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Abstract— Traditionally, path planning for field robotic sys-
tems is performed in Cartesian space: sensor readings are
transformed into terrain costs in a (Cartesian) costmap, and
a path to the goal is planned in that map. In this paper, we
propose a new approach: planning a path for the robot in the
image-space of an on-board camera. We apply a learned color-
to-cost mapping to transform a raw image into a cost-image,
which then undergoes a pseudo-configuration-space transform.
We search in the resulting cost-image for a path to the projected
goal point in the image. One benefit of our approach is the
ability to react to obstacles at ranges well beyond our 3D sensor
range — independent testing has confirmed our system has
effectively reacted to obstacles at a range of 93 m while our
stereo sensor provides reliable data only up to 5 m away. We
describe the details of our technique and the results from testing
under the DARPA LAGR and UPI programs.

I. INTRODUCTION

Autonomous robots operating in outdoor environments
have traditionally done path planning in Cartesian maps.
There are good reasons for this: it is simplest to fuse data
from multiple sensors in a Cartesian map, and it is easiest
to plan a shortest path to the goal in a Cartesian map.

However, the resulting paths are good only to the extent
that the Cartesian map contains an accurate representation of
the world. Field robotic systems using Cartesian maps have
two weaknesses in this respect.

The first weakness is that obstacles can be aliased when
transformed from the sensor’s space to Cartesian space: solid
regions may project with gaps, or thin corridors may vanish
completely. For example, Figure 2 shows a scene in which a
continuous “wall” of vegetation becomes discontinuous when
projected into a Cartesian map.

The second weakness is the limited range of common
commercially available range sensors. The SICK LADAR
units used on many robots provide reliable obstacle informa-
tion only up to approximately 25 m. (We consider obstacle
detection to be reliable when it provides stable readings with
sufficient range and size accuracy to commit the obstacle to
a Cartesian map.) The PointGray Bumblebee stereo units we
are using provide reliable obstacle detection to a range of
approximately 5 m. Without long-distance perception, robots
in natural outdoor terrain tend to be myopic, which leads to
inefficient navigation.

We propose to address both of these weaknesses by
planning a path for the robot in the image-space of an on-
board camera. Our approach is as follows:
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Fig. 1. Image from the DARPA LAGR Test 7 course (left) and the result
from our image-based planner (right).

Fig. 2. A scene containing a “wall” of vegetation (left) that gets projected
into the Cartesian cost map (right) as a discontinuous row of obstacles (red
pixels). The robot is located at the end of the green path facing the lower
right corner of the cost map.

• Take a raw image from the camera and convert it into
a cost-image, where a pixel value represents the terrain
cost of the patch of the world projected onto that pixel.

• Apply a pseudo-configuration-space transform to the
cost image to account for the size of the robot.

• Project the goal point into the image-space (unless the
goal can be visually identified in the image).

• Plan a pixel-to-pixel path from a pixel at the bottom
of the image (a point right in front of the robot) to the
goal pixel

By planning directly in the image-space, we avoid the
aliasing issues from projecting obstacles into a Cartesian
map. By evaluating terrain cost directly in the image, we
can recognize and react to obstacles far beyond the maximum
range of our range sensors.

As an example, consider the scene shown in Figure 1.
A short fence creates part of a cul-de-sac that lies on
the straight-line path to the goal. Without long-distance
perception, the robot would drive straight towards the goal,
entering the cul-de-sac. (This cul-de-sac is deep enough that
our stereo vision cannot detect the end until it drives several
meters into the cul-de-sac.) However, from the robot’s current
position, it is clear from the image that the grassy field
extends around to the right, beyond the thicket of shrubs
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at the end of the cul-de-sac.
There are some drawbacks to image-based planning which

make it unsuitable as the sole path planner for a robot:
• The goal point may not project into the image — while

we can plan a path to the nearest pixel on the boundary
of the image, this is only useful if the goal is not too
far beyond the edge of the image.

