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Abstract— Unmanned Aerial Vehicles (UAV) are the subject
of an increasing interest in many applications and a key
requirement is the stabilization of the vehicle. Some previous
works have suggested using catadioptric vision, instead of
traditional perspective cameras, in order to gather much more
information from the environment and therefore improve the
robustness of the UAV attitude estimation. This paper belongs
to a series of recent publications of our research group
concerning catadioptric vision for UAVs. Currently, we focus
on the estimation of the complete attitude of a UAV flying
in urban environment. In order to avoid the limitations of
horizon-based approaches, the difficulties of traditional epipolar
methods (such as rotation-translation ambiguity, lack of fea-
tures, retrieving motion parameters from matrix decomposition,
etc...) and improve UAV dynamic control, we suggest computing
infinite homography. We show how catadioptric vision plays
a key role to: first, extract a large number of lines, second
robustly estimate the associated vanishing points and third,
track them even during long video sequences. Therefore it
is not only possible to estimate the relative rotation between
consecutive frames but also compute the absolute rotation
between two distant frames without error accumulation. Finally,
we present some experimental results with ground truth data
to demonstrate the accuracy and the robustness of our method.

I. INTRODUCTION

Stabilizing a UAV is one of the most important steps
towards their autonomy. In order to guarantee the orientation
of the vehicle, a common solution is to increase the number
of sensors and then apply data fusion methods. It is now well
established that traditional navigation equipments like Global
Positioning System or Inertial Navigation System suffer from
many limitations. For example, GPS is sensitive to signal
dropout and hostile jamming. The drawback of INS is that
its position error compounds over time and may cause large
localization errors. In order to overcome main disadvantages
of both methods, many researchers suggested a vision-based
approach of the navigation problem, which helps estimating
localization and/or orientation of a UAV when GPS or inertial
guidance is not available [1][2][3][4]. Most of the existing
works use conventional cameras which have a relative small
field of view, which drastically limits the information we
could get from the environment (Fig 1). That is why some
works have proposed using catadioptric sensors and applied
them for various tasks [5][6][7].

Concerning UAV applications, Hrabar and Sukhatme were
the first to apply catadioptric cameras for autonomous aerial
vehicles. However they do not explicitly take characteristics

of catadioptric images into account (e.g. distortions), require
artificial visual targets and can control the vehicle only in
2D [8][9] . At the contrary, our research group aims to
estimate the UAV 3D attitude, which has led to a series of
recent publications [10][11][12][13] . The cited [10] and [11]
methods compute the roll and pitch angles after extracting the
horizon in catadioptric images by adapted Random Markov
Field (MRF) or maximizing RGB-based Mahalanobis dis-
tance. However, they assume the horizon is clearly visible
in the image. Moreover they cannot estimate the complete
attitude of the UAV since horizon-based methods do not
permit to calculate yaw angle. In [12], we have developed a
hybrid approach that combines horizon-based technique with
planar homography. Whereas we were able to estimate the
3 rotation angles, it requires a planar scene (high altitude
or flat terrain) and strongly relies on the horizon extraction
to reset the error accumulation. In order to get rid of the
horizon dependency, we have developed a line-based method
that can run in urban environment [13]. By considering the
vertical direction as the normal vector of the ground plane,
we were able to apply the same technique than in [10] and
[11] to estimate the roll and pitch angles. However it still
suffers from some important limitations. First, it does not
permit to compute the yaw angle. Second, sky regions are
needed to distinguish the vertical direction among the others
and thus cannot be applied in dense urban areas or indoor
environment. Finally, it requires separating sky and ground
pixels, which is not an easy task. The present paper aims
to overcome these difficulties while keeping the advantages
of the previous method: applicable in urban environment
and free from error accumulation. Our proposed approach
consists in: first, extracting the vanishing points in catadiop-
tric images and second, estimating the infinite homography
between a pair of images. Independently of the vision system
that is used, there are numerous advantages of such an
approach. First, the infinite homography provides the full
attitude of the UAV. Second, infinite homography provides a
single rotation solution contrary to planar homography whose
decomposition is not unique. Furthermore, in a control point
of view, [14] has shown that points at infinity, and thus
infinite homography, yields rotation decoupling properties
that respect the UAV dynamics and results in a better behaved
control solution. Whereas similar methods have already been
applied to traditional perspective cameras [15], this paper is
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the first one to follow this approach for catadioptric vision.
The inherent wide field of view of such sensors provides
some important extra advantages. First, the image contains
a much larger number of lines, thus we do not suffer from
lack of information when extracting parallel lines. Second,
the vanishing point, i.e. the intersection of parallel lines, lies
in the image and therefore its estimation is more robust.
Finally, a vanishing direction can be tracked during a very
long sequence. As will be explained, this is a very important
property because it permits to calculate the absolute rotation
of the UAV without error accumulation. This paper is divided
into five main parts. After introducing catadioptric projection,
we derive the infinite homography equations for catadioptric
vision. In the third part we explain how to extract lines and
vanishing points in catadioptric images. Then we present how
to compute relative and absolute orientations of the UAV.
Finally we carry some experiments on real video sequences
and compare the results with ground truth data.

