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Abstract— The authors present a novel approach to the
task of autonomous terrain classification based on structured
prediction. We consider the problem of learning a classifier that
will accurately segment an image into “obstacle” and “ground”
patches based on supervised input. Previous approaches to
this problem have focused mostly on local appearance; typ-
ically, a classifier is trained and evaluated on a pixel-by-
pixel basis, making an implicit assumption of independence
in local pixel neighborhoods. We relax this assumption by
modeling correlations between pixels in the submodular MRF
framework. We show how both the learning and inference tasks
can be simply and efficiently implemented—exact inference
via an efficient max flow computation; and learning, via an
averaged-subgradient method. Unlike most comparable MRF-
based approaches, our method is suitable for implementation
on a robot in real-time. Experimental results are shown that
demonstrate a marked increase in classification accuracy over
standard methods in addition to real-time performance.

I. INTRODUCTION

We consider the problem of terrain classification in the
setting of mobile autonomous robots. A typical task in this
setting consists of having the robot navigate from one point
to another without a prior map of the environment. It must
typically navigate and avoid obstacles using a sensor that
can detect obstacles at close range, such as a stereo camera.
Stereo can be employed to classify near terrain as “obstacle”
or “ground”, and the robot uses that information to navigate
safely to its destination.

Recent investigations into this problem have focused on
the issue of decreasing the “short-sightedness” of such ap-
proaches. It is often the case that the ability of the robot
to navigate safely and efficiently is limited by the range of
sensors such as stereo, which provide little to no information
at long range. This motivates the use of monocular cameras
to perform terrain classification. Though they provide no
depth information, monocular cameras do provide a rich set
of visual features, even at long range.

Since a human can easily perform this type of classifica-
tion based only on monocular images, it is natural to suppose
that a learning approach might be well-suited to the task of
classifying terrain based only on monocular features. This is
the basic scenario we study in this work.

It is useful to first consider some basic desiderata that
have motivated our work. First, it is often impractical for a
human to directly provide supervised input for a task such
as image classification for a mobile robot. This motivates the
use of self-supervision, where one type of sensor is used to

train another. In our case, data from a stereo camera is used
to train a monocular image classifier. This method results
in copious amounts of training data, as stereo provides very
dense geometric information at close range. For this reason,
a learning method appropriate for the task should be able
to handle massive amounts of training data in a scalable,
memory-efficient way.

The other major necessity for a learning algorithm in
this context is the ability to train and evaluate the classifier
online and in real-time, since we will be running it on an
autonomous, mobile robot that must recognize obstacles and
learn the appearance of new obstacles in real-time.

We will show how recent developments in machine learn-
ing and computer vision have inspired our approach to this
problem, which addresses all of the desiderata above in
addition to admitting a fairly simple implementation. In sec-
tion II, we summarize previous approaches to the problem,
mostly based on independent classification. In section III,
we give a brief overview of submodular Markov random
fields (MRFs), which allow us to introduce correlations in the
classifier. We explain our adaptation of submodular MRFs
to the terrain classification domain in section IV. Results
that show significant gains over previous approaches are
presented in section VI.

II. PREVIOUS WORK

Other solutions to the problem considered here have
arisen recently in conjunction in various sorts of autonomous
navigation settings. A type of monocular terrain classification
was recently used to great effect by the Stanford entry in the
recent DARPA Grand Challenge [1]. Thrun et al. describe a
self-supervised method for identifying drivable areas in an
image based on monocular data. Their approach is based on
training a Gaussian mixture model online and using it to
classify pixels in an independent way.

Other similar approaches tackle the problem of parameter
estimation and sensor fusion via learning in graphical mod-
els. One such approach, presented by Sofman et al. [2], mod-
els dependencies between features, parameters, and terrain
traversability estimates in a Bayes network. Parameters in a
log-linear model are estimated via Bayesian linear regression.
Our method also performs learning in a graphical model
parametrized by log-linear models. However, the critical
aspect of our model that differentiates it from this and other
similar models is that we do not assume that the estimated
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quantities (pixel labels) are independent given the parameters
and features.