• The image-based planner will not always return a good
path — if there is not a reasonably clear path most of
the way to the goal, the resulting path is generally not
useful. (Fortunately, we can use the cost of the path to
detect this condition.)

• The resulting path may not be entirely drivable due to
the lack of three-dimensional information.

Consequently, we use the image-based planner as a sec-
ondary planner in our system. When the image-based planner
finds a good path, it can supersede the normal Cartesian
planner operation. We pick a point up to 7 m from the robot
along the image-based path and use it as a subgoal for the
Cartesian planner, but one could also simply choose to drive
the first several meters of the image-based path.

We have found our image-based planner to be a valuable
addition to our system. Independent testing through the
DARPA LAGR program1 has shown that our system can
perceive and react to obstacles at a range of 93 m.

The rest of the paper is organized as follows. Section II
describes the details of our approach, Section III relates the
results of independent testing of our implementation, and
Section IV examines some of the limitations and properties
of image-based planning.

A. Related work

Many researchers have used visual images to do some sort
of path planning or navigation without Cartesian maps.

In the area of visual servoing, image-based planning can be
used to servo an “eye-in-hand” system: features from the ma-
nipulator’s current view are compared with the corresponding
features in a goal image, and a path for those features is
computed in the image space. Zhang and Ostrowski [2] have
adapted this approach to navigation for a mobile robot by
posing the problem as an optimal control problem that is
solved numerically. Rivlin, Shimshoni, and Smolyar [3] take
a slightly different approach: they repeatedly estimate the
epipolar geometry between the robot’s current image and a
target image and use the estimated translation direction and
rotation to drive the robot.

A related approach to Cartesian path planning has been
demonstrated by Howard et al. [4]. Their path planner
operates on a “polar perspective map” which represents the
world using a grid in polar coordinates centered on the
robot’s location with grid cells that become increasingly
larger along the radial axis. This polar representation is
similar to image-based planning in that terrain further from
the robot is represented at a coarser resolution than closer
terrain.

1For an overview of the LAGR program, see Jackel et al. [1].

Fig. 3. Example images from the on-board camera (left) and the resulting
cost-images (right) using our learned color-to-cost mapping.

II. APPROACH

A. Cost-image generation

There are a variety of methods that could be applied to
generate a cost-image from a single monocular image from
an on-board camera: texture classification, object/terrain
recognition, image segmentation, etc. The key idea is to
accurately label pixels or regions in the image with terrain
cost.

We perform this conversion using a learned color-to-cost
mapping algorithm [5], [6] that we developed early in the
LAGR program. The basic idea behind this technique is
that the association between colors and terrain cost in the
near-range are an excellent predictor of terrain costs in the
distance, at least over short time periods.

We use a neural net classifier to take stereo data (within
5 m of the robot) and determine terrain costs. Our learning
element uses the nearby terrain (costs and colors) to produce
a color-to-cost mapping which we can then apply to a
monocular image to predict terrain costs for terrain far
beyond the range of useful stereo data. This mapping can
be learned in as few as five or ten seconds, which allows the
system to rapidly adapt to new terrain or lighting conditions.

As a simple example, the system might learn that one
particular shade of green corresponds to traversable grass
while another corresponds to a nontraversable bush. Changes
in environment and lighting condition may later make this
association misleading or useless, but we have found that
such associations are impressively accurate over the scale
of a few minutes or a few hundred meters in a variety of
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Fig. 4. A raw image (left images), the resulting cost-image (upper right),
and the pseudo-configuration-space transformed cost-image (lower right).
Note that the transformed cost-image has been rotated to compensate for
camera roll.

different environments. Figure 3 shows several examples of
our learned color-to-cost mapping.

B. Pseudo-configuration-space transform

As in a traditional Cartesian-space path planner, it is useful
to expand the cost-image to compensate for the size of the
robot so that we can treat the robot as a point (or single
pixel) when planning a path in the image.

We cannot perform a true configuration space transform
since we are missing the three-dimensional information re-
quired to know the cost of the terrain the robot would actually
cover when placed at a given point in the image. However,
the image-based planner should only return a path if it finds a
low-cost path, so we are most interested in paths that make a
lot of progress towards the goal over low-cost terrain. These
paths will generally drive monotonically towards the goal,
curving only to drive around obstacles.

