
  

  

Abstract— Unmanned planetary landers to date have landed 
“blind”, without the benefit of onboard landing hazard detec-
tion and avoidance systems. This constrains landing sites to 
very benign terrain and limits the scientific goals of missions.  
We review sensor options for landing hazard detection, then 
identify an approach based on stereo vision and shadow analy-
sis that appears to address the broadest set of missions with the 
lowest cost. We describe algorithms for slope estimation and 
rock detection with this approach, develop models of their per-
formance, and validate those models experimentally. Instantiat-
ing our model of rock detection reliability for Mars predicts 
that this approach would reduce the probability of failed land-
ing by at least a factor of 4 compared to blind landing. Con-
versely, for the safety level desired for the 2009 Mars lander, 
this approach would increase the fraction of the planet that is 
accessible for landing from about 1/3 to nearly 100%. 

I. INTRODUCTION 
Landing site selection procedures for planetary explora-

tion use all available remote sensing data to characterize the 
safety of potential landing sites before landing is attempted. 
With cameras now in orbit around Mars and planned to orbit 
Earth’s Moon, it is possible to map all landing hazards larger 
than a few meters across. However, descent navigation accu-
racy may not be sufficient to avoid small hazards seen from 
orbit. Moreover, slopes on the scale of a lander (e.g. < 6 m 
across) and rocks that could be fatal to a lander (eg. > 50 cm 
tall) may not be detectable from orbit. Many sites of scien-
tific interest on Mars, in the lunar highlands, and on other 
moons and asteroids have rock distributions high enough to 
create a landing failure probability of several percent for 
blind landers. In contrast, the Mars Science Laboratory 
(MSL) lander/rover in development for a 2009 launch will 
accept a landing failure probability due to rock impalement 
of only 0.25%. For a blind landing, this rules out well over 
half the surface of the planet. Increasing the accessible sur-
face area and reducing the probability of a failed landing 
requires onboard landing hazard detection (HD) and avoid-
ance capabilities. 

Sensor options for HD have been studied for many years, 
including lidar, radar, and passive imaging [1], [2], [3], [4]. 
Lidar and radar are attractive because they are direct ranging 
sensors applicable at relatively high altitudes. However, 
many factors make passive imaging attractive, including a 
shorter development cycle and potential for smaller size, 
lower power consumption, and lower cost [2]. Landers typi-
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cally carry descent cameras for scientific imaging that could 
also be used for HD. A navigation camera may also be 
needed at high altitude for landmark recognition for preci-
sion navigation, which may also be used for HD. 

There are many potential approaches to HD with passive 
imaging, including use of color, texture, shading, shadows, 
structure from motion (SFM), stereo, and visible vs. thermal 
spectral bands. The characteristics of the terrain, lighting, 
practical descent trajectories, and spacecraft payload con-
straints determine which approaches are feasible for any 
given mission. Selected methods also must have a statistical 
model of hazard detection performance, which has been 
validated experimentally, that can be used to show that the 
probability of landing failure is within acceptable limits. 

Section II examines planetary landing scenarios to iden-
tify a set of sensor/algorithm alternatives with the broadest 
applicability and lowest anticipated cost, as well as to de-
termine nominal sensor performance requirements. Our con-
clusion is that stereo vision and shadow analysis appear to 
cover the widest set of missions with the least cost. Section 
III summarizes algorithms we have developed to date for 
slope estimation and rock detection with these sensing mo-
dalities. Section IV describes performance models and ex-
perimental evaluation of these algorithms. Section V incor-
porates these results into an overall model of safe landing 
probability with these sensors. This model predicts that this 
approach would reduce the probability of a failed landing on 
Mars by more than a factor of 4 compared to a blind landing, 
assuming the ability to maneuver to avoid detected hazards. 
Conversely, for the 0.25% limit on rock impalement prob-
ability required by MSL, the model shows that this approach 
would nearly triple the fraction of the planet that would al-
low a safe landing. Much of our modeling is also applicable 
to hazard detection with lidar. 

II. LANDING SCENARIO AND SENSOR OPTIONS 
One of the most challenging places to do landing hazard 

detection is Mars, because its high gravity requires very fast 
HD and because its atmosphere reduces image contrast and 
constrains when sensing can be done. Therefore, we use 
Mars as a design driver, since methods that work there will 
apply to most target bodies.  