Although other approaches (especially those based on
purely discriminative methods) do not make this assumption
as clear, this assumption is usually implied. This the case, for
example, for many common approaches based on histograms
([3],[4]) and mixture models ([1],[5]).

One method that does relax this strong independence
assumption is described by Wellington et al. in [6]. Their
system also performs terrain classification as well as some
other estimation tasks about the terrain. They use a similar
MRF as part a greater structured graphical model in order
to enforce relative smoothness of labelings. However, the
clique potentials used in this method are very simple, with a
single hand-tuned parameter per class to control how smooth
the class is expected to be. Our method uses much a more
expressive model that allows (binary) clique potentials that
are log-linear in the features, and these log-linear models are
learned discriminatively instead of hand-tuned.

Other interesting related work can be found in the com-
puter vision community, where there is a large and growing
literature regarding contextual image classification using
MRFs and conditional random fields (CRFs). Major dif-
ferences between that literature and this work lie in the
structures of the graphs assumed in addition to the methods
used for inference and learning. A common feature of many
of these methods is a reliance on approximate inference
procedures such as loopy belief propagation [7] or sampling-
based methods [8], whereas our model allows for very
efficient exact inference. Tree-structured models are also
commonly used to make the inference more tractable [9],
while this is unnecessary in our model. Finally, learning in
such models often optimizes a maximum likelihood criterion,
which often also requires some sort of approximate infer-
ence [8]. We optimize a discriminative max-margin criterion
in this work, for which we only need a MAP estimate, which
is easily obtained under the assumptions of our model.

III. SUBMODULAR MRFS

We begin with a brief review of submodular MRFs. An
MRF is an undirected graphical model designed to compactly
encode local correlation structure among a set of random
variables. This is accomplished by associating the set of
random variables with a graph where we take each random
variable to be a node, and edges in the graph represent
correlations between random variables. In our case, nodes
correspond to pixels, where a binary random variable models
the pixel’s label. Edges locally join pixels whose labels might
be correlated.

We then associate each clique (or image neighborhood)
in the graph with a clique potential φc(·). Let us assume
we are dealing with discrete random variables. Each clique
potential is a function that takes as an argument a vector
of possible assignments to the variables in its scope. Like
a probability measure, the clique potential assigns high
values to probable assignments and low values to improbable

assignments. Unlike a probability measure, it usually does
not sum to one over the set of possible assignments.

The probability of a complete assignment to all the labels
is simply the product of all the clique potentials for that
labeling, multiplied by a normalizing constant (also called
the partition function). Let y be such an assignment vector.
The probability of the assignment is then given as

P (y) =
1
Z

Πc∈Cφc(yc) (1)

where C is the set of cliques, yc is the portion of the
assignment y corresponding to the clique c, and Z is the
partition function. Note that general inference in this problem
is intractable due to the difficulty in computing Z; however,
note that the maximum a posteriori (MAP) estimate of the
MRF does not depend on Z, which raises the question of
whether finding the MAP estimate is tractable or not.

In this work we consider a specialization of the MRF;
namely, MRFs with submodular potentials. For simplicity,
we will think of a submodular MRF as restricting the clique
potentials by only allowing potentials to be specified for
assignments where all the variables in the clique have the
same assignment. Furthermore, all such potentials must be
greater than or equal to one, and all other potentials are
set to one. This model essentially rewards conformity and
encourages spatial smoothness if cliques correspond to image
neighbors.

The value in this restriction is chiefly that the MAP
inference problem for such models is nicely approximated
by a simple linear program. If we further restrict the model
to the case of unary and binary potentials with binary values
as possible assignments, we get the surprising result that the
MAP problem can be solved exactly in polynomial time by
finding the minimum cut of a certain graph [10]. A minimum
cut is a partition of the nodes of a graph into two parts such
that the sum of weights of arcs separating them is minimized
(see [11] for more information regarding minimum cuts).

Related methods have employed min cuts with great suc-
cess in areas such as image restoration, image segmentation,
and stereo vision. Kolmogorov and Zabih [10] describe an
entire class of energy-minimization problems that can be
solved via min cuts. As such, extremely efficient algorithms
have been developed to solve these problems. As a problem
that falls within this class, the binary-label, binary-potential,
submodular MRF is thus a very attractive model from a
practical point of view.

