
 

 

 

  

Abstract— In this paper we present a novel place recognition 

method. Instead of directly using large numbers of SIFT 

features as visual landmarks, we first use a jigsaw puzzle image 

segmentation algorithm to segment the input scene image into 

regions that may correspond to objects or parts of objects. 

Based on these image regions, we further detect a set of salient 

objects to represent a place and only those SIFT descriptors 

that were contained in these salient objects were kept in the 

database. We also designed a range-tree data structure to 

organize these salient objects to increase the matching 

efficiency. Experiments show that place recognition can be 

achieved accurately and efficiently with these salient objects. 

I. INTRODUCTION 

eliable place recognition is an important computer 

vision task for autonomous navigation of mobile 

vehicles, particularly, for the simultaneous localization and 

mapping (SLAM) problem.  Although much progress has 

been made [7],[8],[9], today’s SLAM technology still faces 

some serious problems that prevent it from becoming a 

robust and practical application system. A major problem 

SLAM  faces is the big loop closure problem [1]: when a 

vehicle is closing a big loop, such as around a building or 

hallway corridors, it cannot detect that loop due to the gross 

error of location estimate and hence is unable to build a 

consistent map. 

  The key to solving the loop closure problem is enabling 

vehicles to quickly detect a loop while revisiting a previously 

visited area. One possible way to achieve that is to capture 

some special geometric or visual features from each scene so 

that the appearance dissimilarity of different scenes can be 

accurately measured. Most existing SLAM systems use range 

devices such as a range scanner and laser scanner to measure 

the geometric primitives (like corners and edges) of a 

workspace to build a map. These simple geometric features 

are often not special enough to build a unique “signature” for 

a place. In contrast, it is generally agreed that vision is one of 

the richest sources of information and it has the potential to 

provide enough information to uniquely identify the robot’s 

position [12].  

   Good visual features should have the following properties: 

(1) robust to changes in view point. (2) robust to changes in 
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scale and (3) robust to changes in illumination. When mobile 

vehicles are moving around in a complex environment, they 

can usually observe many landmarks over time from different 

angles, distances or illuminations. Some affine covariant 

visual features such as maximally stable extremal regions 

(MSER) [3] and the scale invariant feature transform (SIFT) 

[2] can basically fulfill these requirements. The performance 

evaluation of different affine covariant features can be found 

in [5],[6]. Promising results have been obtained by some 

recent appearance based approaches [1],[10],[11] that are 

based on the affine covariant features. In [1], the 

combination of saliency [4] and MSER features are used as 

visual landmarks. In [10],[11] SIFT features are used as the 

basic visual features.  Typically, the limitation of these 

methods is that it is difficult to scale them to large 

environments.  

Large number of affine covariant features may be 

extracted from a typical image. In a large environment, it is 

often the case that a database that may contain hundreds of 
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Fig. 1. Example of jigsaw puzzle segmentation algorithm: (a) The 

input scene image with final segmentation results (b) The superpixels 

of the scene image obtained with the method from [22] (c) A trash can 

consists of multiple superpixels, one of them is being tested: the green 

points are the seeds set in the testing superpixel, the blue points are the 

seeds set in background (the sky and ground) and all the known 

objects (d) Testing result: high probabilities is mapped to high 

intensity (white) and low probabilities is mapped to low 

intensity(black). It is clear to see that the whole trash can “looks” 

totally different from its background.  
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thousand or even millions of features might be formed, which 

will make query very inefficient and therefore make on line 

loop detection difficult.  A more efficient way is to separate 

some interesting objects from a scene through image 

segmentation and only keep those salient objects with a 

certain number of affine covariant features inside as 

landmarks. In this way we may greatly reduce the 

information amount needed for uniquely labeling a place and 

make the matching process more efficient.  