Fig. 1. Compared to traditional perspective cameras (left), catadioptric
systems (right) can gather much more information from the environment.

II. CATADIOPTRIC VISION AND IMAGE
FORMATION

Intuitively, wider the field of view is, more information
we can gather from the environment and more precise and
robust the pose estimation will be. Obviously, an imaging
system that is able to see ”in all direction” could play a key
role. Such kind of sensors is simply called omnidirectional
systems and provides a wide field of view. Catadioptric
cameras are a specific kind of omnidirectional systems. They
are devices which use both mirrors (catoptric elements)
and lenses (dioptric elements) to form images through a
conventional camera [16]. Such systems usually have a
field of view greater than 180 degrees and are getting both
cheaper and more effective. While they have long been
used in telescopes (to focus light from stars onto the eye
of the observer), only recently they gained in popularity
together with other omnidirectional vision systems based
on fish-eye lenses or clusters of outwards looking cameras.
Baker and Nayar classified catadioptric sensors into two
categories depending on the number of viewpoints [17].
Sensors with a single viewpoint, named central catadioptric
sensors, permit a geometrically corrected reconstruction of

the perspective image from the original catadioptric image.
Geyer and Daniilidis have demonstrated the equivalence for
the single viewpoint category with a two-step projection via
a unitary sphere centered on the focus of the mirror (the
single viewpoint) [16]. This two-step projection consists first
in projecting a real 3D point Pw to a point Ps from the center
of the sphere Oc (Fig 2). The second step projects point Ps

to point Pi in the image plane from a specific point Op.
In order to apply the equivalence, it is necessary to know
the intrinsic parameters of the camera and two additional
parameters namely ξ and ϕ which are respectively equal to
distances |OcOp| and |OcOi|. Parameters ξ and ϕ define the
shape of the mirror and can be estimated by calibration [18].
Whereas it does not seem obvious at the first sight, the sphere
equivalence is interesting for several reasons. First, it greatly
simplifies the formalism to take catadioptric distortions into
account. Indeed catadioptric images are highly distorted
because of the mirror projection, which complicates the
image analysis. Working in the sphere permits to manipulate
those distortions much more easily. A second reason is that
it allows working in a general framework, i.e. the sphere,
independently on the fact that a hyperbolic or a parabolic
mirror is used. Finally, the sphere space provides some very
interesting projection properties. For example, it has been
proved that a line is simply projected as a great circle
in the sphere [16]. Therefore most of algorithms of line
detection for catadioptric images are based on this important
characteristic, especially our algorithm that we use in the
present paper [19]. In our previous work [10], we have also
shown that the sphere equivalence simplifies the horizon
detection in aerial flights. Indeed, if we consider the horizon
as the image of the occluding contour of the Earth sphere,
the horizon is projected as a small circle on the equivalent
sphere, which imposes interesting constraints.

III. INFINITE HOMOGRAPHY FOR
CATADIOPTRIC VISION

Homography is a common and important tool to estimate
the motion of the camera from coplanar real feature points
detected in a pair of images [20]. On the contrary, infinite ho-
mography computes the motion based on the correspondence
of points lying at the infinity, such as vanishing points. To
the best of our knowledge, whereas there exist a few papers
about homography for catadioptric vision [21], there is none
dealing with infinite homography.