Although the inference task is therefore efficiently solved,
an important question is then how to use submodular MRFs
in a supervised learning context; this is the subject studied
by Taskar et al. in [12]. Their approach is briefly summa-
rized here. The clique potentials are parametrized by simple
log-linear functions of feature vectors; i.e., log φc(yc) =
〈wyc , xc〉, where xc is a feature vector associated with the
clique c, and wyc is a weight vector for the “conformity”
assignment yc. (Remember that assignments containing dis-
agreements are assumed to have potential one; thus the
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weight vector applies only to “conformity” assignments
where all variables in the clique have the same assignment.)

Returning to our specific scenario, node features might
consist of per-pixel image features such as color or textures
computed via convolution. Arc features would try to capture
some factors that would induce a correlation in neighboring
pixels, such as the presence (or absence) of a particular color
combination or edge in the image.

Learning then consists of finding a weight vector that
will force the MAP estimate of the MRF to be equal (or
close) to a desired assignment given a set of feature vectors
associated with the cliques in the MRF. To make this a well-
posed problem, Taskar introduces the concept of a margin
that is defined in a way similar to the margin in support
vector machines. In this case, the margin is defined such
that the log-probability of the desired assignment is greater
than the log-probability of some other assignment by an
amount that scales bilinearly in the margin and the number of
disagreements between the desired assignment and the other
assignments. This inequality must hold for all assignments.
The problem of finding the weight vector is thus changed to
the problem of maximizing the margin subject to all of these
inequality constraints.

It is ultimately shown that the inference problem can be
approximated by an efficient linear program, and the learning
problem can be formulated as an efficient quadratic program.
This concept is the starting point for this work.

IV. EFFICIENT INFERENCE AND LEARNING

We now describe our adaptation of the submodular MRF
framework to the problem of binary image classification. We
consider only submodular MRFs with binary potentials and
binary labels, in which the inference problem is known to
be tractable, as described before. We begin by developing
some notation for the MAP inference problem in a way
that parallels [12], though simplified for the case of binary
potentials and labels.

A. MAP inference

In the MAP inference problem, we wish to maximize the
log-probability of the MRF over all joint labelings y in the
set of valid labelings, Y . We express this in the following
way, where L(y) = arg maxy log P (y):

L(y) = arg max
y∈Y

log Πc∈Cφc(yc)− log Z

= arg max
y∈Y

∑
i∈N

log φi(yi) +
∑
ij∈E

log φij(yij)

= arg min
y∈Y

−(
∑
i∈N

〈w0, xi〉(1− yi) + 〈w1, xi〉yi +∑
ij∈E

〈w00, xij〉(1− yij) + 〈w11, xij〉yij) (2)

Note that in the second step, we have eliminated the
partition function, as it is not a function of a particular
labeling. Also, N is the set of nodes in the MRF, E is the
set of edges, yi ∈ {0, 1} is the indicator that the ith node

is labeled 1, and yij = yiyj . Features xi are associated
with the nodes, and features xij are associated with the
arcs. Weights w0, w1, w00, and w11 are associated with
the nodes having labels 0 or 1, and both nodes having
labels 00 or 11, respectively. The submodularity assumption
requires that 〈w00, xij〉 and 〈w11, xij〉 be nonnegative. Note
that we can enforce this by requiring nonnegative arc features
and weights, which we will assume henceforth. Under these
assumptions, following [10], this is a type of energy function
that can be minimized via graph cuts.

To accomplish this, we first build a graph according to the
construction procedure described in Kolmogorov. We first
augment our original MRF graph with a special source (s)
and a sink (t) node. For the unary potential associated with
the node i, we add an arc s → i with weight 〈w0, xi〉, and an
arc i → t with weight 〈w1, xi〉. For each binary potential,
we add an arc i → j with weight 〈(w00 + w11), xij〉; we
also add weight 〈w00, xij〉 to the arc s → i and add weight
〈w11, xij〉 to the arc j → t.

By the proof of Theorem 4.1 in [10], the minimizer of
Eq. 2 corresponds to the minimum cut on the graph with
this construction; nodes on the s side of the cut should be
assigned a label of 0, and nodes on the t side should be
assigned a label of 1.