The descent sequence designed for the upcoming MSL 
mission provides a well-defined reference scenario. The 
spacecraft enters the atmosphere at about 100 km above 
ground level (AGL). The heat shield is dropped and the 
parachute is deployed at about 10 km AGL. The parachute is 
released and retrorockets begin firing around 1.5 km AGL. 
A lateral divert maneuver begins at about 1.2 km AGL and 
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ends at about 100 m AGL to get clear of the parachute. The 
horizontal movement during this maneuver covers about 
25% of the starting altitude. Doing precise terrain relative 
navigation (TRN) by map matching before this divert would 
allow the divert to be targeted to avoid large hazards known 
from orbital reconnaissance, such as craters up to ~ 100 m in 
diameter. Detecting small scale hazards before or during this 
divert is impractical for several reasons: 

• It would be expensive, because it would require very 
high sensor angular resolution over a wide field of 
regard. 

• It would require very accurate navigation to guaran-
tee avoiding all small scale hazards detected at more 
than 1 km away. 

• During the divert, the high spacecraft attitude rates 
would make it difficult to obtain low smear, high 
SNR images aimed at the right place on the ground. 

At the end of this divert, descent is vertical and relatively 
slow, so HD is then possible to enable a small divert of 1-2 
lander diameters to avoid small-scale hazards, such as rocks. 
Thus, performing HD at or below ~ 100 m AGL appears to 
be most practical for MSL-like missions. Such a capability 
would also cover most other missions and most other target 
bodies [5]. 

Minimizing the size, weight, and power of the hazard de-
tection sensors is desirable to minimize their cost. Lidar sen-
sors under study for landing applications have mass, power, 
and volume estimates roughly in the 15-30 kg, 100-200 W, 
and 20,000 cm3 range for the sensor alone, not including 
data processing [3]. In contrast, visible spectrum descent 
cameras have been built on the scale of 0.6 kg, 10 W, and 
490 cm3 [6]. Field programmable gate arrays (FPGA) can 
implement the computing required for hazard detection with 
a few kg and W. Therefore, passive imaging has potential to 
provide a smaller, lower power solution than lidar and radar, 
particularly if the same camera can also serve as a science 
camera or provide imagery for precision navigation before 
the start of descent. 

Color, texture, and shape from shading with descent im-
agery are not promising for HD for a variety of reasons, in-
cluding results from prior missions that show negligible 
color variation on asteroid Eros [7] and the impracticality of 
getting slope and rock size information with sufficient accu-
racy from texture and shading. Contrast in thermal imagery 
can discriminate rocks from soil over part of the diurnal cy-
cle [8]. However, the vast majority and the highest resolu-
tion orbital mapping imagery is visible spectrum, so using 
thermal imagery for HD would increase cost by requiring 
separate visible and thermal cameras for TRN and HD. 

Shadows can be used to recognize hazardous rocks from 
altitudes of 1 km or more [2], but this does not enable slope 
estimation. SFM can enable slope and rock detection if the 
descent trajectory can give adequate parallax and if the cam-
era can be aimed at the landing site from two or more loca-
tions during the descent. This may be practical for missions 

to comets, asteroids, and small moons, but it is costly and 
difficult for large bodies like Mars. Binocular stereo base-
lines of ~ 1 m or more appear to be feasible for most landers 
and can enable slope and rock detection at altitudes up to 
about 100 m. Given that this fits the challenging reference 
mission scenario above, stereo vision is our primary ap-
proach. Shadow analysis can enhance rock detection for 
small incremental runtime cost and can significantly increase 
rock detection altitude for missions where that is needed, so 
we include shadow-based rock detection in our approach. 
Based on our current knowledge of hazard densities around 
the solar system, this approach is applicable to most or all 
lander missions. As we discuss below, the speed, reliability, 
and hardware maturity of this approach makes it a candidate 
for missions in about four years. 

There is still interest in lidar for HD, particularly for land-
ing in shadowed regions of the lunar poles. However, lidar 
hardware is further from maturity for lander applications 
than descent cameras. Nevertheless, the HD algorithms and 
performance modeling we apply to range data from stereo 
are applicable to lidar as well. 