A. Notation and Homography

Before defining infinite homography for catadioptric vi-
sion, let us define important entities and notations. Let Pw

be a world point whose coordinates are (xw, yw, zw)T in the
coordinate frame of the first image and is projected onto the
associated sphere at (xs, ys, zs)T = λ(xw, yw, zw)T

where

λ =
1√

x2
w + y2

w + z2
w

(1)
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Fig. 2. Equivalence between the catadioptric projection and the two-step
mapping via the sphere

Fig. 3. The direction of two parallel lines corresponds to the direction of
their associated vanishing points in the sphere.

Subsequently, Pw is represented by (x′w, y′w, z′w)T in the
coordinate frame of the second image and is projected onto
the associated sphere at (x′s, y′s, z′s)T = λ′(x′w, y′w, z′w)T

where
λ′ =

1√
x′w

2 + y′w
2 + z′w

2
(2)

In [21], homography for traditional perspective cameras
has been extended towards catadioptric vision and defined
as follows:




x′s
y′s
z′s


 =

λ′

λ
H




xs

ys

zs


 where H = R + T ñT (3)

The entity ñ is the normal to the plane such that ñ = n/d
and where d is the distance from the center of the sphere to
the plane.

B. Infinite Homography

As defined in [20], the infinite homography H∞ is the
homography induced by the plane at infinity. Formally, for
two corresponding points at infinity X and X ′ in a pair of
perspective images, H∞ verifies:

X ′ = H∞Xwhere H∞ = KRK−1 (4)

When a pixel on the catadioptric image plane is projected
onto the equivalent sphere, the calibration process (similarly
to matrix K) is applied. Therefore, based on same geometric
considerations than in [21], the infinite homography for two
infinite point correspondences in the sphere can be easily
defined as:




x′s
y′s
z′s


 = H∞




xs

ys

zs


 where H∞ = R (5)

This equation can be obtained in another way. In perspec-
tive case, let a scene line have vanishing point vi in the first
view and v′i in the second view [20]. The vanishing point
vi has direction di measured in the first cameras coordinate
frame, and the corresponding vanishing point v′i has direction
d′i measured in the second cameras coordinate frame. These
directions can be computed from the vanishing points, for
example, di = K−1vi/‖K−1vi‖ where the normalizing
factor is included to ensure that it is a unit vector. The
directions di and d′i are related by the camera rotation as
d′i = Rdi . Actually, similar properties can be derived for
catadioptric images (Fig 3). Indeed, in [13] we have proved
the following property: if d1 and d2 are two parallel lines
with unit vector u then their equivalent great circles C1 and
C2 on the unitary sphere intersect into two antipodal points
I1 and I2. These points depend only on direction u and verify
I1I2 = u where u is the associated vanishing direction.

This property means that the direction of a vanishing point
in the sphere space is the same than the direction of its
associated lines in the world. As the same conditions than in
the perspective case are obtained, the similar equation can
be applied: d′i = Rdi where di and d′i are the vanishing
directions in sphere space.

C. Infinite Homography Computation

Infinite homography has 3 degrees of freedom, corre-
sponding to the number of DOF of the rotation matrix. Each
vanishing point correspondence in the sphere space (noted
Xi and X ′

i)provides two equations, which means that two
infinite point correspondences are sufficient. Using pitch (γ),
roll (β) and yaw (α)-based rotation angles, we obtain the
following system:

X ′
i = H∞Xi, i = 1, 2, . . . (6)

where

H∞ = Rα,β,γ =




cosα cosβ − sin α cos γ + cos α sin β sin γ
sin α cosβ cosα cos γ + sin α sin β sin γ
− sin β cos β sin γ

sin α sin γ + cos α sinβ cos γ
− cosα sin γ + sin α sin β cos γ

cosβ cos γ


 (7)

Traditionally, this system is non-linear with respect to the
three rotation parameters (α,β,γ). However if quaternions are
used to represent rotations, as suggested by Horn [22], we
can easily obtain a closed-form solution.
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IV. EXTRACTION OF LINES AND VANISHING
POINTS

In order to estimate the infinite homography, some points
lying at infinity are required. The most common infinite
points are called vanishing points and correspond to the
intersection of parallel lines. Contrary to traditional perspec-
tive vision, catadioptric sensors provide two great advantages
for extracting vanishing points: first, the image contains
much more parallel lines and second, the vanishing points
lie in the image plane, which makes their estimation more
robust. In [19], we have introduced a complete method
that automatically extracts lines, parallel lines and vanishing
points. In this section, we remind the main steps of the
algorithm for convenience of the readers and clarity of the
paper.

