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Abstract— We present and examine a technique for estimat-
ing the ego-motion of a mobile robot using memory-based
learning and a monocular camera. Unlike other approaches that
rely heavily on camera calibration and geometry to compute
trajectory, our method learns a mapping from sparse optical
flow to platform velocity and turn rate. We also demonstrate
an efficient method of computing high-quality sparse optical
flow, and techniques for using this sparse optical flow as
input to a supervised learning method. We employ a voting
scheme of many learners that use subsets of the sparse optical
flow to cope with variable dimensionality and reduce the
dimensionality of each learner. Finally, we perform experiments
in which we examine the learned mapping for visual odometry,
investigate the effects of varying the reduced dimensionality
of the sparse optical flow state, and quantify the accuracy
of two variations of our learner scheme. Our results indicate
that our learning scheme estimates monocular visual odometry
mainly from points on the ground plane, and reflect to a
degree the minimum dimensionality imposed by the problem.
In addition, we show that while this memory-based learning
method cannot yet estimate ego-motion as accurately as recent
geometric methods, it is possible to learn, with no explicit
model of camera calibration or scene structure, complicated
mappings that take advantage of properties of the camera and
the environment.

I. INTRODUCTION

The problem of localization is often a fundamental chal-
lenge in mobile robotics, as tasks and algorithms therein usu-
ally make the assumption that the robot can be localized with
respect to a global coordinate frame. Due to this assumption
there is a repertoire of techniques and sensors whose goals
are to facilitate reliable estimates of position. However, for
each method there is usually a failure mode and operational
requirement independent of the others. For example, differen-
tial GPS beacon systems, while extremely accurate, requires
placement of extra beacons and are susceptible to physical
obstructions as well as radio interference. These limitations
can be mitigated by the addition of an inertial measurement
unit which can provide accurate pose change measurements.
However, IMU estimates of velocity and position normally
drift significantly over time, while more accurate IMU units
tend to be prohibitively expensive. Augmenting inexpensive
IMUs with laser scan matching can be an effective method
to boost accuracy, but scan matching can fail when there are
no objects aligned with the laser and in range, or when the
assumption of a static 2D environment does not hold. Laser
range scanners also tend to be expensive, and their size and
large power requirement prohibit their use on small outdoor
robots. The limitations of each of the above techniques
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normally necessitates fusing together estimates from several
methods to create a reliable, robust estimate of pose that is
less susceptible to any individual method’s failure mode.

Originally proposed by Matthies [1], visual odometry is
rapidly becoming a popular pose estimation technique, as
it can estimate the robot’s pose changes using only video
containing distinctive features that are correlated with the
robot’s motion. Visual odometry is useful for a variety of
reasons, as cameras are fairly small and inexpensive, and
can be mounted on even the smallest robots. Also, with rapid
decreases in the cost and power requirement of computation,
the expense of using visual odometry is often diminutive
compared to other methods.

Even though there are existing visual odometry techniques
based on geometric inference, which are highly accurate and
work well in a variety of environments, we wish to explore
visual odometry methods that are based on directly learning
the mapping from optical flow to pose changes, without
explicitly determining scene or camera geometry. As geo-
metric visual odometry methods assume carefully calibrated
parameters such as camera intrinsics and extrinsics as a first
step, sensitive calibration procedures for determining pixel-
perfect parameters often become a major challenge in the
execution of these techniques. Furthermore, different camera
and lens configurations require different sets of parameters,
requiring algorithms to be modified accordingly. If these
geometric assumptions can be relaxed or treated in a general
way, then one visual odometry algorithm can be used without
modifications across all cases.

We therefore propose a method for visual odometry us-
ing supervised learning, which makes significant progress
towards overcoming these limitations. We start with the
assumption that video with trackable features is available
and that ground truth of the robot’s pose changes between
frames can be obtained for training. Using this training set,
we create a function approximator that learns a mapping from
sparse optical flow to pose changes.

II. RELATED WORKS

There has been a resurgence of interest in visual odometry
algorithms as computers have become powerful enough to
perform the steps needed for visual odometry at acceptable
speeds. Work by Nister et al. [2] used 3D point tracking with
preemptive RANSAC and the 5-point algorithm for essential
matrix estimation. This technique has resulted in one of the
most accurate and efficient visual odometry implementation



in a calibrated stereo pair setting, with accumulated errors
of about 12 m over a 360 m course.

