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Abstract—Arctic regions present one of the harshest environ-
ments on earth for people or mobile robots, yet many important
scientific studies, particularly those involving climate change,
require measurements from these areas. For the successful
deployment of mobile sensors in the arctic, a reliable, fault
tolerant, low-cost method of navigating must be developed.
One aspect of an autonomous navigation system must be an
assessment of the local terrain, including the slope of nearby
regions. Presented here is a method of estimating the slope of
the terrain in the robot’s coordinate frame using only a single
camera, which has been applied to both simulated arctic terrain
and real images. The slope estimates are then converted into the
global coordinate frame using information from a roll sensor,
used as an input to a fuzzy logic navigation scheme, and tested
in a simulated arctic environment.

I. INTRODUCTION

Recently, it has been discovered that the giant ice sheets

covering Greenland and Antarctica have been shrinking at an

accelerated rate [6]. While it is believed that these regions

hold important information related to global climate change,

there is still insufficient data available to accurately predict

the future behavior of these ice sheets. Satellites have been

able to map the ice sheet elevations with increasing accuracy,

but data about general weather conditions (i.e. wind speed,

barometric pressure, etc.) must be measured at the surface.

The Greenland Climate Network [14] is a set of fixed

weather stations scattered throughout Greenland responsible

for collecting this kind of data automatically. However, there

are only 18 such stations on an ice sheet measuring over

650,000 sq mi. An analogous network exists in Antarctica

with equally sparse coverage [13].

In order to obtain a denser set of measurements, human

expeditions must be sent to these remote and dangerous

areas. Alternatively, a group of autonomous robotic rovers

could be deployed to these same locations, mitigating the

cost, effort, and danger of human presence. For this to be a

viable solution, a method for navigating arctic terrain must

be developed. This paper presents a method of estimating the

slope of the upcoming terrain, with an emphasis on the use

of simple, inexpensive sensors, which may allow increased

autonomy of future arctic rovers. Section II describes various

elements that could be encountered in the arctic regions

of Greenland or Antarctica, while Section III outlines the

current state-of-the-art in autonomous arctic vehicles. Section

IV describes a method of estimating the slope of the terrain

in a local coordinate frame from a single image, providing

examples from an analogous terrain from a glacial region of

Colorado. Section V discusses a basic navigational scheme

implemented with fuzzy logic control designed to keep the

rover on flat ground. Section VI describes the simulation

environment used to test the navigation control scheme and

discusses the results of those simulations. Finally, conclu-

sions are presented in Section VII.

II. TERRAIN DESCRIPTION

The Greenland and Antarctica land masses are almost

entirely covered by huge ice sheets. These ice sheets flow

over time, behaving similarly to a river, albeit in slow motion

[8]. The central, inland regions are a stable, nearly featureless

expanse of compressed snow and ice. A topological survey

of Greenland done via satellite [3] shows that in the central

region, near a science outpost called Summit Camp, the

elevation changes as little as 10 meters over a 20 kilometer

expanse. This can also be seen in a recent NASA ICESat

survey of Greenland shown in fig. 1 [16]. However, despite

its flatness, the snow surface is often sculpted by the high

winds present, forming undulating features parallel to the

wind direction known as sastrugi. The sastrugi can vary in

height from only a few centimeters to over a meter.

As the ice flows toward the edges of Greenland and into

the sea, forces build due to differential velocities of different

ice sections. These forces can cause nearly vertical fractures

in the ice known as crevasses. Crevasses can be as deep

as 30 meters and are often covered with snow, making

their detection all the more difficult. This snow, referred

to as a snow bridge, can be sufficiently strong as to allow

passage over the crevasse. Additionally, towards the coast

of Greenland, the ice sheet is thin enough that some of the

underlying mountain range is visible above the ice surface.

