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Abstract— This paper presents a vision-based method of
vehicle localisation that has been developed and tested on a
large forklift type robotic vehicle which operates in a mainly
outdoor industrial setting. The localiser uses a sparse 3D-edge-
map of the environment and a particle filter to estimate the pose
of the vehicle. The vehicle operates in dynamic and non-uniform
outdoor lighting conditions, an issue that is addressed by
using knowledge of the scene to intelligently adjust the camera
exposure and hence improve the quality of the information
in the image. Results from the industrial vehicle are shown
and compared to another laser-based localiser which acts as
a ground truth. An improved likelihood metric, using per-
edge calculation, is presented and has shown to be 40% more
accurate in estimating rotation. Visual localization results from
the vehicle driving an arbitrary 1.5km path during a bright
sunny period show an average position error of 0.44m and
rotation error of 0.62deg.

I. INTRODUCTION

In recent years, heavy industry has begun to investigate the

use of automated mobile equipment to address productivity

and personnel safety issues. The work reported here is part

of a larger push to fully automate large ground vehicles

operating in outdoor environments and we present a vision-

based method of vehicle localisation. The technique has been

developed and tested on a large forklift type robotic vehicle

[1] which operates in an outdoor industrial setting (Fig. 1)

handling large loads in the steel and aluminium industry.

These vehicles operate for long periods outdoors during

dynamic and non-uniform lighting conditions.

The operating conditions of the vehicle requires a vision

system that is real-time, accurate and robust to illumination

conditions. As well as the outdoor lighting conditions, the

vehicles also move through sheds and therefore experience

the challenge of the indoor-outdoor transition, which is

discussed in [2].

The ultimate aim is to create a dependable fully au-

tonomous vehicle. Robustness of the localisation system

is a key element required to achieve dependability. One

way of achieving robustness is through the use of multiple

independent localisation systems that can be cross-checked

and compared in order to automatically detect failure or

degradation of one of the systems. To date we have developed

Fig. 1. The large forklift vehicle in its operating environment.

a scanning laser localisation system [3]. The vision-based

localisation system presented in this paper acts as an inde-

pendent system to increase the dependability of the system.

The configuration of the buildings is permanent and have

been surveyed to create a map which can be localised

from using a camera. Recently, it has become popular to

autonomously build visual maps comprising of image point

features, some examples are [4], [5]. However, there are

issues with autonomously building maps with image features,

one problem is that the features are not view-point invariant

in non-planar scenes as Vedaldi and Soatto [6] explain.

Perhaps an even more significant problem is that the features

do actually vary with lighting conditions in 3D environments,

which is acknowledged by Lowe [7]. Another difficulty for

autonomous map building is created by transient objects

arriving and leaving the dynamic industrial environment.

There are no guarantees in the image-feature extraction

process that the features extracted and placed into the map

are permanent. Therefore a localisation system based on a

map with temporary features has the potential to fail.

The problems discussed above leads to the conclusion that

autonomous map building from image-features is not a suit-

able solution for the high robustness required for the targeted

application area. Thus a 3D-edge-map approach, which uses

manual map surveying, has been logically selected for this

work in order to meet the reliability requirement imposed by

the industrial application.
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Manual surveying of the map has many benefits for the

industrial application presented in this paper. The application

environment contains large buildings and sheds that are to

be repetitively navigated. A map of the environment can be

surveyed in just one day, a comparatively short period for a

map that will be useful for countless hours - if not decades

- of productive operation. Manual map surveying ensures

that only permanent objects are included in the map, and

that the description of the environment is explicitly separate

from any specific lighting condition. All of which allow for

reliable long term operation.

The 3D-edge localisation technique in this paper is based

on Klein and Murray’s [8] particle filter method which can

be run in real-time computation on a Graphics Processing

Unit (GPU). Here the technique is applied with a modified

likelihood metric aimed at increasing accuracy. The outdoor

lighting conditions are dealt with by a novel exposure control

algorithm. The intelligent algorithm uses knowledge of the

scene to control the exposure of important areas in the image

while ignoring other areas. The algorithm shows significant

improvements over the conventional exposure control algo-

rithms which are naive and are susceptible to overcompen-

sation. Results of robust localisation are presented in bright

and highly-non uniform lighting conditions.