III. HAZARD DETECTION ALGORITHMS 
Planetary landing sites seen to date are fairly smooth sur-

faces with scattered rocks emplaced as impact crater ejecta 
[9]. Landing site safety requirements specify maximum 
slope angles, to avoid tip-over hazards, and maximum rock 
abundance, to avoid impaling the lander on a rock. Given 
this and constraints on the size and performance of space-
qualifiable computers, we have developed simple algorithms 
for stereo-based slope estimation, stereo-based rock detec-
tion, and shadow-based rock detection. These algorithms are 
amenable to real-time implementation in space-qualifiable 
FPGAs and our experimental results show that they should 
provide satisfactory levels of detection reliability. More so-
phisticated algorithms are constrained by projections of the 
computing power likely to be available in future missions; 
this trade-off is a subject of ongoing research.  This Section 
briefly summarizes the current state of these algorithms; 
Section IV evaluates their performance. 

A. Stereo-based Slope Estimation 
We employ a stereo vision algorithm based on real-time, 

area-based image cross correlation with the sum-of-absolute-
differences (SAD) operator with either one correlation win-
dow per pixel (SAD1) [10] or extended to use five overlap-
ping correlation windows per pixel (SAD5) [11]. We have 
implemented both algorithms in FPGA to generate subpixel 
disparity maps for different image sizes for different applica-
tions [12]; for SAD1 on 1024x768 pixel imagery, throughput 
is 15 frames/second (fps) using one Xilinx Virtex-II Pro 
FPGA. Fig. 1 illustrates stereo results from a data set used 
for evaluation in Section IV. 

The slope estimation algorithm uses range images pro-
duced by stereo matching to compute a slope estimate by 
robust plane fitting. We first perform a least median squares 
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plane fit that includes all points in the image, including the 
rocks (outliers) on the surface. Next, we discard points far 
from the plane and apply a least squares fit to the remaining 
points to obtain the slope estimate. The algorithm has been 
tested with data that emulates “altitudes” up to 100 m by 
placing cameras at different distances from the wall shown 
in Fig. 1. Fig. 2 shows an example of plane fitting applied to 
the wall range data at 30 m and at 70 m. This shows that the 
plane fits are approximately correct even with rocks present 
as outliers. Further performance modeling and evaluation is 
discussed in Section IV-A. 

We plan to implement the plane fit and the rest of the haz-
ard detection algorithms described below in a PowerPC 405 
processor embedded in the Virtex-II Pro FPGA, with float-
ing point-intensive calculations potentially done by a 100 
MHz PowerPC 750-based main spacecraft computer. We 
expect that the end-to-end process of stereo vision followed 
by rock and slope detection from range data and shadows 
will achieve a throughput of 1 fps or better in this processor 
configuration, which is fast enough for our reference mission 
scenario. 

 
Fig. 1. Sample SAD5 stereo vision-based range imaging results. Up-
per left: ~ 6 m x 3 m brick wall with four synthetic rocks viewed from 
40 m distance. Upper right: false color range image; red is closest and 
magenta is furthest. The overlaid rectangle shows the area used to 
evaluate plane fitting for slope estimation. Bottom: 3-D rendering 
from below. Numbers above the rocks denote their true height in cm. 

 
Fig. 2. Underlying surface plane fit (red) applied to 3D range data 
from SAD5 stereo (white point clouds) for two different altitudes. 

B. Stereo-based Rock Detection 
Stereo-based rock detection builds on the surface plane fit 

approach outlined above by (Fig. 3):  
1. Fitting a plane to ground surface using the robust, 

least median squares algorithm. 
2. Computing the standard deviation of the residuals 

from the plane fit and thresholding the residuals at 1σ 
to identify outlier pixels that might be part of hazards 
(i.e. rocks). 

3. Grouping the outliers by connected component ex-
traction to identify candidate rocks, rejecting very 
small regions as noise. 

4. Estimating rock height and position by averaging the 
n highest range points in each region. We typically 
use n = 25. This reduces noise in the estimates con-
siderably. 

Though very simple, this algorithm gives very good re-
sults, as described in Section IV-B. 

 
Fig. 3. Stereo-based rock detection: 1) Robust plane fit to range data. 
2) Threshold residuals at 1σ above the plane. 3) Extract connected 
components, rejecting small regions as noise. 4) Estimate rock height 
and position and decide which are hazards based on height. 

 
Fig. 4. Sample results for shadow-based rock detection. 1) Input im-
age from a data set acquired by an aircraft flying over Mars Hill in 
Death Valley. Sun incidence angle for this image is 45°. 2) Shadow 
pixel labeling. 3) Shadow ellipse fitting. 4) Rock modeling (position, 
diameter, and height). 