The jagged mountain peaks protruding through the ice are

called nunataks. Also, towards the outer edge of the ice sheet,

the surface is no longer uniform and flat, as seen in the

ICESat images in fig. 1(a) and 1(c). These regions can have

significant local variability of terrain elevation.
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(a) (b) (c)

Fig. 1. (a) A high resolution elevation map of Greenland from ICESat [16], (b) an enlarged view of the nearly featureless area in the center of the ice
sheet near Summit Camp, and (c) an enlarged view of a north-western section of the ice sheet near Qaanaaq illustrating an area of more rugged terrain.

III. BACKGROUND ON ARCTIC RESEARCH

While the arctic possesses significant information of sci-

entific value, surprisingly little research is devoted to cre-

ating mobile, autonomous robots to collect this data. The

CoolRobot [12] developed by Dartmouth College is designed

to be a mobile sensor station for use on the Antarctic

plateau. This region is essentially featureless, lacking any

known obstacles or elevation changes that could impede the

robot’s motion. Consequently, the navigation system consists

solely of a GPS unit and a simple waypoint following

algorithm. It has been successfully tested at an analogous

site in Greenland, where it operated autonomously for up to

eight hours [9].

The Nomad project [2] at Carnegie Melon University was

designed for autonomous meteorite location in the Antarctic

moraines. The Elephant Moraine, where the Nomad was

deployed, is essentially a sheet of blue ice littered with

rocks ranging in size from pebbles to large boulders. Due

to the search and classify nature of the Nomad’s mission, it

naturally requires greater sensing capability, and has been

outfitted with a high resolution steerable camera, stereo

cameras, a scanning laser range finder, and a pitch-roll-yaw

sensor, as well as a scientific instrumentation package. Thus,

the navigational system of the Nomad is more complex than

that of the CoolRobot, consisting of a GPS waypoint system,

an obstacle avoidance system based on the laser range

finder data, a potential meteorite targeting system based

on camera images, and a management system to gracefully

switch between the different modes. However, due to the

known flatness of the testing and deployment environment,

little in way of terrain assessment is required for successful

navigation. It has been deployed several times to Antarctica,

during which it has autonomously found and identified 5

meteorites.

The University of Kansas is developing an autonomous

snowmobile-based rover for taking ice sheet measurements

as part of the PRISM project [5]. Like the Nomad, it is

equipped with a camera system as well as a laser range

finder for obstacle detection and avoidance. However, unlike

the Nomad or CoolRobot, the use of a snowmobile chassis

allows for a much wider range of navigable terrain. However,

during operation, the PRISM rover will follow, or perform

predefined maneuvers, behind a manned unit. Consequently,

obstacle avoidance is sufficient in this case, relying on the

human operator to set the lead course through acceptable

regions. Similarly, the ENEA R.A.S. project [4] has the

goal of creating an automated convoy of snowcats, large

tracked vehicles, in which the lead vehicle is driven by a

human. Again, the snowcats have the capability of traversing

significant inclines and can be used in a wide range of arctic

terrain, but the determination of acceptable terrain is left

solely to the lead human driver.

IV. SLOPE EXTRACTION

Currently, most autonomous driving research is based

upon laser range finders or stereo cameras which return

quantitative depth information. In contrast, humans navi-

gate through an enormous variety of cluttered environments

without explicitly using any such depth data. Instead, we

rely on qualitative information, such as “Those mountains

are far away”, or “That rock is close.” Visual cues in our

environment, such as relative height and position relative

to the horizon, are used to help determine the nature and

distance of objects in our field of view. A method of

estimating the terrain slope of an arctic scene is outlined

below. Similar to human perception, this method relies on

visual cues from a single camera to make its estimates. All

image processing was done in C++ and utilized the OpenCV

libraries [1].

A. Region Extraction

The first step is to extract the region of the image to be

analyzed. Such things as distant mountains, clouds, trees,
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Fig. 2. (a) A sample arctic image from Colorado, (b) the histogram of the sample image with the adaptive thresholds indicated, and (c) the resulting
binary mask. (d) The results of a bandpass filter and Canny edge detector on the sample image, and (e) the final slope estimates superimposed on the
original image.

and peripheral views of the rover itself can interfere with

the estimation process. A method of histogram thresholding,

suggested in [4], has been adopted here. It is assumed that

the majority of the image is filled with the snowy region.