In this work, we propose a novel jigsaw puzzle image 

segmentation algorithm to segment a scene image to regions 

that may correspond to objects or parts of objects. Based on 

these image regions, we can detect a set of salient objects 

from a scene.  We also design a range tree database to speed 

up the scene matching process. 

  The remainder of this paper is organized as follows: In 

section II, we introduce the jigsaw puzzle image 

segmentation algorithm. In section III, we describe our place 

recognition and loop detection algorithm in detail, 

addressing how to detect salient objects and how to build a 

range tree database for efficient object matching. The 

experimental result is presented in Section IV. Section V 

concludes this paper.  

II. JIGSAW PUZZLE IMAGE SEGMENTATION 

   In general, image segmentation approaches can be divided 

into two categories: methods based on low-level features 

(bottom-up) and methods based on prior knowledge about 

the scene (top-down)[14]. The goal of image segmentation is 

to divide the image into regions of coherent properties so that 

each region corresponds to a coherent object.  

 However, none of the many bottom-up segmentation 

methods can achieve this goal. It was recently argued that any 

bottom-up segmentation method cannot be possibly expected 

to partition an image into its constituent objects because it 

does not know where one object ends and another one begins 

[23]. As a result, bottom-up methods may cause a serious 

over-segmenting problem: an object may be segmented into 

multiple regions and it is difficult to regroup these regions 

back to that object because to achieve that, one needs to solve 

the object recognition problem first [18].  

 The top-down methods attack this difficulty by using prior 

knowledge about an object, such as its possible shape, color 

or texture, to guide the segmentation. The difficulty for 

top-down segmentation is that it requires a learning stage to 

acquire class-specific information and can only be applied to 

images from a specific class. Due to the large variability in 

the shape and appearance of objects within a given class, the 

top-down methods may not accurately delineate the object’s 

figure-ground boundary [19]. Plus the high computation cost 

of top-down methods also makes them not applicable to 

real-time applications like robotic place recognition. 

   Regions in an over-segmented image are often called 

“superpixels” [20]. Although not having semantically correct 

information, these “superpixels” still provide certain space 

support that is necessary for segmentation at the scale of 

interest. (Superpixels are local, coherent and respect segment 

boundary[20],[21]). To identify a set of superpixels that 

belong to a single object, we need to have some knowledge 

about the scene. An important observation from [20] shows 

that over 97% of outdoor image pixels can be classified as 

either being part of the ground plane, belonging to a surface 

that sticks up from the ground or being part of the sky. This 

observation can also apply to indoor images (in a indoor case, 

the sky is replaced by a ceiling and wall, the ground plane is 

replaced by a floor). Superpixels belonging to the sky or 

ground plane can be easily detected because they are usually 

located in the top or bottom area of an image and in most 

cases should be uniform image patches.  

 Our new image segmentation algorithm is motivated by a 

jigsaw puzzle game. Each superpixel can be viewed as a 

“puzzle piece.” Our task is to assemble these puzzle pieces 

into objects in the scene. One well known strategy for playing 

a jigsaw puzzle is starting by separating the edges from the 

inside pieces and connecting the outside edges, then working 

inward. Our method takes the similar strategy: first 

“assemble” the outside edges (sky and ground plane), then 

work inward. Our strategy involves always working on easy 

portions in which objects look totally different from their 

background first and leaving the difficult portions where 

multiple objects look similar with each other to the last stage 

when most of the neighbor areas of the portion are clear.  

 The basic rule to group a set of superpixels to a single 

object is based upon this observation: although there may be 

certain differences among the different parts (superpixels) of 

the object, the whole object should look totally different from 

its background if that object is distinguishable. We use the 

approach proposed in random walks image segmentation 

algorithm [13] to measure the difference between a single 

object and its background. Notice that our jigsaw puzzle 

image segmentation algorithm still belongs to the bottom-up 

approach because we do not have a learning stage and do not 

have any prior knowledge about the objects existing in a 

scene. Our goal here is just to attempt to detect enough 

objects from a scene and use these objects as landmarks to 

label a place, not to produce a perfect-segmenting image.  

