ r  and τ l , 
respectively, by 
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where φe  is the difference between the direction of the 
commanded force and the robot’s current bearing, v is 
velocity, Kφ  and K  are proportional gains and C and Cφ  
are derivative gains.  

A field test with three Dynabots demonstrates that 
the mapping above successfully brings the fleet of robots 
into position around a goal location, marked in the video by 
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Figure 1 A fleet of three Dynabots 
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a flag.  However significant oscillation near the equilibrium 
is observed, which degrades the system settling time. At 
issue is selecting an appropriate system damping: a small 
damping coefficient C results in high top speeds away from 
the virtual leader but leads to oscillation near the 
equilibrium, while a large C suppresses oscillation at the 
expense of lower top speed initially.  A nonlinear distant-
dependent damping term is introduced in order to address 
this issue: 
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which provides a minimum damping of Cα  when the robot 
is far from the virtual leader and elevated damping as the 
robot nears its target. Figure 2 shows how nonlinear 
damping improves system performance by reducing settling 
time compared to the system with constant damping 
coefficient.  When the constant damping coefficient is 
selected to match the nonlinear damping term in the far-
field, the system suffers from reduced settling time due to 
oscillations about the equilibrium. In this case, the distance-
dependent damping term provides a 46% reduction in 2% 
settling time.  When the constant damping coefficient is 
selected to match the nonlinear damping term at the 
equilibrium, the initial performance is sluggish. In this case, 
the nonlinear damping provides a 30% reduction in 2% 
settling time. The video demonstrates the application of the 
distance-dependent damping with a single robot trial in 
which the robot reaches 6 m/s but still arrives at its final 
position and stops with a minimum of oscillation. 

 
Figure 2  Comparison of transient response of a single robot 

with constant damping and distance-dependent damping 
coefficients 
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