Ni and Dellaert [5] used an improved stereo-tracking
method that determines feature displacement in both cam-
eras then uses the matched features with the 3-point algo-
rithm in a RANSAC harness. Agrawal and Konolige [6]
scored RANSAC hypotheses in disparity space, then used
Levenberg-Marquadt optimization to refine the hypothesis.
Milella and Seigwart [7] used a robust iterative closest point
technique to match points tracked 3D points. Dornhege and
Kleiner [8] used an IMU to estimate the rotational motion
component, and then had remaining vectors vote on whether
the robot was stopped, moving forward, or moving backward.

Visual odometry has also enjoyed attention in the planetary
exploration community, as GPS systems are only available
on Earth. Helmick ef al. [3] used a calibrated stereo pair to
perform 3D point tracking with an initial motion hypothesis
provided by wheel odometry. The 3D point correspondences
between pair of frames were then fed into a coarse motion
estimator, and refined using a probabilistic method. Corke
et al. [4] used an omnidirectional camera and experimented
with a robust sparse optical flow method that calculated
motion changes by optimizing both the intrinsic parameters
and motion, and compared this method to a structure from
motion (SFM) algorithm.

Wang et al. [9] estimate monocular visual odometry
through prior calibration of the location of the ground
plane. Campbell et al. [10] also estimate accurate planar
monocular visual odometry through prior manual calibration
of the ground plane, and are able to detect precipices, or
discontinuities, of the ground plane.

Another group, often less cited by computer vision re-
searchers, interested in motion estimation using vision are
biologists studying insect vision. Franceschini et al. [11],
and Horridge and Longuet-Higgins [12] found that insects’
compound eyes are arranged such that optical flow, above
everything else, can be most efficiently estimated, as insects
depend on perceiving motion to perform vital tasks such as
obstacle and predator avoidance and landing. Methods for
motion estimation suggested for insects, however, depend
on highly parallelized neural networks, whose computational
requirements exceed the capacity of current processors.

III. METHODS

Our visual odometry method is comprised of a training
stage that uses ground truth obtained separately, and a
testing stage, in which ego-motion is computed from a
video stream. During the training stage, our method records
training instances that map the observed sparse optical flow
vectors to the known forward velocity and turn rate of the
platform, which we determine using laser scan matching.
During the testing stage, the database of instances is queried
using the sparse optical flow vectors observed at each frame,
to obtain an estimate of the platform’s velocity state. Because
our platform is car-like, and not capable of moving to the
side without turning, we only estimate forward velocity and
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turn rate, but we expect that our method would generalize to
three degrees of motion, as discussed later.

Briefly, our method works by first extracting sparse optical
flow vectors, collecting them into a grid, and then training
many learners that each work with a randomly-chosen subset
of the grid cells. Voting among the learners during the testing
stage handles the fact that individual grid cells sometimes do
not contain any optical flow vectors.

A full explanation of our methods follows.

A. Sparse Optical Flow Computation

Our computation of sparse optical flow uses several mod-
ifications from baseline methods in order to improve effi-
ciency and quality. However, our method of visual odometry
does not assume any of these modifications, and also operates
with simpler methods of optical flow computation.

The image is broken up into a grid, and at the first time
step, the strongest Harris corner [13] in each grid cell is
detected. For each subsequent time step, we use a KLT
feature tracker [14] to track features into the next frame.
While tracking, we fit a constant-image-velocity model to
each feature’s trajectory, and if a feature’s motion over time
deviates too much from this prediction, tracking of that
feature is stopped. When tracking of a particular feature
is stopped, the strongest Harris corner in the grid cell in
which that feature was originally detected becomes a new
feature, with a new motion model. This method provides
sparse optical flow significantly faster than real time (>50
Hz) on full-size video.

In addition, we use a temporal filtering step to prevent
most unstable and mis-tracked features from becoming op-
tical flow vectors. A feature being tracked is only reported
as a sparse optical flow vector after it has been tracked for
a number of frames.

For our trials we used a feature-detection grid cell size
of approximately 20 x 20 pixels, resulting in approximately
780 features being tracked in each image. We empirically
determined this as the finest size that still allowed the entire
process to run in real-time.