Therefore, the “pseudo-configuration-space transform” we
use will expand terrain costs only horizontally. Our transform
will replace the terrain cost of each pixel with the maximum
terrain cost within a half robot width to the left or right in
that row. (We assume any camera roll has been corrected by
rotating the image, so that rows in the image are parallel to
the horizon.)

Of course, in the image-space, the robot width is not
constant: it is much larger in the foreground than it is
in the background. We use a simple approximation to the
ground plane to determine the appropriate expansion width
for each row. However, we could have used the available
stereo information to determine this width. Fortunately, only
a very rough estimate of range is needed, especially for
obstacles that are far away. As the distance increases to

infinity, in fact, the robot width becomes negligibly small
in image-space and can be safely ignored.

Figure 4 shows an example of the pseudo-configuration-
space transform. Note that obstacles near the bottom of the
image are in fact expanded more than obstacles near the top
of the image.

C. Goal-point projection

Since we are planning in image-space, we must somehow
identify the goal pixel in the image. If the goal is identified
with a visual marker, this problem might be easily solved in
image-space as well. For our system, however, the goal is
specified by 3D GPS coordinates.

Since our vehicle is equipped with enough sensors to
obtain reasonably accurate 6-DOF vehicle pose, the goal can
be projected into the image without making assumptions
about the shape of the actual terrain in front of it (i.e., without
fitting a ground plane to the nearby terrain). However, errors
in the vehicle pose will cause errors in the projected image-
space goal; we discuss this effect in Section IV-A.

Of course, the goal may not project to a pixel in the image
at all. We have found, however, that our system can produce
useful paths when the goal is off the edge of the image by
up to 5–15 degrees. For these cases, we take the goal pixel
to be the pixel on the boundary of the image closest to the
projected goal point in image-space.

D. Path planning

Planning the path is relatively straightforward: we perform
an A* search on the transformed cost-image to find a pixel-
to-pixel path to goal pixel. There are a number of details,
however, worth mentioning.

We identify a start pixel by taking a point in front of
the robot and projecting it into the image-space. Since our
camera is fixed with respect to the robot, the start pixel is
always the same, unlike the goal pixel which is generally
different for each run of the image-based planner. We assume
that the variation in terrain right in front of the robot (where
the start point is located) is negligible for purposes of
identifying the start pixel.

The cost of a move to a pixel (in the transformed cost-
image) is computed based on its terrain cost. For our imple-
mentation, terrain costs are represented with 8-bit unsigned
values: 0 to 89 are all considered (equally) low-cost terrain,
and values 90 to 255 are represent a continuum of moderate
to high cost. The cost used for the A* search is a function
of the (raw) terrain cost c:

cost(c) =
{

0.2 if c < 90
0.4 c4

904 otherwise
(1)

Though somewhat ad-hoc, this is a simple approximation
to the cost function used by the original Cartesian planner
supplied with the robot; the terrain costs returned by our
perception system are attuned to this cost function.

The heuristic function for A* simply takes the straight
line distance (in pixels) multiplied by 0.2. Since 0.2 is
the minimum cost for a pixel-to-pixel move, this heuristic
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Fig. 5. Illustration of crossing a horizontal edge in a cost-image (red path)
that runs into an obstacle and crossing a vertical edge (green path) that goes
behind an obstacle to the goal (blue).

Fig. 6. Example of a low-cost path (green) in the top images and a high-
cost path (red) in the bottom images. Note that although paths in the image
are planned pixel-to-pixel, we have drawn them using straight lines between
sampled points (large dots) from the image-based path for greater clarity.

is admissible, so A* will find the optimal path on the
transformed image.

We restrict the directions for moving from pixel to pixel:
only horizontal and upwards moves (including the two
upwards diagonal moves) are permitted. This is a useful
heuristic to focus the search on paths that make monotonic
progress towards the goal, and it also decreases the run-
time of the planner; however, an equally valid design choice
might be allow any 8-connected move in the transformed
cost-image.