C. Shadow-based Rock Detection 
Shadow analysis offers the possibility of detecting rocks 

at much greater altitudes than is possible with stereo vision. 
Our algorithm has been described in detail elsewhere [2] and 
will only be summarized here. It has four steps (Fig. 4): 

1. Acquiring the imagery. 
2. Labeling shadow pixels by applying a modified 

Maximum Entropy Thresholding (gMET) algorithm 
[2] to find a threshold in the image histogram that 
separates shadowed from non-shadowed pixels. The 
modification adds a gamma-corrected version of the 
image to the original image before histogramming to 
improve the robustness of the segmentation.  

3. Extracting compact shadow representations from the 
labeled shadow pixels. For hazard detection, it is ade-
quate to fit a “best-ellipse” to each connected compo-
nent of shadow pixels larger than 5 pixels in area.  

4. Modeling rocks as circles whose centers and diame-
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ters are derived from the shadow ellipses and known 
sun angles. Rock height is also estimated from the 
shadow length, sun elevation, and assumed ground 
plane tilt. 

Section IV-C describes the performance of this algorithm 
for large sets of aerial images of Mars Hill in Death Valley 
and orbital imagery from Mars itself. 

IV. HAZARD DETECTION PERFORMANCE 
With current navigation technology, the best 3σ landing 

error ellipses for Mars are nearly circular with a diameter of 
~ 20 km. Technology developments over the next decade 
could reduce this to < 200 m [5]; however, many hazards 
may still be distributed stochastically in that area. HD sen-
sors have noise, which introduces uncertainty in the detec-
tion results that requires a probabilistic characterization. Our 
end goal is to give the landing site selection team a mathe-
matical model of the probability of safe landing, given prior 
knowledge of the hazard distribution (typically obtained 
from orbit), a model of the HD sensor performance, and 
relevant parameters of the lander (e.g. diameter and ground 
clearance). This Section addresses HD sensor performance; 
Section V combines that with prior hazard knowledge to 
model the landing failure probability. 

We require both a mathematical model of HD perform-
ance and experimental validation of the model. We have 
used three data sets so far for experimental validation: 

1. “Rock wall”: stereo image pairs of a fairly natural-
looking brick wall with four artificial rocks hung 
on it (Figs. 1-3, 5). 

2. “Mars Hill”: aerial photographs of a Mars-like hill 
in Death Valley (Figs. 4, 6). 

3. “HiRISE”: images of Mars taken from orbit with 
the HiRISE camera on the Mars Reconnaissance 
Orbiter  (Fig. 12). 

The rock wall data set moved stereo cameras at 10 m in-
tervals from 10 m to 100 m from the wall and acquired at 
least 30 image pairs at each position. It used a stereo camera 
rig with a 1 m baseline, 1600x1200 8-bit/pixel imagery, and 
a 22° x 18° field of view. This is the same size image as a 
descent camera in development for MSL. The field of view 
was chosen to be a good trade-off between covering enough 
terrain from 100 m altitude to include a safe landing site and 
giving adequate range resolution for hazard detection; per-
formance evaluation results could lead to increasing or de-
creasing the field of view in the future. Ground truth range 
data was collected using a Leica Total Station. We also re-
corded sun azimuth and elevation angles as ground truth for 
shadow analysis. This data set was used to evaluate all of the 
algorithms in this paper. 

The Mars Hill imagery was acquired in 1989 to evaluate 
landing hazard detectability for a Mars mission concept un-
der study at that time. It contains 172 images on film, from 
which we digitized and manually registered 7 image chips 

with sun incidence angles between 25° and 65°, then manu-
ally outlined 136 rocks to create ground truth for shadow-
based rock detection. This data set does not have ground 
truth rock height or terrain slope information. 

The HiRISE data set was acquired recently to support 
landing site selection for the Mars Phoenix mission. This 
camera acquires imagery from orbit (~ 300 km) at 30 
cm/pixel with a line scan camera with 20,264 pixels across; 
typical images cover 6.2 km x 12.4 km. The data set in-
cludes 46 images covering ~ 1,500 km2 with sun incidence 
angles of about 60°. Initially, geologists were manually 
counting rocks in very small portions of this imagery to cali-
brate indirect estimates of rock distributions in candidate 
landing sites. As discussed below, we showed that automatic 
shadow-based rock detection was superior, and eventually 
cataloged over 10 million rocks ≥1 m in diameter.  