B. Efficient learning

We now turn to the problem of estimating the weights
w that induce a desired MAP labeling given features x.
Our methodology in this section is based on the general
framework presented by Taskar et al. [12] and parallels
the development of Ratliff et. al [13], in which a very
similar subgradient method is obtained for the problem of
“maximum margin planning”. The difference between their
derivation and ours lies mainly in that ours specializes into
a min cut problem, while theirs specializes into a shortest
path problem.

We assume that we have constructed a graph with nodes
N and edges E as described above, so that we can express
the MAP estimate as a min cut. Following Taskar et al. [12],
we formulate the learning problem as minimizing the norm
of the weight vector subject to the constraint that the desired
labeling “scores better” than an arbitrary labeling by an
amount that scales with the Hamming distance between the
desired and incorrect labelings. This leads to the following
optimization in the case of separable data:

min
w≥0

||w||2 (3)

subject to min
q∈Q

∑
(ij)∈E

〈w, xij〉(qij − q̂ij)−

(Nn − q̂T
n qn) ≥ 0

Here we have formulated the problem in terms of min
cuts. For simplicity of notation, we have introduced Q as the
set of valid cuts. qij ∈ {0, 1} indicates whether arc i → j
is cut; i.e., qij = 1 iff. node i and node j have different
labels. qn is a vector of cut variables for all terminal arcs.
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These variables are of the form qsi and qit; i.e., qsi = 1
implies that the label of node i is 0, and so forth. The cut
corresponding to the desired labeling (henceforth called the
desired cut) is designated q̂. The difference between the cost
of the min cut induced by the weights w and the desired
labeling is therefore minq∈Q

∑
(ij)∈E〈w, xij〉(qij − q̂ij). Nn

is the number of nodes in the graph (excluding s and t).
Nn − q̂T

n qn is thus equal to the number of disagreements
between labeling q and the desired labeling.

We also assume that we have defined the weight vector
as the concatenation of the individual weight vectors; i.e.,
w = [wT

0 wT
1 wT

00 wT
11]

T . We therefore also assume that the
feature vectors have been defined appropriately such as to
induce the graph capacities described in section IV-A.

By rearranging terms, we obtain

min
w≥0

||w||2 (4)

subject to min
q∈Q

∑
ij∈E

(wT xij + q̂ij(δis + δjt))qij

≥ Nn +
∑
ij∈E

(wT xij)q̂ij

where δij is the Kronecker delta. This reveals a sort of
stability nature to the constraint under adversarial tweaking
of the problem data. If the constraint holds, we can increment
by one the affinities of each node to the “wrong” terminal arc
(the one that does not share its label), and the MAP labeling
on the resulting graph will be the same.

This constraint has another important interpretation. The
left-hand-side of the constraint is equivalent to augmenting
the capacities of the original graph in a certain way and
saying that the min cut on the new graph is equal to Nn plus
the min cut of the old graph. Specifically, we are augmenting
the capacities by adding one to the capacity of each cut
terminal arc in the desired cut. Since each node has exactly
one terminal arc cut in the desired cut, we are adding a total
of Nn capacity to the graph.

Note that the left hand side of this constraint can never
actually be strictly greater than the right hand side. This is
because we cannot increase the max flow by more than Nn

if we add a total of Nn capacity. In other words,

M(w) := min
q∈Q

∑
ij∈E

(wT xij + q̂ij(δis + δjt))qij

≤ Nn + min
q∈Q

∑
ij∈E

(wT xij)qij

≤ Nn +
∑
ij∈E

(wT xij)q̂ij (5)

Going back to the problem in (5), this allows us to replace
the inequality with equality. We now also add a slack variable
for the case where the constraint cannot be met, yielding:

min
w≥0

||w||2 + Cξ (6)

subject to Nn +
∑
ij∈E

(wT xij)q̂ij −

min
q∈Q

∑
ij∈E

(wT xij + q̂ij(δis + δjt))qij = ξ

We now move the constraint into the objective to get

min
w≥0

||w||2 + C(Nn +
∑
ij∈E

(wT xij)q̂ij −

min
q∈Q

∑
ij∈E

(wT xij + q̂ij(δis + δjt))qij) (7)

Though this might not look very helpful at first glance, it
can be shown that this is a convex problem, so a global min-
imum exists. This formulation is also appealing in that the
only constraints are simple nonnegativity constraints, which
opens up the possibility of using a subgradient projection
method [14].