The remainder of the paper is structured as follows. In

Sec. II, an edge-based localisation technique is described

that can be used to estimate the position and heading of

the mobile vehicle given a sparse 3D-edge-map of the

doors in the environment. Sec. III deals with the issue of

camera exposure and shows how knowledge of the scene

can be used to intelligently adjust the camera exposure to

improve the quality of information in the image. Results from

experiments on a vehicle in a building site are presented in

Sec. IV. Finally, conclusions are given in Sec. V.

II. EDGE-MAP LOCALISATION

There are many examples of 3D edge localisation in

robotics and computer vision. Kosaka and Kak [9] developed

one of the initial edge-based localisation techniques for

navigating indoor hallways using a 3D-edge-map of the doors

and walls. This type of technique has for the most part been

applied in indoor environments. A more recent real-time

technique developed by Drummond and Cipolla [10] has

been applied outdoors by Reitmayr and Drummond [11]. The

outdoor results presented by Reitmayr and Drummond are

during overcast weather, whereas in this paper localisation

is demonstrated in more extreme sunny conditions.

The previous 3D-edge-based techniques calculate only a

single pose estimate each iteration, which is susceptible to

error. Multi-modal techniques such as the recent particle

filter method developed by Klein and Murray [8] offer

improved robustness by maintaining many pose estimates per

frame. Klein and Murray show how to compute the multiple

estimates in real-time on a Graphics Processing Unit (GPU).

We base our work on the particle filter method of Klein

and Murray [8]. Klein and Murray showed the technique

applied to the tracking of a single object, such as a printer,

(a) Camera Setup (b) Fisheye image

(c) 3D-edge-map of buildings (d) Un-distorted image with pro-
jected 3D-edge-map

Fig. 2. Examples of the fish-eye camera setup and calibration. Two fish-
eye cameras are placed at the front of the vehicle facing sideways. The blue
hemispheres represent the field of view of the cameras.

from a range of just a few metres in a regular indoor

environment. In our work, the same technique is applied

using a fish-eye cameras mounted on a vehicle tracking the

doors, walls and roof lines in a large outdoor industrial

building environment. This application area also presents

new challenges with the more extreme nature of the lighting

conditions, which we deal with in Sec. III.

For the experiments shown in this work, a 3D-edge-map

of the industrial buildings is used. The map is sparse and

comprises of around 20 large industrial buildings and was

surveyed in one day. Only permanent parts of the buildings

are included - which is difficult to guarantee in an automated

map building system. An example of the map is in Fig. 2(c).

Once the map is created a vehicle moving through the

environment can be localised by matching edges in the map

with edges extracted from the camera images. The compari-

son between map is calculated for each pose hypothesis in a

particle filter and provides a likelihood measure, discussed in

Sec II-B. Before the likelihood can be calculated, the camera

lenses need to be calibrated, so that the 3D-edge-map can be

projected to the image plane. A dual fish-eye camera setup

is used, seen in Fig. 2(a), the calibration is discussed in the

following section.

A. Fish-Eye Cameras

Fish-eye lenses that have a 185 degree FOV are used

in this paper to capture a wide view of the environment,

which is essential when the vehicle is near walls. The

specialised lens model adopted for calibration is from Geyer

and Danilidis [12], Ying and Hu [13] show that this model

can be applied to fish-eye cameras. The model assumes that

all pixels in the fish-eye image map onto a sphere located

in front of the image plane. The model consists of four

parameters, m, the distance from the center of the sphere
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to the image plane, Cx and Cy, the center of projection on

the image plane, and, l, the distance from the center of the

sphere to the intersecting focus point of the light rays and

the center of projection line.

These calibrated parameters enable the fish-eye image to

be transformed into an undistorted image. Examples of dis-

torted/undistorted images can be seen in Fig. 2. The corrected

image is generated as follows; for each pixel coordinate

[Uu, Uv] in the corrected image (Fig. 2(d)), with centre

[Cx, Cy], the corresponding distorted coordinate [Du, Dv] in

the fish-eye image (Fig. 2(b)) is calculated by;

Du = Rcos(atan(
Uv

Uu

)) + Cx (1)

Dv = Rsin(atan(
Uv

Uu

)) + Cy (2)

where

R =
sin(θ)(m + l)

cos(θ) + l
(3)

and

θ = atan(

√

U2
u + U2

v

f
) (4)

where f is the effective focal length of the undistorted

projective image, measured in pixels from the center of the

sphere. f is also used in the projection model to project

the 3D-edge-map onto the image plane and can be selected

according to the effective FOV that is required. The resulting

undistorted image is converted into an edge-image using

Canny’s algorithm [14] with a 3 × 3 kernel.