Fig. 4. The 4 main steps of our line detection algorithm: edge detection
by Canny (top-left), edge chaining (top-right), before (bottom-left) and after
(bottom-right) the merging step.

A. Line Detection

Our line detection method can be seen as an extension of
the polygonal approximation approach and is based on the
following geometrical property: a line in space is projected
as a great circle on the equivalent sphere. Our algorithm is
composed of three intuitive steps. First we extract edges and
build edge chains. Second we project the chains on the sphere
by using calibration parameters and then we check for each
chain if it verifies the great circle constraint. More precisely,
we consider the two spherical endpoints of a chain, X1

s and
XN

s , that define a unique great circle whose plane normal
is ~n = (a, b, c) =

−−−→
OX1

s ×
−−−→
OXN

s , where O is the sphere
center. Then we consider that a chain point Xs = (xs, ys, zs)
verifies the great circle constraint if |axs + bys + czs| ≤
DistThresh. In the case at least one chain point does not
belong to the great circle, the third step consists in splitting
the chain at the furthest chain point from the great circle, i.e.

arg max
i
|axi

s + byi
s + czi

s| (8)

Finally, a line might not be continuously detected as an
edge and thus might be divided into some parts during the
splitting step. That is why the final step consists in merging
detected lines having similar normals. Figure 4 depicts the
different steps of the procedure.

B. Vanishing Points Extraction

A set of parallel lines intersect in two antipodal points
in the sphere [16]. These two points corresponds to the
vanishing directions and can be characterized by a unit vector
u. Therefore the idea for detecting parallel lines consists
in computing this vector u. Let n1 and n2 be the normal
vectors of two great circles. Their intersection is calculated
by u = n1 × n2 and corresponds to the direction of the
antipodal points. Then we consider that a great circle normal
ni is in the same direction than u if:

1− |ni · u| ≤ SimilarityThreshold (9)

Doing the same way for each combination of two normals,
we can compute the vector that corresponds to the highest
number of parallel lines, that is to say the vanishing point of
those lines, and the associated parallel lines. Following the
same procedure, it is possible to detect the second and third
dominant directions after removing from the combination
list the normals that already belong to a detected dominant
direction (Fig 5).

Fig. 5. Detection of the three most dominant directions and their associated
parallel lines in an image pair. Each conic represents a detected line and its
color corresponds to the set of parallel lines it belongs to. The vanishing
points lie at the intersection of the associated parallel lines.

V. ATTITUDE ESTIMATION

In this section, we present two methods to compute the
UAV attitude: common composition of relative rotations be-
tween two consecutive frames and direct attitude estimation
by matching vanishing points of distant frames.

A. Common Approach

After extracting vanishing points, we need to build some
correspondences in order to compute the infinite homogra-
phy between two images. In our applications, the video is
captured continuously so we can match vanishing points in
a pair of consecutive images by a simple similarity measure.
The ith vanishing point vt

i of frame t is matched to the
vanishing point vt+1

k of frame t + 1 which is solution of:

arg max
k
|vt

i · vt+1
k | (10)
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Once at least two vanishing points have been matched, we
can calculate the infinite homography, as explained in III-C,
and we obtain the relative rotation between the two frames. If
one wants to compute the absolute rotation, the composition
of relative rotations must be computed. The attitude matrix
Ri at the ith frame is calculated by Ri = R0 ◦R′1 ◦R′2 . . . ◦
R′i where R0 corresponds to the initial absolute orientation
matrix and R′k the relative rotation obtained at frame k.

B. Robust Approach

Obviously, small error on each rotation matrix, due to
inaccuracy in vanishing points extraction, will accumulate
over time. Actually, catadioptric vision provides a very
interesting practical solution to this problem: thanks to the
very wide field of view, a vanishing direction can be tracked
during a long sequence, as will be depicted in the results
section. Therefore, the vanishing points of the current image
also exist in the initial image of the sequence. Instead of
directly matching the vanishing points of two distant images,
which is not an easy task, we first match the vanishing points
in all consecutive images. Then, we simply backtrack the
matching results from frame to frame, so finally we get the
correspondence between the initial and the current image
even if they are very distant. This is a great advantage
because it avoids the composition of relative rotations and
thus error does not accumulate. The validity of this approach
is analyzed in the results section.