To elaborate on this statement, we note that the objective
is not differentiable everywhere. This is due to the presence
of the min cut in the objective. Although there are some
points where we will not be able to compute a gradient, if
we can compute a subgradient in those places, we can still
apply a subgradient-based optimization scheme.

To review, a subgradient of a function f(w) is a vector
q such that f(ŵ) ≥ f(w) + (ŵ − w)T q, ∀ŵ ∈ Rn, if the
dimension of w is taken to be n. A subgradient is a gen-
eralization of the gradient that may exist when the function
is nondifferentiable. Unlike a gradient, a subgradient is not
necessarily a descent direction, but following it does bring
us closer to the optimum in a certain other sense. This fact
induces a set of so-called subgradient optimization schemes
for nondifferentiable convex problems that are analogous to
gradient-based methods for differentiable problems.

To explore the possibility of using subgradient methods,
we resort to Danskin’s min-max theorem [14]. It can be
shown via Danskin’s theorem that at any w such that the
min cut exists and is unique, the gradient of ξ exists and is
equal the gradient of the term inside the minimization. At a
w such that the min cut is degenerate, all valid min cuts are
subgradients of ξ at w.

Define the matrix X such that the ith row of X is
equal to the feature vector of the ith arc. Let q̃ =
arg minq∈Q

∑
ij∈E(w

T xij + q̂ij(δis + δjt))qij denote the
vector of min cut variables given w. Denote by ξ(w) the
slack term in the objective of Eq. 7 as a function of w, and
denote the subdifferential of ξ(w) by ∂ξ(w). By the chain
rule and the discussion above,

(q̂ − q̃)T X ∈ ∂ξ(w) (8)

Therefore, given a “current” min cut vector associated with
a current guess of w, a subgradient of the slack term is given
by a signed sum of feature vectors corresponding to arcs
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where the current cut disagrees with the desired cut—if the
arc is cut in the current cut but not the desired cut, it is
subtracted; if the opposite is true, it is added. If we take a
step in the direction of the negative cost subgradient, this is
equivalent to adding capacity to arcs that were incorrectly cut
and decreasing capacity of arcs that should have been cut,
thus making bottlenecks at the desired cut, and eliminating
bottlenecks at the undesired cut.

Therefore, performing a subgradient “descent” step on the
slack term is very much like performing a weight vector
update in the perceptron algorithm [15], in the sense that
it makes an update to the weight vector proportional to the
feature vector when there is a sort of disagreement between
the desired and actual prediction.

To summarize, this analysis suggests a very simple subgra-
dient projection method for minimizing the convex objective
in (7). Given a current guess for w, find the min cut vector q̃
on the augmented-capacity graph to compute ∇wξ(w). Then
take a step in the direction of a negative subgradient of (7),
i.e., −(2w+C(q̂− q̃)T X), and project this onto the positive
orthant. It is also interesting to note that this simple algorithm
allows a trivial extension to regularization of w via other
norms, although the L2 norm may be well-motivated from
the perspective of a convergence rate analysis [13].

In practice, this simple method often exhibits serious
oscillations. Presumably this is due to the frequency of
nondifferentiable points in the objective corresponding to
sudden jumps in the cut vector; indeed, the cut vector can
only change discontinuously. When this occurs, the calcu-
lated subgradient changes suddenly, and a step is taken back
towards the last cut, which can cause a severe “chattering”
phenomenon.

Fortunately, this shortcoming has a simple solution that
works very well in practice—merely averaging the subgra-
dient in time with an IIR filter usually helps convergence
dramatically. This type of approach is referred to as an
“averaged perceptron” method in the machine learning lit-
erature [16].