Consequently, in the histogram of the image, the largest peak

should be associated with the grayscale values of this region.

Thus, an adaptive threshold based on the boundaries of this

peak can effectively separate the region of interest from

unwanted objects and areas. To locate the peak boundaries,

the grayscale image histogram is first computed and the

maximum value located. Then, the histogram is searched in

both directions for local minima. Criteria on the number of

points between consecutive local minima is used to make

the process more robust to noise. The two grayscale values

found are used to threshold the image, creating a binary

mask. The mask is then eroded by several pixels to ensure the

edges of the unwanted features are concealed by the mask.

Fig. 2 shows a representative image from a glacial region

in Colorado, followed by its histogram with the threshold

limits, and the resulting mask.

B. Texture Filtering

A human is able to quickly and accurately estimate the

slope of the environment, such as that shown in fig. 2(a).

From this single image, without any depth information, one

can successfully estimate slope and loosely define distances

from the camera (such as “close” or “far”). One of the keys

in our ability to estimate the slope comes from visual cues

in the form of light and dark streaks in the snow that are

aligned with the perceived slope. These features are of the

greatest interest in the slope estimation process.

The dark and light striations are clearly visible and con-

siderably larger in scale than the snow texture. However,

these striations are far from uniform in the region of interest.

Clearly then, these features exist in a mid-band of spatial

frequency, and can be effectively isolated using a simple

bandpass filter. Filters based on Gaussian kernels are gen-

erally less likely to produce unwanted ringing effects. Ad-

ditionally, since Gaussian kernels are linearly separable, the

filter can be applied in a computationally efficient manner.

Experimentation with the Gaussian standard deviation, σ, of

the low pass and high pass filter components has shown that

a wide range of values have acceptable performance, but the

values are dependent on the image size. Using a σ value

for the high pass filter of twice that of the low pass filter

generally produces good results. One final step in preparing

the image for slope estimation is to convert it into a binary

image. This is done by applying a Canny edge detector to

the filtered image. The image after these processing steps

can be seen in fig. 2(d).

C. Hough Transform

In the final step, the slope of the extracted features is

estimated using a Hough transform, which transforms each

pixel in the image space into a sinusoidal line in the rho-

theta parameter space. As each image pixel is transformed,

the sinusoids in the parameter domain will tend to intersect

if the image pixels are in a straight line. The number of

sinusoids that intersect in a particular location is an indication

of the strength or confidence of the line. Thus, the rho-theta

pair corresponding to the maximum confidence values in the

parameter space can be selected as being representative of

that region. When the pixel is transformed into the parameter

space, it loses any sense of its location in the original
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image. It is therefore common for many local maxima to

occur in a very small neighborhood. This results in having

slope data only for a small area in the total region of

interest. To overcome this problem, the image is divided

into smaller subimages, and the Hough transform is applied

separately to each subimage. In this way, the extracted slope

can be applied to a specific area of the original image,

and slope data will exist for all areas in the image. In

each subarea, only one slope is desired, lending itself to

the Fast Hough Transform algorithm [10] which employs

integer shifts instead of floating point operations, reducing

the processing time considerably. The final image with the

detected slopes is shown in fig. 2(e).

D. Results

The slope extraction process was then applied to a set

of images taken in a glacial region in Colorado. Fig. 3(a)

