2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

Robot Navigation Using a Sparse Distributed Memory

Mateus Mendes
ESTGOH, IPC Coimbra
ISR - Institute of Systems and

Manuel Criséstomo
ISR - Institute of Systems and

A. Paulo Coimbra
ISR - Institute of Systems and

Robotics Robotics Robotics
. Dep. of Electrical and Computer Dep. of Electrical and Computer
Dep. of Electrical and Computer
. . Engineering Engineering
Engineering
Lo . University of Coimbra University of Coimbra
University of Coimbra
Portugal Portugal
Portugal

mcris@isr.uc.pt

mmendes@estgoh.ipc.pt

Abstract— Despite all the progress that has been made
in Robotics and Artificial Intelligence, traditional approaches
seem unsuitable to build truly intelligent robots, exhibiting
human-like behaviours. Many authors agree that the source
of intelligence is, to a great extent, the use of a huge memory,
where sequences of events that guide our later behaviour are
stored. Inspired by that idea, our approach is to navigate a
robot using sequences of images stored in a Sparse Distributed
Memory—a kind of associative memory based on the properties
of high dimensional binary spaces, which, in theory, exhibits
some human-like behaviours. The robot showed good ability to
correctly follow most of the sequences learnt, with small errors
and good immunity to the kidnapped robot problem.

Index Terms—robot navigation, view sequence, sparse
distributed memory

I. INTRODUCTION

Over the last 50 years Artificial Intelligence (AI) and
Robotics have gone through many peaks and ebbs, and
many approaches have been tried to build truly intelligent
machines. The ideal model, though, has yet to be found.
It is possible that a good model arises from the study
of the human brain, which is not, itself, very well
understood. According to recent evidence, though, it is
believed that the human brain is essentially a large memory
system [1], [2], [3]. J. Hawkins [1] proposes the Memory
Prediction Framework, a model which states that the brain is
continuously making predictions about the world. When one
of those predictions is violated, the brain learns, adjusting
its memories according to the new data. The memory seems
to be organised in a hierarchy, each level being responsible
for learning a small part of the overall model.

Hawkins” work was a new approach to renew Al, but it
was initially published as just an idea. Research is still being
done towards formalisation of the model [4]. On the other
hand, there’s a sound mathematical model available that,
in theory, offers many of the characteristics that a human
memory exhibits: Kanerva [2] created a Sparse Distributed
Memory (SDM) model, and developed the mathematical
support to implement it.

D. Rogers [5], A. Anwar et al [6], R. Rao and D. Ballard
[7], Furber et al [8], [3], among others, have implemented
SDMs and improved the original model, but the SDM

978-1-4244-1647-9/08/$25.00 ©2008 IEEE.

acoimbra@deec.uc.pt

has never been pushed farther, despite some preliminary
results. The lack of interest in this idea is not clear. One
reason might be that the average storage capacity starts at
about 0.1 bits per bit of traditional memory. Another may
be the speed of operation, for such a memory has to be
implemented using neural networks or linked lists. Anyway,
the practical implementations have worked as the theory
predicted, and the original idea is still promising, according
to the recent results from neuroscience on the principles of
human intelligence.

Our approach is to navigate a robot (called Lizard) using
an SDM at its core. We describe the architecture of an SDM
suitable to store and predict sequences of images, and the
software model designed to navigate the robot. Lizard has
two operating modes: one for learning, the other to navigate
autonomously. During learning it acquires and stores in the
SDM images and some additional information, such as the
timestamp and the motion the robot was performing. During
the autonomous run, Lizard captures its current view and uses
it to retrieve the closest image from the SDM. It then uses the
data associated with the retrieved image to predict the next
action that must be performed. Small drifts are corrected
based on the horizontal displacement between the retrieved
image and Lizard’s current view. This approach is inspired
by the one developed by Y. Matsumoto [9].

II. SPARSE DISTRIBUTED MEMORIES

The underlying idea behind an SDM is the mapping of a
huge binary memory onto a smaller set of physical locations,
so-called hard locations. As a general guideline, those hard
locations should be uniformely distributed in the virtual
space, to mimic the existence of the larger virtual space as
accurately as possible. Every datum is stored distributed by
a set of hard locations, and retrieved by averaging those
locations. Therefore, recall may not be perfect, accuracy
depending on the saturation of the memory.