B. Mapping Sparse Optical Flow to Velocity State

We found that it was not feasible to learn a mapping
directly from the entire set of sparse optical flow vectors
to the output for two reasons. First, the dimensionality of
the sparse optical flow state is too high for learning to
generalize. Second, without a method for filling in missing
portions of the optical flow field, the dimensionality would
vary depending on the number and locations of the Harris
corners detected in the image.

To address this problem, we use n (in our trials, n = 160)
separate k-Nearest-Neighbors (KNN) learners to estimate the
current change in pose, with each learner taking as its input
feature vector the average of the sparse optical flow vectors
in each of m grid cells (chosen from a coarser grid than that
of the feature tracking stage). In our trials, we used m = 4
for experiments in which m was fixed. Each learner’s grid
cells are randomly selected when each learner is trained. Half



of the learners are trained to estimate forward velocity, while
the other half estimate turning rate. Estimates from all of the
learners are combined by averaging the ! median values (in
our trials, [ = 3) from the distribution of estimates, separately
for forward velocity and turn rate. Learners missing data in
one or more grid cells simply do not vote.

We selected m 4 empirically, using the results of
Experiment IV-B. We also selected n and [ empirically,
although their effects on the accuracy of the final result were
very small.

C. Function approximation with KNN

Because we expect the mapping from optical flow to
vehicle velocity state to be smooth, it is our desire that each
KNN learner behave as a function approximator instead of a
classifier. Therefore, for each prediction, our implementation
fits a linear regression kernel to the k neighbors nearest to
the observed input feature vector the hyper-plane that best
maps the input feature vectors of those k neighbors to their
output feature vectors, as described by Hastie et al. [15].
The output feature vector is then determined by evaluating
the linear combination for the observed input feature vector.

We used k& = 10, determined empirically, but varying %
had little impact on visual odometry output. We implement
KNN itself using a KD-tree [16].

D. Tree migration

A variation of our method updates a score for each learner
on-line, based on the deviation of its predictions from ground
truth. This score, for each learner, is simply the mean-square
difference between prediction and ground truth for forward
velocity or turn rate (whichever value the learner is trained
to predict), accumulated over the life of the learner.

Every so often (in our trials, every 2 seconds) a learner that
is performing poorly relative to the other learners is deleted,
and replaced with a random perturbation of a learner that
is performing well. The learner to be replaced is chosen at
random from a statistical distribution across the current set
of learners, in which the weight of each learner in the proba-
bility density function (PDF) is proportional to the poorness
of its score. Likewise, the learner whose perturbation is to
serve as the replacement is selected from a distribution with
the inverse PDF.

This process is a non-deterministic search for the subsets
of the input dimensions that yield the most accurate function
predictions, for a data set on which the learners were not
trained. We refer to this process later as “tree migration”.

IV. EXPERIMENTS AND DISCUSSION

We used four data sets in our experiments, comprised by
three outdoor sets and one indoor set. The three outdoor
sets were 4, 8, and 23 minutes in duration, and the indoor
set was 2 minutes long. All data sets were collected using
a steerable platform with two pivoting wheels at the rear,
and two non-pivoting wheels at the front, carrying a SICK
LMS-291 outdoor laser range finder, and a 2.33 GHz Apple
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Fig. 1. For each image grid cell, the relative error for all of the learners
making use of that grid cell, for a) forward velocity prediction errors, b)
turn rate prediction errors. Colors range from blue (indicating small error)
to red (indicating large error), as seen in the color scale on the right.

laptop with a built-in iSight camera. No wheel odometry was
available.

The laser range finder was used to obtain approximate
ground truth for training. Preliminary tests showed that
trajectories obtained by laser scan matching were able to
close loops of approximately one hundred meters with an
error of only one meter, indicating that laser scan matching
would be accurate enough to serve as approximate ground
truth for training of, and comparison with, visual odometry.
Images from the camera arrived at 30 Hz, at a resolution
of 640 x 480. The camera was aimed downwards, such that
only the upper 12% of the image was above the horizon. The
platform was moved at speeds up to 1.5m/s.

For every experiment, to ensure learning could generalize,
visual odometry was trained on one of our data sets, and
performance was evaluated while running on the others. The
experiments we conducted examine the distribution of learner
accuracies in the image, investigate the effect of varying the
number of grid cells used by each learner, and evaluate the
accuracy of our estimated visual odometry with and without
tree migration.