 
Fig. 5. Four frames from the rock wall dataset. 

 
Fig. 6. Three frames from the Mars Hill data set, plus the ground truth 
rock masks that were extracted manually. Left to right, sun incidence 
angles are 25°, 40°, and 55°. 

A. Slope Estimation 
Ideally, performance evaluation for slope estimation 

should include estimator variance due to noise in the data 
and potential estimator bias due to incomplete filtering of 
rocks as outliers in the plane fit. This evaluation should be 
parameterized by the level of noise in the data, the number 
and image layout of pixels in the plane fit, and the field of 
view of the camera. The rock wall data set includes enough 
ground truth to experimentally evaluate all of this. To date, 
we have evaluated variance quantitatively, but we have only 
qualitatively verified that bias is small, so here we focus on 
variance. 

We used linearized error propagation to model the vari-
ance of the estimated slope angle as a function of the stereo 
camera baseline and focal length, the subpixel precision of 
the stereo disparity estimates, the size of a rectangular patch 
in the image used to fit a plane, and the number of pixels 
within that patch used in the fit. The pixels were sampled 
with uniform spacing in the patch if not all pixels were used 
(i.e. for computational efficiency). Noise in the subpixel 
stereo disparity estimates was assumed to be zero mean 
Gaussian, independent from pixel to pixel, with constant 
variance over the entire image. This is a useful simplifica-
tion of reality for an initial modeling effort. 
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Space does not permit including the derivation of the 
slope variance model, but its prediction agreed well with 
experimental results from the rock wall data set, which gives 
us confidence in the model. For each set of 30 stereo pairs at 
10 m intervals from the wall, we computed the sample vari-
ance of the slope estimates. The linearized model described 
above has the variance of the stereo disparity as its one free 
parameter, so this was set to best fit the model to the ex-
perimental data. Fig. 7 plots the standard deviation of the 
experimental data (solid curve) against a model prediction 
for the area of the wall (dotted curve). The agreement is very 
good. A real mission might use a larger patch to estimate 
slope at lander scale, so Fig. 7 also plots a model prediction 
for a patch double the size (~ 6 m x 6 m). This shows a slope 
standard deviation < 1.5o at 100 m.  This level of precision is 
sufficient to be useful for a mission, since lander slope toler-
ance thresholds are usually at least 15 degrees. 

 
Fig. 7. Standard deviation of slope estimation error as a function of 
altitude, comparing of predictions of the mathematical model (dashed 
and dotted curves) and experimental results from the rock wall (solid 
curve). 

This experiment used patches covering a fixed area on the 
ground, which means that image patches shrink with increas-
ing altitude. This gives an error growth that is at least quad-
ratic with altitude, as shown in Fig. 7. An alternative system 
architecture could fix the size of the patch in the image. The 
variance model predicts that this will produce slope errors 
that grow roughly linearly with altitude. In this case, for a 
patch covering one quarter of the pixels in the image, the 
model predicted a standard deviation of only 0.6 degrees at 
an altitude of 500 m, which is near the limiting altitude for 
this camera configuration. This would allow estimating re-
gional slopes with good precision at high altitude, to provide 
an early triage of potential landing sites, then zooming in to 
lander-scale patches as the altitude became low enough to 
provide adequate precision. This architecture warrants ex-
perimental evaluation with a future data set. 

B. Stereo-based Rock Detection  
Rocks are hazards if their height exceeds the ground 

clearance or “rock tolerance” (T) of the lander. Since our 
approach to rock detection with stereo involves testing 
whether the height H of outlier regions above a fitted ground 

plane exceeds a threshold t < T, this is a standard detection 
problem for which performance can be characterized by es-
timating the probability of detection (PD) and the false alarm 
rate (FAR) as a function of t, T, altitude, sensor noise, and 
true rock distribution. To develop a mathematical model, we 
treat rock height measurements from stereo vision as having 
zero-mean, Gaussian noise with a standard deviation that 
grows quadratically with altitude. For simplicity, we ignore 
uncertainty in the plane fit. We then estimate PD and FAR by 
taking appropriate integrals over the noisy measurement 
distributions. For experimental validation, we use the rock 
wall data set to count PD and FAR as a function of t, T, and 
altitude. In ongoing work, we plan to acquire aerial stereo 
imagery and ground truth height data for a large set of rocks 
on Mars Hill as a more comprehensive test. 