Kanerva’s proposal is based on four basic ideas, as
presented by the author: the space 2", for 100 < n <
10°, exhibits properties which are similar to our intuitive
notions of relationships between the concepts; neurons with
n inputs can be used as address decoders of a random-access

Address Radius

[cot100i1] [3 | [o 1
Distance
S w 00111111 | g 2 -0 [1|O[1]|]0]1 |1)
-% | 10001100 | = 7 ojo(o|lofOo|lO|0O]|O .g %
g §| 11110010 | = 3 »-1(2]0[-2|0]|2]|1]1|a 3
= <[10110100 | = 4 ojofo|lofjo|lOo|0O]|O)
Average

Threshold at 0 and output

[0 1

Fig. 1. One model of an SDM.

memory'; unifying principle: data stored in the memory can
be used as addresses to the same memory; time can be traced
in the memory as a function of where the data are stored.

In [2] and [11], Kanerva and Mendes et al present
thorough demonstrations of how those properties are
guaranteed by an SDM. Therefore, we will only concentrate
on the implementation details.

A. A Sparse, Distributed Memory

Figure 1 shows a model of an SDM. In this model, the
main modules of the SDM are an array of addresses, an array
of bit counters, an adder and a thresholder.

“Address” is the reference address where the datum is
to be stored at or read from. In conventional memories,
this reference would activate a single location. In an SDM,
though, it will activate all the addresses in a given access
radius, which is predefined. Kanerva proposes that the
Hamming distance, that is the number of bits in which
two binary vectors are different, is used as the measure of
distance between the addresses. In consequence of this, all
the locations that differ less than a predefined number of
bits from the reference address (within the radius distance,
as shown in figure 1), are selected for the read or write
operation.

In this model, writing is done by incrementing or
decrementing the bit counters at the selected addresses. As
the figure shows, data are stored in arrays of counters, one
counter for every bit of every location. To store O at a given
position, the corresponding counter is decremented. To store
1, it is incremented. This means that every counter may store
either a positive or a negative value. Kanerva proves that,
under normal circumstances, the value should fit in the range
[-40, 40].

Reading is done by summing the values of all the counters
columnwise and thresholding at a predefined value. If the
value of the sum is below the threshold, we consider the
bit to be zero, otherwise it is one. For a memory where the
counters are incremented or decremented one by one, O is a
good threshold value.

Kanerva proposes that an SDM can be built based on a neural network
(NN). Apart the fact that the NN model is biologically inspired, which is
not a significant advantage for engineering, we see no other advantage over
the symbolic model. Therefore, we’ll be using a model based on linked
lists, inspired by B. Ratitch’s work [10].

54

Initially, all the bit counters must be set to zero, for the
memory stores no data. The bits of the address locations
should be set randomly, so that the addresses would be
uniformely distributed in the addressing space.

One drawback of SDMs becomes now clear: while in
traditional memories we only need one bit per bit, in an
SDM every bit requires a counter. Nonetheless, every counter
stores more than one bit at a time, making the solution not
so expensive as it might seem. Kanerva calculates that such
a memory should be able to store about 0.1 bits per bit,
although other authors state to have achieved higher ratios
[12].

As the theory predicts, there’s no guarantee that the data
retrieved is exactly the same that was written. It should be,
providing that the hard locations are correctly distributed
over the binary space and the memory has not reached
saturation.

B. SDM Advantages for mobile robotics

The SDM model exhibits some characteristics which make
it look attractive to apply in mobile robots based on computer
vision, namely:

According to Rao and Ballard [7], SDMs can be used
in pattern (image) recognition, where they have shown
to be tolerant to occlusion, illumination changes, scale
changes and rotations in 3D. Our results also show that
they can store sequences of images with good tolerance
to noise and minimum errors [11].

They’re immune to noise up to a high threshold. Using
coding schemes such as n-of-m codes, their immunity
is even increased [8], at the cost of reducing the
addressable space.

They’re robust to failure of individual locations, just like
neural networks. This may be important specially for
memories implemented in hardware, where occasional
or localised errors may occur.

SDMs degrade gracefully, when some locations fail or
the memory approaches its maximum capacity.
One-shot learning is possible. If the memory is not
close to saturation, it will learn in a single pass. This is
also a desirable feature for a robot, where long learning
periods should be avoided.