VI. EXPERIMENTAL RESULTS

In this section, we present some results issued from two
different experiments. The first sequence contains 100 frames
in which three vanishing points can be continuously detected
(Fig 5). Figure 6 depicts the smoothness of the extraction of
the 2 horizontal vanishing points. This video was recorded
some months ago and at that time, we did not have the
inertial sensor. In order to compare our results with ground
truth data and demonstrate the robustness of our method, we
have recorded a second sequence which contains IMU data
and is much longer (520 frames at 4fps). Fig 7 depicts the
fact that the vanishing points can be tracked along the whole
video even with large camera motion. We have computed the
infinite homography from 2 vanishing directions between the
initial and the current frame to avoid the error accumulation
problem which is traditionally inherent to long sequences. In
order to qualitatively compare IMU and camera data, these
two sensors must be calibrated. We have manually set a
calibration corresponding to a rotation of 180 degrees along
the vertical axis, consistently with the layout of our system.
In a first test, we compare the normal vector of the ground
plane obtained by the cross-product of the two horizontal
vanishing directions and the vertical vector issued from the
IMU. Results are depicted by Fig 8 and show that the vertical
is accurately extracted. In the second test, we compare the
evolution of the three rotation angles obtained by infinite
homography and the IMU (Fig 9). We have obtained a
mean/std error of 3.8/2.6 for roll angle, 2.3/1.8 for pitch angle

and 4.6/3.5 for yaw angle, which demonstrates the robustness
and accuracy of our system.

Fig. 6. Evolution of the 3D components vx, vy and vz (red, green and
blue) of the two horizontal vanishing directions (left and right graphs)
corresponding to the sequence of figure 5. Note the smoothness of the
evolution along the 100 frames.

Fig. 7. The vanishing points can be robustly extracted and continuously
tracked along the whole sequence despite large camera motion.

VII. CONCLUSION
A. Conclusions

The presented work aims to compute the complete attitude
of a UAV flying in urban environment and is the latest paper
of a series of publication of our research group involved in
catadioptric vision for UAV applications. Whereas we had
obtained interesting results, our previous methods suffered
from some limitations: horizon needs to be largely visible,
yaw angle cannot be estimated or sky region is required.
In order to overcome these difficulties, we have derived
infinite homography for catadioptric images based on van-
ishing points. Independently of the vision system, there are
numerous advantages of such an approach: the complete
UAV attitude can be estimated, the rotation solution is unique
(matrix decomposition is not needed) and it leads to a better
behaved control solution. We are aware that similar methods
have already been applied to traditional perspective cameras
but this paper is the first one to follow this approach for
catadioptric vision and we have listed some important extra
advantages that are provided by the inherent wide field of
view of such sensors. First, the image contains a much
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Fig. 8. Comparison of the normal vector of the ground plane (components
xyz in top, middle, bottom figures) obtained by IMU (red dashed line) and
by cross-product of the two horizontal vanishing directions (blue solid line)
for the sequence of figure 7.

Fig. 9. Comparison of roll (top), pitch (middle) and yaw (bottom) angles
obtained by IMU (red dashed line) and the infinite homography (blue solid
line) for the sequence of figure 7. The ”jumps” of the yaw angle are simply
due to the discontinuities (-180◦;180◦).

larger number of lines, thus we do not suffer from lack
of information when extracting parallel lines. Second, the
vanishing points, i.e. the intersection of parallel lines, lie
in the image and therefore their estimation is more robust.
Finally, a vanishing direction can be continuously tracked
during very long sequences. This is a very important property
because it permits to directly calculate the infinite homog-
raphy between the initial and the current frame, and thus
the UAV attitude without error accumulation. Experiments
on long video sequences and comparison with ground truth

data have demonstrated the robustness and the validity of our
approach. In future work, we plan to apply some filtering
techniques on the UAV motion and develop some embedded
algorithms for realtime onboard processing.
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