One issue we have ignored up to this point is how to
handle a training set consisting of multiple disjoint graphs.
This arises in our application, for example, as we wish to
train on a set of disjoint graphs corresponding to each image.
Although it would be possible to create a single large graph
that happens to lack full connectivity, it can be seen by the
properties of the max flow that one can equivalently calculate
the contribution of each disjoint graph to the subgradient, and
sum these. This is important in that (assuming we have N
disjoint graphs) it allows us to perform N independent max
flow computations, as opposed to a max flow computation
on a graph N times larger than a single graph. Since the
asymptotic performance of the best max flow algorithm is
still superlinear in the problem data, this should provide a
significant performance boost.

Finally, although we have presented a batch version of
the training algorithm here, note that (like perceptron) it can
just as easily be applied in an online fashion by changing the
problem data after performing only a few subgradient steps.

V. STEREO FOR SELF-SUPERVISED LEARNING

As mentioned in the introduction, we are primarily mo-
tivated by the problem of autonomous navigation. In this
context it is often undesirable or impossible for a human to
provide supervised input for a learning algorithm such as
the one just described. For this reason we consider briefly in
this section the problem of self-supervision with the aid of
a stereo camera.

Our approach is based on a typical application of ground-
plane stereo. Ground-plane stereo typically entails finding
the largest planar region in the stereo disparity image. Since
the ground around the robot is assumed to be locally flat, it
is assumed that this plane corresponds locally to the ground.
Any points that are outliers with respect to the current ground
plane model are assumed to be obstacles.

Concretely, let xw be a point on the ground plane in
Euclidean coordinates, referenced to an arbitrary frame of
reference. A plane in this space can be parametrized by a
vector c such that cT

wxw = 1. It can be shown that under the
projective transformation of a pinhole camera model, every
such ground plane corresponds to a linear model in image
coordinates and disparity; i.e.,

α0x + α1y + α2 = d (9)

where (x, y) are the image coordinates of a pixel with
observed stereo disparity d. Given observations of (x, y, z),
we can treat this as a linear least squares problem where
we attempt to predict d as an affine function of (x, y) with
parameters α. This corresponds to optimizing the following
objective:

min
α

N∑
i=1

||α0xi + α1yi + α2 − di||22 (10)

Here N observations are indexed by i. Although this yields
a simple linear least squares solution, there is a problem
with this objective in that it heavily penalizes outliers, which
means that our ground plane estimate would be heavily
affected by points not on the ground plane.

With this in mind, we employ a robust least squares
procedure to estimate the ground plane. This procedure
entails performing successive iterations of weighted linear
least squares regression. In each step, points contributing
to the ground plane estimate are assigned weights wi by
a certain function designed to down-weight outliers from the
current estimate. For instance, this function could be similar
to a Gaussian:

wi ∝ e−(α0xi+α1yi+α2−di)
2/(2σ2) (11)

A weighted least squares model is then fit to the data using
these observation weights; this is equivalent to linear least
squares after multiplying the ith observation by

√
wi. This

procedure is iterated to convergence, and usually results in
an robust estimate of the ground plane. Although we have
presented only heuristic arguments for the correctness of this
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procedure here, we note that a very similar procedure was
shown in [17] to optimize a robust L1-norm objective.

This procedure has a number of properties that make it
well-suited to online applications; namely, it is naturally an
iterative method that can be used to slowly refine a ground
plane estimate in an online way. This gives it a natural sort
of regularization effect that is not evident in other popular
methods, such as RANSAC [18].

Once we have a ground plane estimated via this method,
we use it to classify each pixel for which there is valid
disparity as either an obstacle or ground. This can be
accomplished by a simple threshold on the residual of the
fit for each observation; i.e., the ith pixel is labeled ground
if |α0xi + α1yi + α2 − di| ≤ dg (where dg is a constant
threshold), and is labeled obstacle if the residual exceeds
another threshold. This short-range classification is then used
as input to the learning algorithm.

VI. EXPERIMENTAL RESULTS

We performed a number of experiments to evaluate the
method’s classification accuracy and computational effi-
ciency. Our experimental platform consisted of the DARPA
Learning Applied to Ground Robots (LAGR) standard plat-
form. The LAGR robot features two Bumblebee stereo
cameras, each with a 12 cm baseline. For the purposes of
these experiments, the LAGR robot was used to collect data
that was logged and then processed offline. We implemented
the algorithms in MATLAB, with the exception of the graph
cut implementation, for which we used Y. Boykov and V.
Kolmogorov’s publicly available code [19].