Unlike traditional neural networks, SDMs can be “open”
and subject to analysis of individual locations. This is
important namely for debugging purposes, or to track
the learning process.

It’s possible to change memory’s structure without
retraining all the memory [10]—an important
characteristic to build modular robots.

Under normal operation we can only retrieve a sequence
in the order it was stored, not its reverse sequence.
Nonetheless, it’s possible to invert the process and,
using data as addresses, retrieve the reverse sequence.
This characteristic allows a robot to learn one path
or task and be able to follow or perform it from the
beginning to the end or from the end to the beginning.

The main drawbacks are:

TABLE 1
SUMMARY OF THE TOTAL DIMENSIONS OF THE INPUT VECTOR.

[Image Resolution [Image bytes | Overhead | Total bytes | Total bits |
[80x6d___ | 5120 | 13| 5133 | 41064 |

e Once a datum is written, it cannot be erased,
only forgotten as the time goes by. Under certain
circumstances this may be an undesirable feature, as
unnecessary memories cannot be deleted, and they may
interfere with more recent and important data.

o Storage capacity may be only about 0.1 bits per bit of
traditional computer memory.

o If implemented in software, a lot of computer
processing is required to run the memory alone.

III. BUILDING A SPARSE DISTRIBUTED MEMORY

In our implementation, input and output vectors consist in
arrays of bytes, meaning that each individual value must fit
in the range [0, 255]. Every individual value is, therefore,
suitable to store the graylevel value of an image pixel or an
8 bit integer.

The composition of the input vectors is as summarised in
table I and equation 1:

x; =< im;_1,1m;, seq_id, i, timestamp, motion >

(D

where im; is the last image. seq_id is an auto-incremented,
4 bytes integer, unique for each sequence. It is used to
identify which sequence the vector belongs to. ¢ is an auto-
incremented, 4 bytes integer, unique for every vector in the
sequence. It is used to quickly identify every image in the
sequence. timestamp is a 4 bytes integer, storing Unix
timestamp. It is read from the operating system, but not
being used so far for navigation purposes. motion is a single
character, identifying the type of movement the robot was
performing when the image was grabbed.

Images 80x64 or 160x128 are used. Since every pixel is
stored as an 8 bits integer, the smaller image alone needs
80 x 64 = 5120 bytes = 40960 bits. The overhead information
comprises 13 additional bytes, meaning the input vector, for
the small size images, contains 41064 bits.

The memory is used to store vectors as explained,
but addressing is done using just one image. During the
autonomous run, the robot will predict im; from im;_;.
Therefore, the address is im;_1, not the whole vector. The
remainder bits could be set at random, as Kanerva suggests,
but it was considered preferable to set up the software
so that it is able to calculate similarity between just part
of two vectors, ignoring the remainder bits. This saves
computational power and reduces the probability of false
positives being detected. According to the theory, 20% of
the bits of 7m;_; coincident with the robot’s current view
should suffice for correct retrieval, assuming non-coincident
bits are random noise. If we used im;_1 + overhead, with
the overhead bits set randomly, the image’s noise level could

55

Address Radius Data Input
[00110071]] [3 | BT
% Distance *
c w[001T1711 | pm 2 w[0JO[1JOJO 1]
£ 10001100 | -m 7 ojoJoJofofofofole »
g 511110010 | = 3 »0|1[1]o]o]o[1][1]|o =
- <[70110100 | -+ 4 o|ojofojofofo]0
Average

Thresholdat0.5andoutput [0 1 1 0 0 1 1 1]

Fig. 2. Bitwise SDM, which works with bits but not bit counters.

be, at most, slightly below 20% of the bits. Since we’re not
using the overhead, the tolerance to noise increases a little
bit, resulting in less possible errors during normal operation.

Another difference in our implementation, relative to
Kanerva’s proposal, is that we don’t fill the virtual space
placing hard locations randomly in the addressing space in
the beginning of the operation. Instead, we use Ratitch et
al’s Randomised Reallocation algorithm [10]: start with an
empty memory, and allocate new hard locations when there’s
a new datum which cannot be stored in enough existing
locations. The new locations are allocated randomly in the
neighbourhood of the new datum address.