The majority of our experiments involve comparing vi-
sual odometry trajectories to ground truth. Because visual
odometry estimates and ground truth are both somewhat
noisy, single-frame comparisons are not very meaningful.
Therefore, to evaluate the accuracy of visual odometry, we
break each sequence into short sub-sequences of fixed length
(we used lengths of 2 and 4 s). Then, we average the
forward velocities and turn rates from ground truth and
visual odometry during each sub-sequence. Finally, errors
computed for each sub-sequence are the differences between
the average estimates of visual odometry and ground truth.

A. Examining the Distribution of Learner Scores in the
Image

To determine how accurately learners in various regions
of the image estimate motion, an experiment was performed
in which the output of each learner was compared to ground
truth, with tree migration disabled. Then, each learner was
examined in regards to the correlation between its average
discrepancy from ground truth and the vertical and horizontal
positions of its grid cells in the image.
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Fig. 2. Mean squared forward velocity prediction errors of each individual

learner, plotted against height in the image.

For each grid cell, Figure 1 shows the average squared
error for all of the learners making use of that grid cell,
overlayed on an image typical of one of our outdoor data
sets. These data, for every individual learner, are also plotted
against height in the image for only velocity prediction in
Figure 2.

These results indicate that the lower parts of the image
yield more accurate predictions of both forward velocity and
turning rate. We conjecture that the spatial locations, relative
to the camera, of the points close to the camera and on the
ground plane, are implicitly learned, and resolve the scale
ambiguity inherent in monocular vision. Turning rate, on the
other hand, is not subject to any scale ambiguity for distant
points, as all stationary distant points move across the image
at a rate dependent only on the rotation of the camera. Above
and close to the horizon, however, large amounts of noise in
optical flow due to moving objects cause large errors in all
learners.

In monocular visual odometry, given a certain rate of
divergence of the optical flow in an image, there is an
ambiguity between the velocity of the camera, and the
distance to the 3D points that comprise the scene structure.
This ambiguity makes it impossible to tell the difference
between a fast-moving camera observing far-away scene
structure, and a slow-moving camera observing close-up
scene structure. If, however, the orientation and position of
the camera in relation to the ground plane is known, the
distance to some scene structure lying on the ground plane
is simply a function of its vertical position in the image. This
information can resolve the ambiguity for planar motion.

While with geometric approaches to monocular visual
odometry it is necessary to either make explicit assumptions
about the structure of the scene or perform 3D reconstruction,
our approach is able to implicitly take advantage of the
information required to resolve those ambiguities. Similarly,
we can generalize to suggest that learning mappings for other
static scene structure, such as walls, would take place in the
same way.

B. Investigating the Effect of Varying Input Dimensionality

Results of visual odometry were compared against ground
truth while the number of grid cells used by each learner
was varied. These experiments were performed with tree
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(b) in yaw, for learners utilizing various numbers of image grid cells. Error
bars extend 4 1 standard deviation. Results are from running on the 23-
minute outdoor data set, with learners having been trained on the 8-minute
outdoor data set.

migration disabled. The 8-minute outdoor data set was used
for training, and visual odometry was run on the 23-minute
data set. The number of cells used by each learner was varied
from 1 to 6.

Figure 3 shows the drift, per unit time, of visual odometry
from ground truth, for learners using numbers of grid cells
ranging from 1 to 6. Errors were computed using the
method described at the beginning of this section, using
a sub-sequence length of 2 s. The absolute values of the
forward velocity and turn rate errors were then averaged to
obtain drifts, which reflect the approximate rate at which
the trajectory computed using visual odometry deviates from
ground truth.

Accuracy of visual odometry is poor when only 1 grid
cell per learner is used, and improves until 3 grid cells
are used. For larger number of grid cells, there is no
further significant improvement in accuracy. There are only
2 degrees of freedom in our motion state, but the improved
accuracy with three input dimensions may reflect either the
necessity to disambiguate pitch changes from other motion
components, an increased likelihood of most learners having
at least two cells on the ground plane, or a robustness to
noise. Further experiments would be required to determine
the actual relationship between input and output degrees
of freedom, but our results do demonstrate approximate
correspondence therein.