A. Implementation details
1) Feature selection: For simplicity, we chose to use only

RGB color features for our experiments. Although these are
not the ideal features for our purpose, we note that better
features would only improve the performance of our method,
making the data more separable. In any case, some care
must be taken in order to ensure that a linear classifier can
separate data well with the desired features. Keeping this
in mind, we quantized RGB space into 512 bins. Our node
features (xi) then consisted of indicator vectors indicating the
bin occupied by the example RGB value. In other words,
if an RGB value falls in bin n, the corresponding feature
vector consists of the vector of all zeros except for a single
1 in element n. This set of indicator features was chosen
because a linear classifier on these features can produce any
arbitrary assignment of labels to the bins. Arc features were
constructed by concatenating the node features of the head
of each arc with the features of its tail. We note again that
this form of quantization and creation of arc features could
be used for any arbitrary set of features.

2) Graph construction: For each image in the training
set, we constructed our MRF by associating a node with
each pixel for which valid stereo data was available. Arcs
were added between each pixel and its four “north-south-
east-west” neighbors, minus those without valid stereo infor-
mation. Each arc was associated with the features described
above.

% Correct % Correct % Correct
Histogram MRF MRF - Histogram

“Easy” training set 88.40 94.85 6.46
“Hard” training set 72.47 84.99 12.52
“Easy” held-out set 83.50 92.21 8.71
“Hard” held-out set 68.26 79.76 11.50

TABLE I
PERFORMANCE OF HISTOGRAM AND MRF CLASSIFIERS IN BATCH

TRAINING EXPERIMENT

B. Batch training

For the purpose of comparison, we also implemented a
histogram-based classifier that classifies each pixel inde-
pendently. The histogram classifier is very simple. We first
quantize RGB space into the same 512-bin partition used
for the MRF classifier. Each bin then counts the number of
times its color was observed as an obstacle and the number
of times its color was observed as ground. The bin is then
classified as ground if the ground count exceeds the obstacle
count, and vice-versa. For bins with the same counts, the
label was randomly assigned with a probability proportional
to the relative frequency of ground pixels versus obstacle
pixels. This was done to avoid bias in the classifier.

The histogram is particularly nice for comparison because
it can be thought of as acting on exactly the same set of
indicator features as we use in the MRF for node features,
since the histogram is simply the sum of all the indicator fea-
tures. Also, though it seems simple, note that the histogram
classifier always yields optimal performance on the test set
given these indicator features, if we measure performance in
terms of the proportion of correctly labeled examples.

In the batch training experiment, we first acquired 100
sequential images from a LAGR robot log. We then trained
the MRF and histogram on 10% of the images and evaluated
them on the remaining 90%. We manually tuned the slack
penalty parameter C until a good balance was achieved
between complexity and test set accuracy.

We performed the experiment on two independent
datasets. Sample images from these datasets are shown in
Fig. 1. The first dataset is considered much easier than the
other, as it features much better color contrast and exposure
than the other set.

Table I shows the results of the experiment in terms of
correct classification rate. The results show that the MRF
performs significantly better in both discriminative power
and generalization ability on both datasets, in the sense that
classification rates greatly improved on both the training and
test sets. The difference is especially pronounced in the hard
dataset, where we saw an 11.5% increase in classification
accuracy on the held-out set over the independent classifier.

Fig. 2 shows some sample classified images based on
stereo, the MRF, and the histogram classifiers. It is clear here
that the MRF is able to make large gains by uniformly and
correctly classifying large image patches that are classified
in a very inconsistent way by the histogram.
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(a) Easy set

(b) Hard set

Fig. 1. A small sample of images used in the experiments

C. Online training

We also investigated the scenario of online training, since
this is the scenario that primarily motivates our work. As
mentioned before, the adaptation to the online scenario is
straightforward and consists merely of performing a gradient
step per image.