shows a snowmobile in the foreground of the image. The

estimation process ignored the area around the snowmobile

and returned correct results for the surrounding regions,

illustrating that the masking process can successfully remove

unwanted objects from the analysis, particularly man-made

objects. Fig, 3(d), however, illustrates the inability of this

process to remove unwanted regions, such as gray clouds,

which exist in the same color range as the snow, thus

creating fictitious slope estimates. The estimation process

does seem to be relatively immune to light intensities, as

shown in fig. 3(b) and 3(c). These images show the same

scene under different lighting conditions, with the second

showing significantly more reflected light evidenced by the

shiny appearance of the snow. Despite the different lighting

conditions, the slope estimates seem stable and accurate. The

masking and estimation process are even partially successful

in the region of sparse grass shown in fig. 3(d). However, the

slope estimates generated in the grassy areas are generally

less stable than those of uninterrupted snow. In fig. 3(e) a

set of snowmobile tracks is present which exhibit similar

properties to the surface striations, and are consequently

detected by the slope estimate. A method to detect the

presence of tracks and mask them from the slope estimate

would be beneficial. Finally, fig. 3(f) shows an image with a

lower than normal amount of texture or prominent striations.

This process is not able to produce estimates for the full

image under these conditions, providing information only

where a certain level of confidence is met.

V. NAVIGATION CONTROL SCHEME

Since no measurement of the terrain is being taken, as is

done with a laser range finder or a stereo camera system,

the output of this process is, at best, an estimate of the

terrain. Thus, any navigation or control scheme based on

these estimates must be able to handle the inherent noise and

uncertainty present in the results. Additionally, attempting to

navigate through natural terrain using only vision as an input

is something that humans have developed heuristically [7]. A

control scheme that could capture this inherently nonlinear

heuristic knowledge would be advantageous. Fuzzy logic

control provides just such features [11], as well as models

an input in terms of a linguistic set, such as “near” and

“far”, which parallels how humans think in terms of their

environment.

The first step is to convert the slope estimates into fuzzy

linguistic sets. For the slope estimates, the following five

sets are used to classify each input: Positive Steep, Positive

Sloped, Flat, Negative Sloped, and Negative Steep. Also,

when the slope estimates were created, the original image

was divided into an 8x8 grid, producing up to 64 slope

values. In an attempt to reduce the number of inputs to a

(a) (b) (c)

(d) (e) (f)

Fig. 3. Slope estimates performed on a variety of images from a glacial region in Colorado.
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manageable number, a 2x2 square of available slopes were

averaged together reducing the total number to 16. Further,

the uppermost row of data generally corresponds to the sky,

clouds, or distant mountains. This row of data is ignored

by the control system, and, in practice, not calculated at all,

bringing the final input count to 12.

A fuzzy rule base was generated in terms of IF-THEN

statements to control the robot’s direction. A human expert

was used to generate a set of simple rules with the intention

of keeping the robot driving on level ground. Due to sym-

metry, the rules that are used to turn right mirror the rules

to turn left. A total of seven rules, and their corresponding

mirrors, were implemented as part of the fuzzy rule base.

VI. SIMULATION

To validate the fuzzy logic navigational control sys-

tem, a simulated arctic terrain was produced using the

Player/Stage/Gazebo project [15], an open source, physics

based, 3-D simulation and control package. A series of el-

liptical hills were placed in the terrain, requiring the robot to

make many course corrections in both directions to maintain

a level orientation. A topographical map of the simulated

terrain is shown in fig. 4(a). A synthetic texture file was then

generated, mimicking the dark and light striations present in

the actual scenes, and wrapped around the terrain. Fig. 4(b)

and 4(c) show the rover in the simulated environment and

the augmented view from the rover’s camera respectively.

A. Navigational Trials

As long as the rover remains on level ground, the camera’s

reference frame and global frame will have the same orien-

tation. However, if any body roll is introduced, the values

defined as Flat are offset from the global reference frame.

As single chip multi-axis inclinometers are inexpensive and

readily available, measuring this value seems reasonable.

A simulated roll-pitch-yaw sensor was added to the rover,

allowing the slope estimates to be transformed back into the

global reference frame.

