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Abstract— This paper presents the design of a monocular
vision based particle filter localization system for urban settings
that uses aerial orthoimagery as the reference map. One of
the design objectives is to provide a low cost method for
outdoor localization using a single camera. This relaxes the
need for global positioning system (GPS) which may experience
degraded reliability in urban settings. The second objective
is to study the achievable localization performance with the
aforementioned resources. Image processing techniques are
employed to create a feature map from an aerial image, and also
to extract features from camera images to provide observations
that are used by a particle filter for localization.

I. INTRODUCTION

The ability to localize is essential for an autonomous
mobile robot to successfully navigate in its workspace. This
paper proposes the design of an urban outdoor localization
system that uses a high resolution aerial image to create a
feature map of an operation workspace, and uses a single
monocular camera as an exteroceptive sensor. An assumption
made in the design is that most observable features of
buildings in the workspace are either orthogonal or parallel
with the ground plane, which is the case in many urban
settings. To use the aerial image, processing is required
to transform it into a representation that is usable by a
robot. Being able to achieve this will increase the degree
of autonomy for a robot system. In urban environments,
beacon based sensing and localization such as with the use of
global positioning system (GPS) may become impractical or
has degraded performance due to buildings in the operation
area that interfere with beacon signals [1]. The end objective
of the design is to achieve autonomous localization in
an outdoor urban environment defined by an aerial image
without knowledge of the initial position (x, y) and heading
(ϑ).

Other researchers have also used monocular vision in lo-
calization because of the simplicity of hardware involvement.
In recent publications, researchers have tried using a database
of images to serve as the map in localization. Zhang et al. [2]
captured images at various points in an operating workspace
and tagged them with GPS position readings to create an
image database. Matching of features between the database

images and an on board camera images for localization was
carried out by performing scale invariant feature transform
(SIFT). In the work by Johns et al. [3], the appearances of
city skylines from various locations were used collectively
as the map. Similar work have also been done by looking at
the details of building facades. In the most related and recent
work presented in [1], a robot is first guided through a course
as it records a video of the surrounding. This information
is used offline where distinct image features are selected to
generate a three dimensional map. The robot is then shown to
localize itself using on board camera images while navigating
a trajectory close to the path which the robot first took in gen-
erating the map. The methods highlighted share the similarity
of requiring a map to be first created by capturing images
at known locations. This map is subsequently compared to
on board camera images when localization is performed.
The approach taken by the proposed localization method
is different in that it is not necessary to obtain on board
images of the environment before performing localization.
Instead, this information will come from an aerial image.
Aerial orthoimages are geographic information system (GIS)
resources that are becoming more readily available, and are
usually obtainable through government sources or private
agencies.

Image processing techniques are applied to an aerial image
to highlight building boundaries (walls). The details of this
process is presented in section II. Building boundaries are
considered good features to detect because they can be
seen from both an aerial image and from an on board
camera equipped by a robot on the ground. Thus there is a
similar type of object that can be compared for localization.
The identification of relevant wall features from camera
images is presented in section III, which involves the use
of vanishing point analysis in order to infer 3d information
from 2d images. The orientation of building boundaries are
compared to determine the importance factor of particles
in the particle filter. This particle filter is used because
of its ability to perform state estimation with unknown
initial pose. In the testing of the particle filter, a camera
is moved manually while information required to generate
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state transition (odometric data) is recorded. The system is
tested offline using saved camera footage, and the results are
presented in section IV.

II. FEATURE MAP GENERATION

Aerial images are resources that are becoming readily
available. The goal of extracting boundary features from
aerial imagery is similar to the practice of building detection.
Automatic detection of buildings from aerial images is of
great interest in many geographic information system (GIS)
related fields [4]. In general there are three ways to approach
the building detection problem: stereo vision, line analysis,
and using auxiliary information. However, there exists no
single method that can perfectly detect all buildings in every
aerial image. For the proposed localization system, the line
analysis approach is adopted to extract features from an aerial
image. Lines are considered appropriate since most man
made structures are rectangular or contain mostly straight
edges [5]. Most building detection methods start with low
level image processing methods of edge and line detection.
The problem is made difficult with the presence of shadows,
surface markings, vegetation, and other distractions which
may add unwanted boundary lines or fragmented boundaries
of interest. These effects together are known as the figure-
ground problem, and it has a much more significant impact
compared with sensory noise [6]. As a result the resulting
feature map is not an absolutely accurate representation of
the environment.