 
Fig. 8. Integrals for PD (left) and FAR models (right). 

Fig. 8 illustrates the required integrals. All rocks with true 
height H above T are hazards (left graph). The blue curve is 
the noisy measurement distribution for such a rock; the 
hatched area of the distribution gives PD for that rock. This 
must be averaged over all rocks with true height above T to 
obtain PD for the whole image: 
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where N(x;Hi,σi ) is the normal distribution with mean equal 
to the true rock height Hi and standard deviation equal to the 
measurement noise σi at the given altitude. Rocks with true 
heights below T generate false alarms from the tails of their 
measurement distributions that exceed t (right graph). False 
alarms can also come from range pixels on the ground if the 
noise level is high enough, i.e. at relatively high altitude. We 
model the FAR as a combination of two terms, in order to 
model false alarms from small rocks and false alarms from 
the rest of the ground: (1) the sum over all false alarms rocks 
of the integrated tails of the measurement distributions for 
each rock, plus (2) an arbitrary number c of false alarms on 
the ground, where we have tuned c to fit experimental data. 
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The rock wall data set has rocks 14, 25, 37, and 54 cm 
high. Fig. 1 showed a 3-D rendering of the range data from 
40 m; Fig 9 shows a rendering from 90 m. Since lander rock 
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tolerances in recent missions have been around 50 cm, we 
treated the 54 cm rock as a hazard and measured PD and 
FAR as a function of distance from the wall, averaging over 
all 30 frames at each distance. Fig. 10 plots these for T = 50 
cm and t = 45 cm, together with a corresponding model pre-
diction. The hazardous rock was detected in every image, 
with no false alarms, up to 70 m away. The model and the 
experimental results deviate from each other appreciably by 
90 m; this may be due to subtle biases in rock height esti-
mates that become more significant at higher altitudes. A 
key question is how these results would change with rock 
height distributions in real Mars terrain; we address this in 
Section V. 

 
Fig. 9. 3-D rendering from below of stereo range data of the rock wall 
from 90 m distance. 54 cm and 37 cm rocks are visible. 

 
Fig. 10. Hazard detection and false alarm rate comparison between 
the model and experimental results for the wall data set. 

C. Shadow-Based Rock Detection 
The reliability of shadow-based rock detection depends on 

many factors, including several that affect detectability of 
the shadows and several that affect accuracy of height esti-
mates made from the shadows. A full evaluation of these 
factors is beyond the scope of this paper, so we focus here 
on two key issues that are testable with our data sets: height 
estimation accuracy with the rock wall data and shadow de-
tection reliability with the Mars Hill and HiRISE data. 

With the rock wall data, all of the shadows were reliably 
detected without false alarms at all ranges. Over all four 
rocks, the RMS height estimation error was 1.28 cm at 50 m, 
or 3.9% of the average rock height of 33 cm, and 1.65 cm at 
100 m, or 5% of the average rock height. This is encourag-
ing, but it needs to be tested with a variety of sun angles and 
in real terrain with a larger number of rocks. 

Fig. 11 shows shadow detection results for the Mars Hill 
data as a function of rock diameter in units of pixels (with 5 

pixel bin widths), averaged over all 7 sun incidence angles. 
PD over the entire data set was 85%, with a FAR of 3.26 per 
image. However, 56% of the missed detections occurred at 
5-10 pixels in diameter. The largest fraction of those oc-
curred for the image with the longest shadows (65° inci-
dence), where the shadow of the largest rock obscured many 
nearby small rocks. Mission design constraints due to Earth-
Mars communication considerations likely will lead to land-
ing at times that give shorter shadows, with sun incidence 
around 45°. The vast majority of the false positives gave 
rock diameter estimates ≤ 15 pixels. For typical rocks, typi-
cal landers, and the angular resolution we expect in a descent 
camera, hazardous rocks will be around 40 pixels in diame-
ter from 100 m altitude. In summary, the errors in this ex-
periment would be unlikely to be important in real missions. 

 
Fig. 11. Shadow-based rock detection. Average detection for seven 
different sun angles. 