B. Likelihood Metric

The likelihood measure for each particle is generated

through comparison with the edge-image and the 3D-edge-

map. The 3D-edge-map is projected according to each parti-

cle’s pose onto the image plane, so a direct comparison can

be made. Using a regular CPU this per-particle comparison

would be very time consuming. Klein and Murray [8] present

a fast method to perform this computation on a graphics

processing unit (GPU).

The process begins by placing the undistorted edge-image

into the GPU’s texture memory at the beginning of the

iteration. The 3D-edge-map is called to be rendered by a

custom fragment shader program. The program allows the

counting the visible edge pixels of the 3D-edge-map that

align with edge-pixels in the undistorted edge-image. The

custom fragment shader program only permits pixels to pass

through the pipeline that align with edge-pixels in the edge-

image. The pixels that pass this custom fragment shader

program are counted using the OpenGL occlusion query

extension [15].

Klein and Murray present the likelihood measure of the

particle, Pχ, as a ratio between the count of aligning edge-

pixels (a) and the total number of visible edge-pixels (v),

calculated as follows:

Likelihood(Pχ) ∝ exp(κ
a

v
) (5)

where κ is a constant that weights the likelihood measure.

Klein and Murray show this metric can successfully track

objects, but the simple ratio of pixel counts leads to the

situation where large edges, such as the roof-lines of the

buildings, dominate other smaller edges, such as the door

edges. This is simply because the majority of pixels are in

the roof-edges. Smaller edges provide important localisation

information and should have more consideration in the

likelihood metric.

This paper presents a modified likelihood metric which

calculates per-edge measurements, instead of just a sum

over the whole image. The new metric calculates the ratio

of aligning-to-visible edge pixels for each edge, j. This is

calculated using occlusion queries for each edge, giving the

two measurements aj and vj . The first component of the

new metric is the original Klein and Murray global ratio. The

second component is a sum of per-edge ratio’s calculated as

follows;

Likelihood(Pχ) ∝ exp(κ
a

v
+ λ

∑n

j=0

aj

vj

n
) (6)

where n is the number of edges. The second component of

this equation treats each edge equally regardless of its size.

This penalises hypotheses that have smaller edges that do

not align, even if the overall count of aligning pixels is high.

This will enable the filter to maintain better track of the door

edges in the environment. The new per-edge component has

its own constant λ and this has to be tuned in conjunction

with κ, striking a balance between the global and per-edge

components.

C. Occlusions

The particle filter will be robust to occlusions caused by

unknown objects, if there are more visible portions of the

buildings than occluded portions.

Self-occlusions, where one building occludes another

(known occlusions), can be dealt with by the depth buffer.

Klein and Murray present a real-time technique using a sub-

sampled depth buffer. The technique is to render faces of the

buildings to the depth buffer, then only edges that are in front

of the faces will pass through. The depth buffer is limited in

resolution, which leads to the problem of a surface blocking

its own edges. To avoid this issue the surfaces are recessed

back a distance from the edge. The offset distance between

surface and edge needs to be larger than the resolution of

the buffer at that depth.

D. Propagation Model

Motion measurements from the vehicle can be formed into

a model that propagates the particle filter. The uncertainty in

the motion model mt is defined by a Gaussian distribution

as follows:

mt = ϕ (7)

ϕ is the Gaussian uncertainty distribution on the measured

motion, δ. Here wheel encoders and steering encoders from

the vehicle form δ as a 2D translation, tx, ty , and also a rota-

tion around the vertical axis, rz . Alternative types of motion

measurements are presented by Klein and Drummond [16]
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and by Machand et al. [17]. The ground in the environment is

not perfectly flat and therefore slight vertical translations, tz ,

and roll and pitching’s, rx, ry , of the vehicle must be taken

into account. There are no measurements in these additional

degrees of freedom. So these unknown degrees of freedom

are included in the propagation model by small perturbations

across all 6 degrees of freedom, defined by the constant α.