Another useful heuristic we have added to the image-based
planner is to reduce the cost of horizontal moves in the goal
row. The cost of these moves is:

costgoal-row(c) = min{cost(c), 0.4} (2)

The design of this heuristic was to encourage paths to move
upwards in the image first and then moving horizontally
towards the goal. Our intuition behind this is that crossing
a vertical edge from low- to high-cost corresponds to a path
that goes behind an obstacle, whereas a horizontal low- to
high-cost edge tends to be a path that runs into an obstacle
on the ground. This heuristic works best when the goal is
occluded by a high-cost obstacle. Figure 5 shows an example
illustration.

E. Using image-based planned paths

As mentioned earlier, the image-based planner is a sec-
ondary path planner in our system. Our scheme for using
image-based paths was carefully designed using the follow-
ing principles:

• Image-based paths provide valuable advice, but they
may not be driveable, so we will rely on the Carte-
sian planner (and our stereo-based local perception) to
produce safe paths for the robot to drive.

• Image-based paths provide the most information in
the near-range, i.e., which direction to drive to avoid
obstacles in the distance, so an image-based path should
only be used for a short period.

• For a good image-based path, we should be able to
produce a new image-based path from a point further
along the path.2

Details of our approach are described below.
First of all, the Cartesian planner will only accept low-cost

paths from the image-based planner. This is judged using a
threshold on the total cost of the image-based path. Figure 6
shows examples of a low-cost and a high-cost path.

The Cartesian planner takes an accepted path (which has
been projected onto a ground plane calculated from local
stereo data) and finds a point that is either one-third of the
way to the goal or 7 m from the robot, whichever is closer.
This is used as a temporary goal by the Cartesian planner.

This image-based planning goal will be active for up to
10 seconds or until the robot makes 4 meters of progress
towards the real goal or towards the image-based planning
goal. If either of these limits is exceeded, planner will revert
to the real goal. Usually, a new image-based plan will be
accepted before this happens, causing a new image-based
planning goal to be used, and the limits to be reset. In
order to avoid cyclic behavior,3 however, we require that
the robot make at least 1 meter of progress towards the real
goal before another image-based plan is accepted (even if
the Cartesian planner has reverted to the real goal in the
meantime). Finally, no image-based plan will be accepted if
the robot is within 10 m of the (real) goal.

The typical behavior we observe is that the image-based
planning goal appears to repeatedly jump ahead, as one
image-based planning goal is replaced by another, while the
robot keeps making progress toward the goal.

III. RESULTS

A. Results from LAGR

Our system has been independently tested through the
DARPA LAGR program. Figure 7 shows an example from
Test 22 in which our image-based planner returns a path that
avoids an obstacle (several 4 by 8 foot sheets of plywood
painted blue) from a range of 93 m.

2See Section IV-B for discussion of the effects of this principle.
3For example, following an image-based path into a cul-de-sac, leaving

it after reverting to the real goal, and then accepting a similar image-based
path leading back into the cul-de-sac.
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Fig. 7. Example from LAGR Test 22 where the path avoids an obstacle
at a distance of 93 m.

We have also ported this algorithm to the DARPA UPI
program which uses the Crusher vehicle. Figure 8 shows an
image-based plan on that platform.

B. Video attachment

The video attachment to this paper contains three short
segments.

• The first segment shows how our color-to-cost mapping
is learned in real-time from local stereo data.

• The last two segments show our image-based planner
running on log files from LAGR tests. Please note that
the robot was not influenced by our image-based planner
since it was not running on the robot at the time. The
raw image is shown in the left column, the cost-image
in the upper right, and the transformed cost-image in the
lower left. The image-based path is shown in the bottom
row: green paths are low-cost, yellow are moderate-cost,
and red are high-cost.