With the HiRISE imagery, on the order of 4000 rocks 
were counted by hand by geologists to compare to auto-
matic, shadow-based rock detection. 1226 of the largest 
rocks were used to determine that rock diameters estimated 
manually (by looking at the rocks themselves) agreed well 
with diameters estimated automatically from the shadows. 
Manually and automatically estimated distributions of di-
ameters of the full set were compared and found to match 
very closely, which gives a statistical confirmation of high 
quality automatic detection. Fig. 12 shows a sample result. 

 
Fig. 12. Sample result of shadow detection and rock estimation for a 
323x322 pixel HiRISE sub-image. The largest shadow is about 9 pix-
els across. On the right, black spots are detected shadows and cyan 
spots are estimated rocks for all shadow regions > 5 pixels in area. 

V. SAFE LANDING PROBABILITY MODEL 
Given a performance model for the HD sensor, a model of 

the hazard size/frequency distribution, and lander parame-
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ters, predictions of the probability of safe landing can be 
made either by mathematical modeling or by Monte Carlo 
simulation. Here we develop a mathematical model; future 
work may compare this to simulation.  We idealize the proc-
ess of selecting a landing site onboard by dividing the de-
scent image into m non-overlapping square regions, each big 
enough to land in. The probability PS of landing safely is the 
probability PND of finding one region where no hazards are 
detected times the probability PNMD that the selected region 
has no missed detections:

! 

P
s

= P
ND

P
NMD

. From Section IV-
B, we have a model of rock detection with stereo vision that 
is acceptable up to 70 m altitude. Models of Mars rock 
populations have been developed by geologists from 
theoretical considerations and from rocks seen in Mars 
surface imagery [9]. We will now use those models to derive 
expressions for PND and PNMD for the case of rock detection 
with stereo vision. We again assume zero mean, Gaussian 
noise in rock height estimates and use the notation t, T, and 
H as before. For a given rock of height H, the probability of experienc-
ing a false positive (PFP) or false negative (PFN) follows 
similar logic to section IV-B and is given by: 
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Weighting PFN and PFP by the frequency of rocks of 
height H per unit area and integrating over H would give us 
the expected number NFN of false negatives and the expected 
number NFP of false positives per unit area. Planetary geolo-
gists characterize rock distributions by the cumulative frac-
tional surface area F covered by rocks of diameter ≥ D; that 
is, for diameter D, by the fraction of the surface area covered 
by rocks of diameter D or larger. It is well established [9] 
that F is well modeled by  

! 

F (k,D) = k " exp(#q(k) "D) 
with        

! 

q(k) = ca + cb /k  
where k is the rock abundance, the percent of the surface 
area covered by rocks of all diameters, and ca and cb are 
other constants used to fit the data. Different landing sites 
are characterized by their value of k. For the Mars Viking 1 
(VL1), Viking 2 (VL2), and Pathfinder (MPF) landing sites, 
estimates of k are 17%, 18%, and 20%, respectively; close to 
the Bonneville Crater that was observed by the Spirit rover, 
k was 32%. Mars Hill is about 22%. These are all very high 
compared to typical Mars values estimated from orbital 
thermal inertia measurements, which put the modal value at 
6% and the median around 8%. Other places in the solar 
system of scientific interest have been observed to have rock 
distributions similar to MPF, such as asteroid Eros and the 
lunar highlands. 

For our purposes, we convert F to a frequency distribution 
f giving the number of rocks of diameter D per square meter: 

! 

f k,D( ) =
d (1" F (k,D))

dD
/(0.25# D2)

= k $q(k) $ exp("q(k) $D) /(0.25# D2)

                                                 

From observations around the Mars landing sites, rock 

height on average is half the diameter, so we make the ap-
proximation that 

! 

D = 2H and convert f to a function of H by 
simple substitution. We now have: 

! 

NFN (k, t,T ) = PFN (H , t). f (k,H )dH
T

"

#  

! 

NFP (k, t,T ) = PFP H , t( )
0

T

" # f (k,H )dH  

The expected number of hazardous rocks per unit area is: 

! 

NHZ (k,T ) = f
T

"

# (k,H )dH  

The expected number of detected hazardous rocks per unit 
area is then: 

! 

N
DH
(k, t,T ) = N

HZ
(k,T ) + N

FP
(k, t,T ) " N

FN
(k, t,T ) 

From [13], the number of hazardous rocks in a given area 
A can be modeled by a Poisson distribution with 
mean

! 