The uncertainty in pose estimation is greater when the

velocity increases and also is greater along the direction of

the motion. This is modeled in the distribution by having a

perturbation component that is proportional to δ, according

to the constant β. The uncertainty distribution, ϕ, is defined

by the mean, µ, and variance, σ2, as follows:

µ = δ (8)

σ2 = βδ + α (9)

III. INTELLIGENT EXPOSURE CONTROL

The exposure control algorithms in most cameras use a

grey-world assumption. These algorithms aim to control the

mean intensity over the whole image to a predefined intensity

level, regardless of the content of the scene. In our work there

are specific areas of interest in the scene (i.e. the doors on the

buildings) that must be correctly exposed. The conventional

approach to exposure control causes overcorrection, resulting

with an image that has incorrectly exposed areas. An example

of overcorrection is shown in Fig. 3(a) which shows a lens

flare that runs down the image even an abnormal sensor

response. But more importantly the figure shows that the

standard exposure control algorithm has over corrected for

the sunny sky, leaving the buildings underexposed.

This paper presents a novel intelligent-exposure-control

algorithm that adjusts the exposure according to known areas

in the image. The algorithm aims to maximise the strength of

image-edges corresponding to 3D-map edges, while ignoring

all non-essential areas of the image. The algorithm first

samples the intensity of pixels near the tracked edges. The

3D-edge-map is projected into the image according to the

current pose estimate and short scans of pixels are taken

along the normal of the edges. Fig. 5 shows which pixels are

sampled from the scans. The control algorithm is as follows:

Et = Et−1 + (1.0 − (.pdfilonIr)) (10)

where Et is the exposure level at time t. The IEEE1394 IIDC

[18] digital camera used in experimentation has two exposure

parameters available, an analog to digital gain and a digital

shutter time. These two parameters are scaled between 0-

1, combined and represented by E. .pdfilon is a damping

constant and Ir is the ratio between the mean intensity, Im

from the pixel scans (Fig. 5) and the goal intensity Id:

Ir =
Im

Id

(11)

Id = 180 has been determined based on the measurements

made in Fig. 4 which show edge strength is at a maximum

when the intensity of the sampled pixels is high but not

saturated. The damping constant .pdfilon has been set to

(a) Image with naive exposure control

(b) Undistorted edge-image from naive control.

(c) Image with intelligent exposure control.

(d) Undistorted edge-image from intelligent ex-
posure control.

Fig. 3. Example of the bright lighting conditions. The sun causes a flare in
the fish-eye lens and a dark line down the image due to errors in the sensor’s
response. Overcompensation for the sunlight can occur using naive exposure
control found on most cameras. 3(a) shows an example of overcompensation
where the buildings are under-exposed. 3(b) is the the corresponding edge-
image where no edge-features are detected on the doors of the buildings. 3(c)
shows that with the use of intelligent exposure control algorithm developed
in this paper, the buildings are correctly exposed. As a result, the edges are
detected on the doors and on the other areas on the buildings in 3(d).
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Fig. 5. Image showing the pixels that are sampled for the exposure control
algorithm.

0.02, after empirical tests showing this value to provide

a balance between quick response to lighting changes and

stable control. Fig. 3(c) shows a typical result of this intel-

ligent exposure control algorithm, where the buildings are

properly exposed. The intelligent algorithm presented in this

paper gives drastic improvements in edge-detection, edges

on the doors and other areas of the buildings are detected in

Fig. 3(d) and not in Fig. 3(b).

IV. RESULTS

Consumer grade digital cameras with fish-eye lenses are

mounted facing sideways on the vehicle capturing 640×480

images. The camera setup is seen Figure 2(a). The intrinsic

and extrinsic camera parameters are manually calculated

and verified by projecting the edge model into the image

plane using the ground truth and ensuring the edges are

aligned correctly with the recorded video stream. Fig. 2

shows the undistorted image using the calibrated fish-eye

model. For the experiments shown in this section the lens

parameters from (Eq. 2,3,4) used were focal scale f = 175
pixels, centre of projection of Cx = 293, Cy = 305, and fish-

eye parameters l = 2.81, m = 811. Initially the various

parameters of the particle filter need to be calculated. The

approach used to calculate these parameters is to record a
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Fig. 6. Results from extended operation of the forklift type vehicle.