Because to achieve that, one needs to apply some 

knowledge-based methods to make the correct decision 

everywhere in the image, which is out of the scope of our 

work. We may miss a few objects, but on the whole, we 

segment the most salient objects, which should be sufficient 

for place recognition. 

A. Random walks image segmentation 

Random walks [13] is an interactive image segmentation 

method. Assuming all pixels X in an image are connected to 

their neighbors with edges e ∈ E ⊆ X × X. Given a small 

number of pixels XM with user-defined or pre-defined labels, 

starting at each unlabeled pixel x∈ XU (XM ∪ XU = X), this 

algorithm can quickly determine the probability that a 
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random walker will first reach one of the pre-labeled pixels 

xm ∈ XM. Based on the connection between random walks on 

graphs and discrete potential theory, this probability can be 

calculated by solving the circuit theory that corresponds to a 

combinatorial analog of the Dirichlet problem.  

If every region is correctly seeded (each constant region 

corresponding to a single object is assigned with a label), the 

random walks algorithm can produce a segmentation that 

respects even a weak object boundary. What is of interest to 

our research is how it assigns probabilities to these 

ambiguous regions (unseeded regions).  For example, if a 

superpixel vi corresponding to object i is assigned with a 

label and a set of superpixels VB corresponding to the 

background like the sky and ground plane are assigned with 

another label, for a unlabeled superpixel vj corresponding to 

object j, if it looks more like vi  (based on color), it will be 

assigned with higher probabilities. If it looks more like the 

background, it will be assigned with lower probabilities. This 

probability information is useful as a measurement for the 

degree of how similar the local neighbors of an object look 

like it comparing to the known background. For more details, 

see[13]. 

B. Jigsaw puzzle algorithm 

Following [20], given a scene image, our first step is to 

apply the method in [22] to obtain a set of superpixels. We 

also extract a set of SIFT keypoints [2] from the image. 

These SIFT keypoints can be used to test the uniformity of 

the superpixels. Then a graph G = (V, E) is built based on this 

set of superpixels. Each vertex v∈V corresponds to a 

superpixel. An edge eij  is added to E if vi  and vj  are 

neighboring. The next step is detecting the superpixels 

belonging to the sky and ground plane. First the uniform 

superpixels located in the top and bottom portion of the 

image are selected. The uniformity can be tested by the 

following equation: 

)exp()(
i

i

i
s

n
vuniform α−=             (1) 

  Where α  is constant, ni is the number of SIFT keypoints 

contained in superpixel vi  and si  is the area of vi.  

   If the uniform(vi) > threshold (in our work, we choose the 

threshold = 0.98  ), vi is a uniform superpixel. If vi  is selected 

to being part of the sky or ground plane, then all its similar 

neighboring superpixels are also selected to being part of the 

sky and ground plane. The similarity is measured with 

cylindric distance in HSV color space [16]: 

)cos(2),( 222
HSSSSMvvD jijijicyl ∆∗∗−++∆=  (2) 

 where Si , Sj are the mean saturation of vi and vj , and ∆M, ∆H 

are the difference of the mean value and hue of vi and vj. 

   All the superpixels selected to being part of the sky or 

ground plane are put into one set Vk that contains all the 

known superpixels, the remaining superpixels are put into 

another set Vuk (Vk ∪ Vuk = V). We further divide the Vuk  into 

two parts: Vuk_b and Vuk_s. We sort all the superpixels in Vuk 

based on size and put the first m large superpixels into Vuk_b . 

The total size of these m superpixels accounts for more than 

70% of the total size of all the superpixels in Vuk. . Vuk_s 

contains the remaining small superpixels in Vuk. Any 

superpixel vb ∈ Vuk_b may correspond to the whole surface of 

a single object or the main part of surface of a single object. 