IV. DISCUSSION

A. Accuracy of goal point projection

One of the most common failure modes for image-based
planning is the difficulty of accurately identifying the goal
pixel in image-space. As mentioned earlier, if the vehicle’s
6D pose and the goal point’s 3D position are both known
precisely, the goal can be projected into the image without
error. However, small errors in vehicle pose can result in
mis-projections of the goal point, which can have dramatic
effects on the image-based plan.

Figure 9 shows an example from a test course for the
DARPA LAGR program. The left image correctly shows the
goal point behind the trees, and the image-based planner
plans around the trees. In the right image, a small error in
vehicle pitch cause the goal to appear in front of the trees,
resulting in an image-based plan that leads straight ahead.

One related complication is that the elevation values from
GPS are not as accurate as the latitude and longitude values,

Fig. 8. An example of an image-based plan on a dataset from the DARPA
UPI program’s Crusher vehicle.

Fig. 9. Example of the effect of pitch error on goal point projection and
the image-based planned path.

and elevation errors also have a large effect on projected
goal point position. One attempt we have made to solve
this problem is to assume that the goal point is at the same
elevation as the robot. This has worked well in our tests so
far but is an imperfect solution.

B. System behavior

We do observe some oscillation in the robot’s path. An
image-based path may cause the robot to drive at an angle
to the goal. This image-based path eventually expires, and if
the goal is too far off the edge of the image, no new image-
based plan will be produced. This causes the robot to turn
back towards the real goal, at which point a new image-based
plan may be produced (causing the robot to turn away from
the goal again).

Although not entirely desirable, this oscillation has seemed
an acceptable price to pay for the benefits of image-based
planning. Allowing the goal to lie off the edge of the image
(up to a certain limit) ameliorates this behavior. However,
a limit that is too high can cause the robot to take a wide
excursion on its way to the goal. Ideally, a camera with a
wider (or omnidirectional) field of view would be used to
eliminate this behavior.

Another point about our implementation is a bias towards
paths on one side of the robot. Our robot has two stereo
camera pairs, one pointing to the left, and one pointing to
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Fig. 10. Example of how surrounding terrain affects the ability of the
image-based planner to plan around an obstacle.

the right. We currently run image-based planning only on one
camera. This may have the effect of biasing the robot to one
side, but we did not have sufficient time to devise and test
a method for resolving conflicts between image-based plans
from cameras pointing in different directions. This problem
could also be avoided by using an omnidirectional camera.

C. Effective planning range

One of the principal advantages of planning in image space
is that it can enable a robot to react to obstacles far beyond
traditional stereo range. The distance at which this planning
is effective, however, depends on the size of the obstacle
and on the nature of the surrounding terrain. For example,
Figure 10 shows an example where the image-based planner
was able plan around a 1.6 m tall hedge from over 20 meters
away because the terrain to the left of the hedge, which
includes some trees off in the distance, was classified as
low-cost due to the color similarity with the grass in the
foreground. Had this been classified as high cost, the image-
based planner would have had trouble planning a path around
the hedge. Figure 11 shows an example where a low-cost
path almost all the way to the goal has been found.

So, effective range of our algorithm depends not just on
obstacle size, but also on how much open space is visible
around the obstacle.

V. CONCLUSIONS

We have presented a method for planning paths for a
mobile robot in natural outdoor terrain directly in the image
space of an on-board camera. This allows our system to
react to obstacles at far greater ranges than the maximum
range of our range sensors. We have described the details of
our method, as well as how it is integrated into our system,
working in conjunction with a Cartesian path planner. One
attractive feature of our image-based planning algorithm is

Fig. 11. Example of planning around a row of 0.4 m high plastic bins.

that its time and space complexity is dependent only on the
size of the image which is constant for a given camera.

We have found image-based planning to provide its most
useful guidance when avoiding distant obstacles in open
terrain and when a clear path is visible in the image. It tends
to be of limited use in cluttered environments, e.g., going
through wooded areas without a trail. Our system has been
independently tested through the DARPA LAGR and UPI
programs, and has been shown to react to an obstacle at a
range of 93 m, despite having reliable stereo data only to a
range of 5 m.
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