short sequence of video, odometry and ground truth pose data

from the vehicle traveling around the environment covering

most areas and orientations. The particle filter can be run off-

line several times through the same two minute sequence of

recorded data to optimise these parameters. This is achieved

by using different parameters each cycle and comparing the

average pose estimate error. The ground truth pose was

collected from laser scanners using the method described

in [3]. The number of particles is an important parameter

to achieve accurate localisation, ideally the filter will have

a large number of particles, but this comes with a larger

computation cost. The goal operating rate for the system is

10Hz, and the particle filter can be operated at this rate using

1000 particles.
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A. Extended Operation

Once the system has been implemented and tuned, it is

put through a rigorous evaluation of its abilities through an

extended period of operation around 2pm on a sunny day.

At this time the lighting conditions are challenging because

the sun is bright and on an angle. When the vehicle turns

around the exposure control algorithm has to adjust quickly

according to the direction each camera is facing. The vehicle

was driven along an arbitrary path for a total distance of

1.5km during the experiment. The vehicle travelled through

a wide range positions and orientations ensuring the system

is well tested. Fig. 6(a) shows the path travelled during the

extended operation experiment.

Fig. 6(b) presents the heading estimate error of the vision

system which is maintained at an average error of 0.62deg,

as opposed to the accumulated odometry error which drifts

to a maximum error of 30deg. Fig. 6(c) shows the position

error of the visual localisation. The vehicle’s position was

correctly estimated to an average error of 0.44m over the

1.5km run. The maximum error at one stage crept out to 1.4m

and 4.4deg, this can be seen right at the top left of Fig 6(a),

in the section of the path the vehicle is far from the buildings

in the camera view. Though the average errors indicate that

the system is sufficiently accurate for autonomous navigation

around the site.

A video of the results of this experiment accompanies this

document and a sequence of images is presented in Fig. 8.

The sequence shows correct tracking of the buildings from a

wide range of poses and with vehicle transitions from shadow

to full sunlight. Some images have curved lens flares from

the sun making some areas of the buildings not visible, in this

situation the matching between model and image will not be

perfect. The particle filter is robust to this scenario as it does

not require a perfect match, rather the filter will re-sample

particles with the best match. The fish-eye camera view has

enough visible area for the tracking to not be affected by the

lens flare. In some images the lens flares are dark, this is

presumably due to an abnormal sensor response to the direct

sunlight.

B. Likelihood Metric

A new likelihood metric is presented by this paper (Eq 6)

and is compared with the accuracy of Klein and Murray’s

metric (Eq 5). The two metrics are evaluated against the

laser-based localiser on the same sequence of data and

their recorded errors are shown in Fig 7. There is only

minimal improvement in position accuracy of the proposed

metric over Klein and Murray’s, both metrics give average

position errors of slightly less than 0.5m. However there

is a 40% improvement in heading accuracy. The proposed

metric gives a average heading error of 0.62deg whereas

Klein and Murray’s is 1.01deg. This significant improvement

in heading estimation is attributed to the proposed likelihood

metric giving a greater importance to aligning the door edges.

Klein and Murray’s simpler likelihood metric will give only

a fraction of the importance to the door edges as they only

have a fraction of the pixels of the roof edges.
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Fig. 7. Comparison between recorded errors from Klein and Murray’s
likelihood metric (Eq 5) and this paper’s proposed likelihood metric (Eq 6).
There is only minimal improvement in position accuracy of the proposed
metric over Klein and Murray’s, however there is a 40% improvement in
heading accuracy.

V. CONCLUSIONS

This paper has described a vision-based localisation sys-

tem for a ground vehicle operating in an outdoor industrial

setting. The vision localiser is based on Klein and Murray’s

approach [8] with an improved likelihood metric and is

applied outdoors using a sparse 3D-edge-map of the building

environment. The technique is processed at 10Hz by utilising

a particle filter and a standard GPU.

An intelligent exposure control algorithm is presented to

enable operation in the dynamic and non-uniform outdoor

lighting conditions. The algorithm uses knowledge of the

scene to adjust the camera exposure and hence improve the

quality of the important information in the image.