So we need to be very careful of grouping any two of the 

superpixels belonging to Vuk_b together unless we have 

enough evidence. The superpixels belonging to Vuk_s  may 

correspond to the details or noise. Some mistakes of 

grouping these superpixels will not affect the final 

segmentation quality too much. 

  The next step is to go through each of the large superpixels 

in Vuk_b. For each vb ∈ Vuk_b, we want to measure the 

difference between vb and its neighbors. This is done by 

repeating the following procedure: for each vi ∈ Vk  , find its 

untested neighbor vb ∈ Vuk_b  and put vb into a set Vut that 

contains all the untested superpixels. Then for each vj ∈ Vut, 

set a seed with label=1 in vj and set a set of seeds with 

label=2 in each vi ∈ Vk  and run the random walks algorithm 

to get the similarity probabilities for all the unseeded 

superpixels in Vuk. If all the neighbors of vj  have low 

probabilities, that means that vj  looks totally different from 

its neighbors and it may correspond to a single object 

surface. So vj  is directly put into Vk. If a neighbor vn ∈ Vuk_b  

has high probabilities, that means that comparing to the 

background and the all known objects, vn  looks more similar 

to vj.  A decision should not be made until after vn has been 

tested. The similarity probabilities relating to vj  is recorded 

in vn  and vj  is put into another set Vud that contains all the 

undecided superpixels.  This is repeated until all the 

superpixels in Vuk_b  has been tested. At this point, all the 

superpixels originally belonging to Vuk_b  should either be in 

Vk  or be in Vud.  

   Then for each superpixel in Vud, find its undecided 

neighbors, see if any two of them both agree that they look 

similar to each other. If there exists a similar pair of 

superpixels, then merge them together. Otherwise leave each 

superpixel separated. After this merging process is finished, 

put all the superpixels in Vud  into  Vk. An example of this 

testing process is shown in figure 1. 

   The last step is to group those small superpixels in Vuk_s.  At 

this point, we have already made a decision on all the large 

superpixels and these small superpixels have recorded the 

similarity probabilities relating to their different large 

neighbors respectively. So a small superpixel may belong to 

any one of its large neighbors or belong to an independent 

small object. The basic rule here is: if a small superpixel has 

low similarity probability to all its large neighbors, it is 

treated as an independent small object. If it has high 

similarity probabilities to one large neighbor, assign it to that 

large superpixel. If it has high similarity probabilities to 

multiple large neighbors, assign it to the one with highest 

559



 

 

 

similarity probabilities. Repeat this until all superpixels are 

processed. 

 

III.   PLACE RECOGNITION AND LOOP CLOSING  

  Based on our jigsaw puzzle image segmentation algorithm, 

we developed a new place recognition and loop closing 

method.  Place recognition for human perception most likely 

operates on the level of objects [24] since when one looks at 

a place, he most likely does not remember every detail of the 

scene Instead, he tries to find several impressive objects in 

that scene and use them to uniquely label that place. Our 

approach takes a similar strategy. 

A. Salient object detection 

Based on the image regions produced by the jigsaw puzzle 

image segmentation algorithm, we want to detect a set of 

“impressive” objects. These kinds of objects are called 

salient objects and they are highly valuable as visual 

landmarks. We define two criteria to select such salient 

objects:  

1. The objects should not be too big; and 

2. The objects should be highly distinctive. 

   The reason for the first criterion is because when a 

vehicle revisits a place, most likely it will see that scene from 

a different view point. For those small-sized/middle-sized 

objects, it is highly possible that they can be totally seen from 

both different view points. In contrast, large-sized objects 

may be occluded by some other objects and hence look 

different from different view points. The second criterion is 

common sense: as landmarks, these salient objects should be 

distinctive enough to uniquely label a scene. Since SIFT 

descriptors are highly distinctive, the more SIFT features an 

object contains, the more distinctive it is. 