AN
HZ

, from which it follows that the probability of 
exactly n hazardous rocks in an area A is given by: 

! 

P(n,") =
"n # exp($")

n!
with" = AN

HZ
 

and the probability of at least one hazardous rock in area A is 

! 

1" P(0,#) = 1" exp("AN
HZ
)  

If A is the area of the lander, the above expression is the 
probability that a blind landing will fail due to rock impale-
ment. Denote this expression as Pf and note that it has pa-
rameters k and T, since these are parameters of NHZ. 

Recall that our idealization for landing with an HD sensor 
is to divide the field of view of the sensor into m non-
overlapping potential landing sites. From [13] if hazard de-
tection was perfect, the landing would fail if all m sites had 
at least one hazardous rock, which has probability 

! 

Pf( )
m  

Landing successfully means finding at least one site free 
from rock hazards, which is simply 

! 

1" (Pf )
m  

For noisy rock detection with stereo vision, Pf gets re-
placed by 

! 

1" exp("AN
DH
)  

as the probability of detecting a hazard in any of the m 
candidate landing sites, so the probability of finding one of 
m sites with no detections is 

! 

P
ND

= 1" (1" exp("AN
DH
))
m  

The probability of no missed detections in any given can-
didate landing site the Poisson distribution 

! 

P(0,N
FN
) , so 

! 

P
NMD

= exp("AN
FN
)  

With the probability of safe landing as

! 

P
s

= P
ND

P
NMD

, this 
completes our model. 

Fig. 13 shows plots that instantiate this model for parame-
ters of the MSL mission, which are a rock tolerance T = 60 
cm, a lander undercarriage area of 4 m2, and a rock height 
hazard threshold of 55 cm. The MSL goal of limiting failure 
probability due to rock impalement to < 0.25% (i.e. safe 
landing probability of > 0.9975) constrains blind landers to a 
rock abundance of about 6%, which is about 1/3 of the 
planet. The stereo HD plot (green) is for a sensing altitude of 
70 m and exceeds the MSL goal for all rock abundances 
shown. Note that this prediction is consistent with the rock 
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wall results at 70 m observed in Section IV-B. The reduction 
in failure probability for landing with HD compared to blind 
landing is easily more than a factor of four in this model for 
rock abundances above 6%. If rocks were the only hazards 
on Mars, the model implies that using this HD capability 
would increase the area of Mars accessible to safe landing to 
nearly 100%. We have not yet assessed what area would be 
eliminated by other hazards, particularly slopes. 

 
Fig. 13. Probability of safe landing as a function of rock abundance, 
comparing landing with HD capability to blind landing, instantiated 
for MSL parameters (60 cm rock tolerance, 4 m2 lander undercar-
riage, 55 cm rock height threshold). The green plot predicts stereo-
based probability with sensing from 70 m altitude. The black plot is 
for blind landing. 

VI. CONCLUSION 
We used a Mars landing scenario as an extreme case of a 

fast, near-vertical descent to motivate sensor selection for 
landing hazard detection. This and considerations of mini-
mizing mass, power, and volume while maximizing rele-
vance to other missions led us to conclude that stereo vision 
and shadow analysis with descent cameras appear to be the 
smallest sensor suite with the widest applicability, given the 
state of development of sensor alternatives today. We then 
outlined algorithms we have developed to date to detect 
slope hazards with stereo vision and rock hazards with stereo 
vision and shadow analysis. We derived analytical perform-
ance models for these based on Gaussian noise models, com-
pared the prediction of those models to experimental data, 
and found reasonably good agreement. This implies that the 
models are useful for predicting performance of these 
functions in operational scenarios. We then embedded the 
hazard detection performance models in a model for the 
probability of landing safely, given parameterized models of 
lander rock tolerance, lander area, and parameterized rock 
size/frequency distributions fit to Mars and terrestrial data. 
When this model is instantiated for parameters of the MSL 
mission, it predicts that even very conservative assumptions 
about the performance of the vision system will reduce the 
probability of a failed landing by at least a factor of four 
compared to a blind landing for any rock abundance. Con-
versely, for the level of safety desired by MSL, it predicts 

that the vision system would allow access to nearly the en-
tire planet, compared to about one-third of the planet blind 
landing. This would represent a major improvement in ac-
cess to sites of scientific value for a small increase in sensor 
payload. Analogous benefits should accrue to missions to 
other bodies in the solar system. 
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