Finally, the performance of the localisation system is

demonstrated on an industrial vehicle while it is driven

around a test site for an extended period where the vehicle

covered a total distance of 1.5km. The pose estimates from

the vision-based localiser were compared to a laser-based

localiser which acted as a ground truth. The pose of the

vehicle was estimated by the visual localiser to an average

position error of 0.44m and average rotation error of 0.62deg

over the 1.5km path. The improved likelihood metric, which

uses per-edge calculations, proved to be 40% more accurate

in estimating the heading of the vehicle.

549



ACKNOWLEDGMENTS

This work was funded in part by CSIRO ICT Centre’s

Autonomous Ground Vehicle project, CSIRO’s Light Metals

Flagship project and the School of Information Technology

and Electrical Engineering at the University of Queensland.

The authors gratefully acknowledge the following members

of the Autonomous Systems Lab’s team for their assistance

with the setup, calibration and experimental work conducted

during this project: Cedric Pradalier, Ashley Tews, Peter

Hansen, Paul Flick, Polly Alexander, Felix Duvallet and

Felix Ruess.

REFERENCES

[1] J. Roberts, A. Tews, C. Pradalier, and K. Usher, “Autonomous hot
metal carrier - navigation and manipulation with a 20 tonne industrial
vehicle,” in Proceedings of IEEE International Conference on Robotics

and Automation, Rome, Italy, Apr. 2007, pp. 2770–2771, video paper.
[2] S. Nuske, J. Roberts, and G. Wyeth, “Extending the dynamic range of

robotic vision,” in Proceedings of the IEEE International Conference

on Robotics and Automation, Florida, USA, May 2006, pp. 162–167.
[3] A. Tews, C. Pradalier, and J. Roberts, “Autonomous hot metal carrier,”

in Proceedings of IEEE International Conference on Robotics and

Automation, Rome, Italy, Apr. 2007, pp. 1176–1182.
[4] N. Karlsson, E. D. Bernado, J. Ostrowski, L. Goncalves, P. Pirjanian,

and M. E. Munich, “The v-slam algorithm for robust localization
and mapping,” in Proceedings of IEEE International Conference on

Robotics and Automation, 2005.
[5] P. Newman, D. Cole, and K. Ho, “Outdoor slam using visual appear-

ance and laser ranging,” in International Conference on Robotics and

Automation, 2006.
[6] A. Vedaldi and S. Soatto, “On viewpoint invariance for non-planar

scenes,” UCLA, Tech. Rep., 2006.
[7] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[8] G. Klein and D. Murray, “Full-3d edge tracking with a particle filter,”
in British Machine Vision Conference, 2006.

[9] A. Kosaka and A. Kak, “Fast vision-guided mobile robot navigation
using model-based reasoning and prediction of uncertainties,” in Proc.

Int. Conf. on Intelligent Robots and Systems, 1992.
[10] T. Drummond and R. Cipolla, “Real time visual tracking of complex

structures,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
2002.

[11] G. Reitmayr and T. Drummond, “Going out: robust model-based
tracking for outdoor augmented reality,” in International Symposium

on Mixed and Augmented Reality, 2006, pp. 109–118.
[12] C. Geyer and K. Danilidis, “Catadioptric projective geometry,” Inter-

national Journal of Computer Vision, vol. 45, no. 3, pp. 223–243,
2001.

[13] X. Ying and Z. Hu, Computer Vision - ECCV 2004, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2004,
vol. 3021/2004, ch. Can We Consider Central Catadioptric Cameras
and Fisheye Cameras within a Unified Imaging Model, pp. 442–455.

[14] J. Canny, “A computational approach to edge detection,” IEEE Trans-

actions Pattern Analysis Machine Intelligence, vol. 8, no. 6, pp. 679–
698, 1986.

[15] NVIDIA OpenGL Extension Specifications, NVIDIA Corporation,
February 2007.

[16] G. Klein and T. Drummond, “Tightly integrated sensor fusion for
robust visual tracking,” in Proceedings of British Machine Vision

Conference, 2002.
[17] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau, “Robust

real-time visual tracking using a 2d-3d model-based approach,” in
IEEE International Confernece on Computer Vision, 1999.

[18] IIDC 1394-based Digital Camera Specification, 1st ed., 1394 Trade
Association, Regency Plaza Suite 350, 2350 Mission College Blvd.,
Santa Clara, CA 95054, USA, July 2000.

Fig. 8. Undistorted images taken from the experiment, overlaid in red with
the 3D-edge-map projected from the estimated pose.
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