Multiple tests were conducted with the rover’s starting

position selected at various locations, summarized in Table

I. The paths the rover traversed during select trials are

superimposed on the elevation map in fig. 4(a). When the

rover is initialized on level ground, as was done in trials 1,

2, 3, and 6, the resulting paths remain on level ground and

TABLE I

EXPERIMENT DESCRIPTION

Experiment Description

1 entrance to the course, starting on level ground

2 entrance to the course, starting on level ground

3 entrance to the course, starting on level ground

4 middle of the course, starting on top of hill

5 middle of the course, surrounded by hills

6 end of the course, starting on level ground

even converge after a short time, demonstrating the robust

nature of the control laws. When the rover began on top of a

hill, as shown in trial 4, the rover initially turned away from

the edge, preferring the flatter section of hill’s apex. Once

the rover entered the steep, downhill section, the rover turned

directly into the slope, reducing the amount of body roll

experienced. Immediately after returning to the level area,

the rover’s heading was sufficiently different from those of

the other trials, which were required to navigate around the

hill. This was sufficient to cause the path around the next hill

to deviated from the standard path of trials 1-3. However,

after this turn, the rover rejoins the standard route. Finally,

when the rover was initialized in an area surrounded by hills,

as was done in trial 5, the rover was able to successfully

navigate out and return to the standard route. During the

U-turn maneuver required, the rover drives on the shallow

outskirts of one of the hills. Due to the minimal slope in

this region, the controller lacks sufficient incentive to correct

the path immediately. However, as the slope increases, the

controller makes an additional path correction, returning it

to the standard route.

B. Numerical Results

The slope estimates of the real arctic images presented

in Section IV could only be evaluated qualitatively, as the

ground truth information could not be obtained. Within the

simulated environment, however, ground truth data was gen-

erated, which allowed for quantitative evaluation. Although,

it should be noted that as this is a purely visual technique,

the slope estimates are sensitive to the level of realism

provided by the simulation. Consequently, the following

analysis should be viewed only as an indication of potential

performance.

(a) (b) (c)

Fig. 4. (a) A topological map of the simulated terrain with the rover paths superimposed, (b) an illustration of the rover situated in the simulated
environment, and (c) the rover’s view of the environment with slope estimates.
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Fig. 5. A plot of the visual slope estimates versus the ground truth data.

The slope estimates generated by this method are two

dimensional in nature. However, the actual landscape is a

three dimensional entity which can exhibit different slope

characteristics in each of those dimensions. When the rover’s

camera views the landscape, the three dimensional terrain is

projected onto a two dimensional plane perpendicular to the

camera’s line of sight. In order to generate ground truth for

the simulation that would be comparable, a similar approach

was followed. For each slope estimate, a ray was projected

from the camera to a terrain patch at the center of the slope

estimate line. Once the intersection of this ray and the terrain

is determined, the elevation of the terrain on either side of

the intersection point is measured. The ground truth slope is

then calculated from the two measured elevations.

With the data collection method in place, the rover was

driven manually through a section of the simulated terrain

while the generated visual slope estimates and ground truth

data were logged approximately once per second. Fig. 5

shows a comparison between the ground truth data and

the visual slope estimates obtained during a 60 second

traverse. As can be seen, the visual slope estimates are highly

correlated with the ground truth data, with a correlation

factor above 0.9. The best fit line has a slope of 0.86,

indicating that this method tends to mildly underestimate the

larger slopes. Over the data set presented, the error between

the estimate and ground truth value exhibits a near-zero

mean, with a standard deviation of less than 3.0 degrees. The

estimates therefore provide a good indication of the terrain

slope, which is supported by the success of the navigation

trials mentioned above.

VII. CONCLUSIONS

The method outlined in this paper for terrain slope ex-

traction has been shown to be effective both on images

of real terrain, and as the input to a real-time fuzzy logic

navigational control scheme. The fuzzy logic framework

provides adequate performance even with the inherent es-

timation error, as well as provides a convenient method

for translating heuristic human knowledge into control laws.

The feature masking approach, originally presented in [4], is

particularly effective at removing man-made objects from the

analysis area, but sections of unwanted natural objects, such

as clouds, often remain. Also, tracks left in the snow, which

is an inevitable condition for arctic rovers, are spuriously

reported as part of the terrain slope. A method to locate

snow tracks and remove them from the processing region

could greatly improve the effectiveness of the algorithm as

a tool for field robotics.
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