In practice, however, we found one slight modification to
be very useful in the online scenario. Instead of using ||w||2
as a regularizer, we use ||w−wi||2, where wi is the weight
vector at the ith iteration (or image). This change, inspired
by [20], encourages very conservative changes to the weight
vector. We found this to work much better in the online
scenario than the simple norm regularizer, which seems too
harsh, causing the classifier to “forget” too easily.

To evaluate the classifier’s performance in this scenario,
we took the same “easy” dataset used before and randomly
permuted it. We then trained the classifier by taking a single
subgradient step on each image’s data in succession. We
repeated this procedure, looping through the entire dataset
multiple times. At each step, we evaluated the classifier on
the current image before training it on the image. Fig. 3
shows these results.

These results show that even when trained sequentially
in a random order, the classifier seems to monotonically
improve its performance in each epoch of training. By the
11th epoch, the mean classification accuracy per image had
reached 93.6%.

D. Computational efficiency

A critical aspect of the method described here is its
computational efficiency, as our intent is to run the method
on a robot in real-time. We have found that even unoptimized
MATLAB code is sufficient for real-time performance. The

(a) Stereo segmentation

(b) Histogram classification

(c) MRF classification

Fig. 2. Sample stereo segmentation results and classification results via
MRF and histogram. Green-tinted pixels are labeled ground, and red pixels
are labeled obstacles. In the MRF and histogram classifications, cyan pixels
are mislabeled as ground, and dark blue pixels are mislabeled as obstacles.
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(b) Per epoch

Fig. 3. Plot illustrating online classification performance on a randomly
permuted set of 100 images. Per iteration performance shows performance
of classifier just before training on the nth image. Per epoch performance
shows average percent correct over all images in each epoch.
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Subgradient MAP
calculation (ms.) inference (ms.)

Mean 37.2 7.6
Standard deviation 5.1 2.2

TABLE II
PERFORMANCE STATISTICS FOR ONLINE CLASSIFIER IN MILLISECONDS

PER 160X120 IMAGE (N.B.: SUBGRADIENT CALCULATION TIME

INCLUDES MAP INFERENCE TIME).

only exception in our current implementation is the feature
calculation steps, which a proper implementation should
handle in negligible time due to the simplicity of the features
we have used. We therefore discount the feature calculation
time in the following.

We quantified the computational efficiency of the method
by performing timings on a machine equipped with a 2.4
GHz Intel Xeon CPU. Performance statistics for 160x120
images are summarized in Table II. An entire subgradient
calculation step, which includes the MAP inference step
as a subroutine, takes less than 40 milliseconds, which is
more than suitable for real-time operation, assuming we
take one subgradient step per image. We note that, counter-
intuitively, the overhead of the subgradient calculation ac-
tually far surpasses the time spent in the graph cut routine.
We attribute this to an artifact of our implementation; in
an optimized implementation, the subgradient calculation
overhead should probably be less than the time spent in the
graph cut. Although performance statistics were unavailable
as of the time of this writing for larger images, we note that
performance on 320x240 images was also well within the
realm of real-time performance, chiefly due to the excellent
scaling properties of the graph cut inference routine.

VII. CONCLUSIONS

We have shown how it is feasible to apply discrimina-
tively trained submodular MRFs to the problem of online
visual learning for an autonomous robot. MAP inference
is performed by an efficient max flow computation, and
learning proceeds via a an averaged subgradient method that
resembles the averaged perceptron method for max margin
classification.

Our experiments have shown that the MRF significantly
outperforms independent classification with the same fea-
tures on multiple benchmarks and datasets. We have also
seen empirically how the MRF can be trained in either an
online or batch method to yield high accuracy rates, making
the method very flexible with regard to different learning
scenarios.

Although results are very promising with the current
methods and implementation, we still hope to achieve even
better performance by pursuing a number of avenues that
may provide large gains. We have used only very small
neighborhoods in the current implementation; in the future,
we hope to study the effect of increasing neighborhood
size, perhaps via the use of a pyramidal graph structure.

It is also expected that more interesting node and edge
features will yield much improved performance. Finally, we
hope to improve the computational efficiency of the method
even further by warm-starting the max flow computation
with a previous solution. This should significantly boost
performance of both the learning and inference steps, as we
assume the problem data would be slowly changing in time.
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