The aerial maps that will be used in the localization
system are orthoimages, which are images derived from
normal perspective images in a way such that displacements
caused by sensor (camera) placement and relief of terrain
are removed. These high resolution images are in the format
of grayscale bitmaps, where 10cm in real life resolves
to approximately 1 pixel length. The aerial image of the
220m × 180m workspace where the proposed localization
system will be tested is shown in figure 1.

Fig. 1. The aerial image of the proposed localization system test site,
located at the University of Waterloo

The first step in obtaining a feature map is the processing
of raw image data using Canny’s edge detector [7] to create
an edge map which highlights the pixels that are likely to
be part of building boundaries. The next step is to remove
the effects of shadows. Shadows can be easily identified in
an aerial image as they appear much darker compared to all
other objects. To correctly remove the effects of shadow, it
is necessary to distinguish whether a shadow edge is shared
with a building boundary (which should not be removed),
or incident with the ground (which should be removed).
One approach to this is to take into account the source of
illumination (sunlight). Sobel operators are used to estimate
the intensity gradient over the edge of a shadow. If the
intensity gradient increases in the direction of illumination
(away from the light source), the corresponding edge is
considered a shadow edge and is eliminated from the edge
map.

The edge map is further filtered by masking edges that
may have been generated from distractions in the aerial
image, such as vegetation in the environment. In general
image intensities in distraction areas vary in a way that
give the appearance of rough texture. A corner response
measure obtained using the Harris corner detector [8] is
used to discriminate these distractions. It was found that
most distractions that appear in an aerial image are within
a certain range of corner response values. Any pixel with a
corner response value within the range will contribute to a
mask that is applied over the edge map. The morphological
closing operation is used on the mask prior to its usage to
fill in small gaps.

From the filtered edge map, high level line segment
(boundary) features are identified using a modified version of
the Progressive Probabilistic Hough Transform (PPHT) [9],
summarized in figure 2. The modified PPHT algorithm is de-
signed to alleviate the figure-ground problem. The algorithm
uses multiple edge maps as inputs derived from different
edge detection settings and is able to vary its threshold pa-
rameters as it iterates so that longer line segments are always
extracted first. Furthermore, the algorithm discourages the
extraction of multiple overlapping line segments in areas of
the edge map where edge density is high. For more detail,
refer to [10].

Extracted line segments are further processed so that
segments that are almost parallel and close to each other
are merged to a single line. A simple building model is
then used to distinguish whether a line segment is a real
boundary. A building should be enclosed and therefore the
line segments making up its boundary should theoretically
have overlapping endpoints. However, since the edge map
is not perfect, this requirement is relaxed by accepting
endpoints that are near one another. Line segments that fail
this test are removed from the map. The final result of the
map generation process can be seen in figure 3. The feature
map is not perfect, meaning that a robot using this map will
have errors in its interpretation of the real world. Fortunately,
Bayes filters are known to remain robust even with such
discrepancies.
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Fig. 2. The modified progressive probabilistic Hough transform algorithm

Fig. 3. The feature map derived through image processing of Fig.1

III. CAMERA OBSERVATIONS

The orientations of observed building walls needs to be
interpreted from camera images. This information can be re-
covered from the effect of perspective using vanishing point
analysis. A benefit of using vanishing point analysis and
selecting building orientation as a measure for comparison is
that it makes the system tolerant to significant camera rolling
and tilting. Edge detection and the PPHT algorithm are used
again to extract useful features from an image scene.

The concept of vanishing point has been known for
centuries. When parallel lines in 3d space (or object space)
are projected onto an image plane using a central projection
model, the lines on the image plane will intersect at a
point known as the vanishing point [11] [12]. The Gaussian
sphere [13] shown in figure 4 was introduced as a method
of quantifying the location of vanishing points. It is a unit
sphere centered on the focal point of a vision system. Using

the Gaussian sphere, a vanishing point can be defined by its
projection on the sphere, where it has a unique coordinate
(azimuth and elevation). When a vanishing point has been
identified in an image, it is possible to infer the orientation
of 3d objects from an image [14].