  Based on these two criterions, the saliency of regions is 

estimated by: 

)exp()(
i

i

i
n

s
vsaliency β−=            (3) 

where β  is a constant;  si  is the area of the image region; ni is 

the number of SIFT features contained inside the image 

region. Any region that has saliency value higher than a 

threshold value will be selected as a salient object. Each 

salient object is represented by a list of SIFT descriptors 

contained inside it. A set of these kinds of salient objects can 

be expected to be able to uniquely label a place.  

B. Build range tree database 

  Each scene is represented by a set of salient objects 

detected by equation (3). We further select a subset of the 

salient objects that can be reliably observed from multiple 

positions as index objects. This is achieved by comparing the 

set of salient objects obtained in current position with those 

obtained in previous positions. If a vehicle is revisiting this 

area, then several of these index objects are expected to be 

observed. This small set of index objects may not be able to 

uniquely label a place, but in a large environment, they may 

help us to quickly narrow down the search to several 

potential sites. We will use these index objects to build a 

query database. In a large environment, it is often the case 

that even the query database may contain thousands of index 

objects. To increase query efficiency, we need to use some 

stable characteristics of these index objects as an index to 

quickly find the group of objects that are similar to the query 

object. Since these salient objects may be observed over time 

from different angles and distances and under different 

illuminations, the shape, size and color of the objects are all 

unstable. But the number of SIFT features contained in an 

object is stable in a certain range. According to [2], the 

stability of detection for SIFT features should be around 

70%~90% under different degrees of affine distortion. So for 

a query object containing 30 SIFT features, most likely the 

matching object will be among those objects that contain 

20~40 SIFT features. For this reason, we design a range-tree 

[15] structure database to help us quickly find a range of 

candidates in a large database. 

   A range tree is a balanced binary search tree where the 

data are sorted in the leaf nodes and these leaf nodes are 

linked in sorted order by use of a doubly linked list. The 

non-leaf nodes contain midrange values that enable 

discriminating between the left and right subtrees. A range 

search for [B: E] can be performed by searching the tree and 

finding the node with either the largest value ≤ B or the 

smallest value ≥ B, and then following the links until 

reaching a leaf node with a value greater than E. For N points, 

this process takes O(log2 N + F) time. F is the number of 

objects found. An example of a range tree search is shown in 

Fig. 2. 

C. Place recognition and loop closing algorithm 

  The complete place recognition and loop closing algorithm 

is summarized as follows: 

INPUT:  image cI taken from current scene c with current 

 
Fig. 2.  Illustration of a range tree search: the query object 

contains 30 SIFT features, those objects that contain between 

20~40 SIFT features in the database can be quickly found 
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time ct  

OUTPUT: place recognition (loop detection) result 

1. Detect SIFT features from cI ; 

2. Run jigsaw puzzle algorithm to segment cI ; 

3. Detect  a set of salient objects cO with equation (3) and a 

set of index objects cc OIO ⊆ ; 

4. Set φ=M ; For each index object ci IOo ∈ , search in 

the range tree. If a match mo is found, output the scene 

number set s (records the these scenes that mo appears) 

of mo and let css ∪= , sMM ∪=  ; otherwise insert 

io into the range tree with scene number set c ; 

5. For each scene number Mm ∈ , compare cO and mO , if 

cO is close to mO  and around 50% of cO  get 

matched with mO  and there is a big difference between  

ct and mt , then detect a loop. ( mt is the time when 

m was visited); if φ=M  or scene c is not matched 

with any scene in M ,output that c is a new scene. 

IV. EXPERIMENTAL RESULTS 

  We tested our place recognition and loop closing algorithm 

using imagery from our AndiBot mobile robot which is 

designed for applications like automated perimeter 

surveillance for high security buildings and facilities (see 

Figure 3). The robot collected 100 images from a 150m long 

indoor loop. In the outdoor environment, it traveled over a 

trajectory of 800m, collecting 220 images. Figure 4 and 5 

show two examples of the loop detection results in indoor 

and outdoor environments, respectively. 