We expect our method to extend to almost any 3-DOF ego-
motion estimation (such as that of a holonomic platform, a
pan-tilt-roll camera, or even a pan-tilt-zoom camera), as long
as scene structure remains fixed. Our method, in its current
form, does not extend to 6-DOF motion, however, because
this would require incorporating range measurements. Using
stereo is interesting grounds for future work, however, as it
raises the problem of representing the information gained in
a way suitable for supervised learning.

C. Evaluating Tree Migration

To evaluate whether tree migration improves the esti-
mation of ego-motion, two experiments were performed.
Visual odometry was trained with the indoor data set in one
experiment, and with the 8-minute outdoor data set in the
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the red line plots the drift with tree migration enabled. A small decrease
in drift is observed, especially later in the run, with tree migration. Drift is
estimated using the method described at the beginning of Section IV.

other. In both experiments, visual odometry was run on the
23-minute data set. We then evaluated the accuracy of visual
odometry with and without tree migration as compared to
ground truth, as described at the beginning of this section,
using a sub-sequence length of 4 s. These results are shown
in Figure 4.

While we hypothesized that tree migration would improve
the results of visual odometry, very little difference in drift
was actually observed between runs with and without tree
migration. We believe that such a small effect was observed
in part because of the way in which predictions from each
learner are collected into a final prediction. After obtaining
velocity and turn rate predictions from all learners, only
the average of the 3 median predictions is used to build
the trajectory, instead of the average of all predictions. We
hypothesize that this method eliminates the effects of many
of the outlying predictions, as long as they are a minority
amongst all of the predictions. Under this assumption, pre-
dictions from learners using noisy or unreliable parts of the
image are not likely to greatly affect the resulting trajectory,
nor is removing them via tree migration likely to improve
the results.
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Fig. 5. Platform trajectories: ground truth from laser scan matching, and
estimated by visual odometry. Trajectories for (a) the first half, and (b) the
second half, of the 23-minute outdoor run, and (c) the 4-minute outdoor
run. In all cases, visual odometry was trained on the 8-minute outdoor data
set.

D. Evaluating the Accuracy of Visual Odometry

Trajectories from visual odometry are shown and com-
pared to the ground truth in Figure 5. As described previ-
ously, ground truth was obtained via laser scan matching.
Tree migration was disabled when producing these trajecto-
ries, and 4 cells per learner were used. Trajectories depict
visual odometry running on the 23-minute and 4-minute
outdoor data sets, after having been trained on the 8-minute
outdoor data set.

E. Performance

The amount of memory required for memory-based learn-
ing of ego-motion from sparse optical flow varied depending
on the size of the training data set. A 2-minute data set at 30
Hz required approximately 100 MB of memory, while an 8-
minute data set at the same frame rate required around 400
MB. Memory requirements scale linearly with the amount
of training data. Given that the majority of training exam-
ples are likely duplicated, however, such as while driving
straight at near-constant speed, these requirements could be
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Fig. 6. A screen shot from our graphical display. The estimation of the
current velocity and turn rate are shown in the top-left portion of the image,
and indicated graphically by the arrow in the center. The accumulated
trajectory is shown in the lower-left portion. The votes by each learner
for velocity and turn rate are shown in the upper and lower histograms,
respectively, in the lower-right. One individual velocity learner uses the
grid cells outlined in blue, and its score is printed in the upper-left region
of the image. Finally, the sparse optical flow is depicted throughout the
image by light blue line segments.

greatly reduced by pruning similar examples during learner
initialization. Computational performance was very good, as
the entire visual odometry process, with 640 x 480 images,
including loading these images from disk, converting them
from color to greyscale, performing feature tracking, and
estimating motion, operated in real time (>30 Hz).

A screen shot, in Figure 6, shows, for a single frame, the
estimate of velocity and turn rate, the accumulated trajectory,
the grid cells used by a single learner, the score of that
learner, the histograms of learner votes for velocity and turn
rate, and the sparse optical flow.

V. CONCLUSION

We have developed a memory-based learning system that
can give good estimates of the trajectory of a mobile robot.
In doing so, we have demonstrated a method for efficient
sparse optical flow computation, and a robust and elegant
method for dealing with data of variable dimension. While
our method is not yet as accurate as geometric methods, it
demonstrates the viability of using a simple, purely learning
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based method for visual odometry. Additionally, it illustrates
that information about camera configurations and scene
structure can be abstracted away by direct mapping from
sensor inputs to the desired information.
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