Fig. 4. The Gaussian Sphere [15]

To autonomously identify vanishing points in an image,
an approach similar to that presented by Gallagher [16]
is used. Intersections of line segments discovered by the
PPHT are projected onto the Gaussian sphere. Vanishing
points are likely to appear where there is a high density
of intersection points, which are identified by subtractive
clustering [17] [18]. To aid the clustering process, it is
assumed that the on board camera will normally remain
leveled and not experience severe tilting and rolling. With
this assumption, it follows that vanishing points will likely
appear near the pole (from vertical lines in an image) and
the equator (from horizontal lines in object space) of the
Gaussian sphere. Therefore, the clustering problem can be
divided into two parts; one that searches above a certain
angular elevation for a vanishing point near the pole, and
one that searches between two elevations slightly above and
below the horizon. This implementation has been tested and
confirmed to generate better and more accurate vanishing
point detection results.

Line segments previously identified by the PPHT are
classified and associated with a vanishing point to determine
their orientation in 3d space. This is done by projecting each
line segment onto the Gaussian sphere and measuring the arc
distance to each identified vanishing point. Membership of
a class is won by the shortest distance measure. Figure 5 is
an example of the result of vanishing point analysis and line
segment classification. In this figure, detected line segments
are colour coded according to an associated vanishing point.
Red lines belong to the first vanishing point, green lines
belong to the second, and blue lines belong to the third. A
black line segment is one which its orientation is unknown
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due to failure to associate it with any vanishing point.
The location of the corresponding vanishing points on the
Gaussian sphere has also been identified in the figure by
their azimuth and elevation in units of degrees. The azimuth
is of greater interest as it indicates the orientation of the
associated line segments (and the wall they belong to) in 3d
space.

Fig. 5. Result of the vanishing point analysis on an image captured by the
camera. The location where the image is taken is within in the workspace
defined by fig.1 at the University of Waterloo

IV. PARTICLE FILTER IMPLEMENTATION

The particle filter is an implementation of the Bayes
filter using a finite number of particles in state space to
describe the belief state probability density distribution.
The algorithm propagates particles through time using the
survival of the fittest concept. Initially, the particles are
uniformly distributed throughout the workspace to represent
the unknown starting state. Then, the algorithm iterates with
two steps, the first of which propagates particles forward
in time based on control inputs. In the second step, sensor
measurements are used to determine an importance factor for
each particle. This factor is used in particle resampling. A
more detailed explanation of the particle filter can be found
in [19]. A benefit of the particle filter is that it works for
probability distributions of any shape and is able to achieve
localization with an unknown initial state.

To experimentally validate the proposed localization sys-
tem, on board camera images were rerecorded for conduct-
ing offline localization. Unfortunately, neither the vehicle
odometry nor control inputs were available directly, which
are typically required for the algorithm propagation step.
As a substitute, the vehicle forward velocity (v) and yaw
rate (ω) were extracted by differencing the position and
yaw between images. Zero-mean Gaussian noise was then
added to account for actuator uncertainties. For the results
presented, the standard deviations for forward velocity and
yaw rate are 10 cm

s and 5o

s respectively.
The state transition model shown in equation (1) is used

in the propagation step of the algorithm. For each iteration,

this model propagates the particles forward according to the
velocities v and ω.
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The importance factor is a weighting for particles that
indicates the likelihood of the particle state being the true
vehicle state. This factor is determined by observations made
by exteroceptive sensors (in this case the camera), and is a
function of the similarity between expected measurements
and observed measurements. The expected measurement are
determined for each particle. By referring to the feature map,
each particle can determine the relative orientation of features
observable in its field of view as a function of bearing
ψr = ψr(α).

The observed measurements come from the vanishing
point analysis. Depending on the scene, it may be possible
to observe multiple features at various relative orientation
ψs,i(α) (where i is the index for different features). To keep
track of multiple features at a given bearing, the camera
image is divided into view sections e (bounded by starting
and ending bearing limits αe,start, αe,end), within which the
non-empty set of observable features remain constant.

The importance factor for each particle Wm is evalu-
ated by first considering the similarity between observed
and expected measurements in individual view sections e.
This similarity (ηe) is determined heuristically according to
equation (2).