 

Fig. 3. AndiBot platform for perimeter surveillance 

    In both indoor and outdoor environments, our method can 

quickly detect a loop except for one case: in the hallway of 

the indoor environment. At two different places of the 

hallway, there are nothing but wall and floor. Our algorithm 

could not detect any salient objects from these two places and 

therefore could not distinguish these two places. These kinds 

of places are common challenge for any appearance-based 

place recognition method. Even human beings may have 

trouble distinguishing some places without any special 

characteristic like these. 

   Our method also shows certain robustness handling 

multiple instances of the same object class spreading in 

different sites. For example, our indoor environment consists 

of four office rooms where each room has similar types of 

chairs and computers.  But our method did not get confused 

by these chairs and computers and successfully distinguished 

each room. The main reason is that in each room, we detected 

more than 15 objects, nearly half of them are unique for that 

room. In the future, we are considering adding relative 

position information of the salient objects to further increase 

the robustness.  

 

 
(a) (b) 

Fig. 4. Loop detection in an indoor environment: (a) was the image 

taken close to the point of loop-closure (b) was the image taken at the 

starting point. About 10 pair of objects got matched. The green, blue 

and black circles show three pairs of the matched objects. 

 

 
(a) (b) 

Fig. 5. Loop detection in an outdoor environment: (a) was the image 

taken close to the point of loop-closure (b) was the image taken at the 

starting point. About 12 pair of objects got matched. The green, blue 

and black circles show three pairs of the matched objects. 

 

    In both indoor and outdoor environment, only 30% of 

detected SIFT descriptors were recorded in the database. 

Table 1 summarizes the storage efficiency of our method in 

both environments. 

 

TABLE 1 

Storage efficiency in indoor and outdoor environments 

 Total of 

detected 

objects 

Total of 

detected 

SIFT 

features 

Total of 

SIFT 

features in 

database 

indoor 612 46,338 14,689 

outdoor 3,078 402,281 114,931  
 

Figure 6 presents the query efficiency for the SIFT 

database and the range-tree database. Six sets of images 

(ranging from 60 to 160) were selected from the outdoor 
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image collections. For each set of images, two databases 

were built. One was a SIFT database formed by all the SIFT 

features extracted from these images. The other one was a 

range-tree database formed by all the salient objects and 

index objects detected from these images. For each database, 

two queries were executed. One query image was selected 

from the set of images the database was built on and the other 

one was not. As expected, the query efficiency was much 

higher in the range-tree database than in the SIFT database. 

One can see that for the SIFT database, the query 

performance quickly dropped down when the database size 

increased. Especially for the unmatched query, all the SIFT 

features in the database had to be compared to decide that 

there was no match. For the range-tree, there was no big 

difference between the matched and unmatched query 

because it is an object-based database. For any query object, 

only a small range of objects in the database need to be 

compared. We claim that the range-tree is more efficient for a 

large environment. 

 

V. CONCLUSION 

In this paper, we present a novel place recognition 

algorithm. Unlike the work in [17], our method does not 

require a learning stage. Like human beings, our method 

operates on the level of objects. Instead of directly using 

large numbers of SIFT features as visual landmarks, we first 

used jigsaw puzzle image segmentation algorithm to segment 

the input scene image to regions that may correspond to 

objects or parts of objects. Based on these image regions, we 

further detected a set of salient objects to represent a place 

and only those SIFT descriptors that were contained in these 

salient objects were kept in the database. We also designed a 

range tree structure database to quickly find the range of 

potential matching objects for any query object. Experiments 

showed that in both indoor and outdoor environments, in 

most cases our method can quickly detect a loop. In our 

approach, only less than 30% of total SIFT features were 

used for place recognition and the query process was also 

very efficient.  
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