ηe = max
i

[
1− 1

1 + exp ( 20−|ψs,i−ψr|
2 )

]
(2)

A weighting factor ρe is also determined for each view
section depending on its size with respect to the combined
size of all view sections, as expressed in equation (3).

ρe =
αe,end − αe,start∑emax

e=1 (αe,end − αe,start)
(3)

The importance factor for a particle is then calculated by
considering all view sections using equation (4), and the
low variance sampling method [20] is used during particle
resampling in each iteration of the particle filter. It should be
noted that particles that move through a building boundary
on the feature map are automatically regenerated with a new
random state.

Wm =
emax∑
e=1

ρeηe (4)

Through numerous trials with different sizes of particle
sets, it has been shown that offline localization can be
achieved with as little as 300 particles. However, it was
determined that 2000 particles are required to assure a high
likelihood of convergence.

For the path shown in figure 6, snapshots of the particle
set for a particular execution of the particle filter process are
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shown in figures 7 through 9. To evaluate the performance
of the particle filter, the positioning error is tracked over
the test course. This error is determined by the difference
between the true position and the location where the belief
state probability density is determined to be a maximum by
using the mean shift clustering algorithm [21]. The result
for several runs of the particle filtering process is shown in
figure 10. This figure indicates that convergence of particles
is achieved for all test runs at around 150s, after which a
small positioning error is maintained.

Fig. 6. Particle filter localization test course with the true path shown

Fig. 7. Particle filter localization result - elapsed time: 0s

Closer examination reveals that during a couple of the test
runs (1 and 2), the positioning error became very low but
increased again. This occurred because there were multiple
dominant particle clusters existing concurrently which ex-
changed the role of the most dominant cluster in a back and
forth manner. To show that once convergence is maintained
once it has been achieved, the particle filter process is
executed by initiating particles at the true starting position.
Positioning error for this case is shown in figure 11 and it
can be seen to remain relatively stable (note the difference in
scale compared to figure 10). The main source of error in this
particle filter localization process is the imperfect map. By

Fig. 8. Particle filter localization result - elapsed time: 60s

Fig. 9. Particle filter localization result - elapsed time: 150s

examining the trajectory taken in the test course, instances
where the positioning error was relatively high in figure 11
corresponded to inaccuracies in the feature map. The average
positioning error is determined to be 3.40m, with 95% of
the error measurements being below 4.80m. This result is
comparable to that of the standard positioning service for
GPS, which can achieve a positioning accuracy of 4.83 in
95% of horizontal (2d) measurements according to [22].
However, the particle filter process takes considerable time
before particle convergence is achieved. On the other hand,
GPS availability and performance are not reliable in some
urban settings due to multipath. Therefore, the particle filter
process presented may serve as an alternative localization
tool.

Timing analysis indicates that the current implementation
of the particle filter on a computer with a 1.5GHz Pentium
M processor is unable to achieve real time operation while
processing camera images at 1Hz. A large proportion of
computational time is spent on processing images captured
from the camera and performing the vanishing point analysis.
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Fig. 10. Localization Errors Recorded in 5 instances of the particle filter
process with unknown initial state

Fig. 11. Localization Errors Recorded in 5 instances of the particle filter
process with known initial state

On average an image frame requires about 9s of processing
time. However, it is predicted that the system real time
implementation may be feasible given a faster computer and
through program code optimization.

V. CONCLUSIONS

The design of a monocular vision based particle filter lo-
calization system was presented. The system is designed for
urban settings consisting mainly of orthogonal structures. An
aerial image is given from which information is extracted to
autonomously generate a feature map for localization. Image
processing techniques and the vanishing point analysis are
used to estimate building wall orientations as observations for
the particle filter. Experimentation was conducted in a large
urban environment and the results indicate that localization
is achievable by the system. Positioning error is determined
to be comparable to that of a GPS receiver using standard
positioning service, but a considerable duration of movement
in the workspace is necessary. Still, this particle filter process
may be a useful alternative if GPS performance is degraded
due to multipath or when GPS service is not available.
Although testing was conducted at only one urban setting, it
is hypothesized that similar results can be achieved in other
urban settings provided that it consists mainly of orthogonal
structures. In the future, further verification in other urban
environments will be performed using a real robot.
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