A. Bitwise implementation

Kanerva’s model has a small handicap: the arrays of
counters are hard to implement in practice and require a lot of
unnecessary processing, which increases the processing time.
Furber et al [8] claim their results show that the memory’s
performance is not significantly affected if a single bit is
used to store one bit, instead of a bit counter, under normal
circumstances. For real time operation, this simplification
greatly reduces the need for processing power and memory
size. In our case, the original model was not implemented,
and the system’s performance was acceptable using this
implementation where the bit counters are replaced by a
single bit each, as shown in figure 2.

Writing in this model is simply to replace the old datum
with the new datum. Additionally, since we’re not using bit
counters and our data can only be O or 1, when reading,
the average value of the hard locations can only be a real
number in the interval [0, 1]. Therefore, the threshold for
bitwise operation is at 0.5.

B. Arithmetic implementation

Although the bitwise implementation works, we also
implemented another version of the SDM, inspired by
Ratitch et al’s work [10]. In this variation of the model, the
bits are grouped as integers, as shown in figure 3. Learning
is achieved using a reinforcement learning algorithm, and
addressing is done using an arithmetic distance, instead of
the Hamming distance.

When writing to the memory, the following equation is
applied to update every byte value:

P =hF 4+a-(x"=hf), acRAO<a<1 (2

Address Radius Data Input
(12 13] [30 | [100 90
‘ Distance +
s 12 14 | _pu 1 | 100 | 90
= 230 | 228 | = 433 0 0
9 3 9 11 | 5 | 100 | 90
— <128 | 120 | -»> 223 0 0
o]
Average | 100 | 90 |
Fig. 3. Arithmetic SDM, which works with byte integers, instead of bit
counters.

h¥ is the k'™ 8 bits integer of the hard location, at time ¢.
x® is the corresponding integer in the input vector and «
the learning rate. « = 0 means to keep the previous values
unchanged. « 1 implies that the previous value of the
hard location is overwritten (one-shot learning). In practice,
o = 0.5 might be a good compromise, and that’s the value
being used for us. Nonetheless, this means the memory may
loose it’s one-shot learning ability.

IV. EXPERIMENTAL PLATFORM

Lizard is a Surveyor2 SRV-1, a small robot with tank-
style treads and differential drive via two precision DC
gearmotors. The speed range is 0.20 m/s to 0.40 m/s.
Among other features, it has a built in digital video camera
with 80x64 to 640x480 resolution, 4 infrared sensors and
a Zigbee 802.15.4 radio communication module. The field
of view of the camera was experimentally determined to be
approximately 40°. This robot was controlled in real time
from a laptop with an Intel 1.8GHz Pentium IV processor
and 1Gb RAM.

The overall software architecture is as shown in figure 4.
It contains three basic modules:

1) The SDM.

2) The Focus (following Kanerva’s terminology), where

the navigation algorithms are running.

3) A low level layer, responsible for interfacing the

hardware and some low level tasks.

When an image is out of focus or the infrared proximity
detectors detect an obstacle close to the robot, Lizard
stops an autonomous run and waits until further order is
received from the user. In historical terms, Level 1 can
be considered as inspired by the first level of competence
of the Brooks’ subsumption architecture [13]. In biological
terms, it can be considered as inspired by the “primitive
brain”, which controls basic functions such as breathing and
other instinctive behaviours. This layer is also responsible
for converting the images to 8 bit grayscale and equalise the
brightness to improve quality and comparability.

Zhttp://www.surveyor.com.

56

data / predictim
>

SDM Focus

<
request / data

A
command [data

\4

Level 1 - Motors control and collision avoidance

Motors control Image processing

control signal | control signal |image

— @ _camera

Fig. 4. Architecture of the implemented software.

A. Navigation using a view sequence

Navigation using a view sequence is based on Y.
Matsumoto et al’s proposal [9]. This approach requires a
learning stage, during which the robot must be manually
guided. While being guided, the robot memorises a sequence
of views automatically. While autonomously running, the
robot performs automatic image based localisation and
obstacle detection, taking action in real-time.

Localisation is calculated based on the similarity of two
views: one stored during the learning stage and another
grabbed in real-time. The robot tries to find matching areas
between those two images, and calculates the horizontal
distance between them in order to infer how far it is from the
correct path. That distance is then used to correct eventual
drifts.

To calculate the drift in each moment, a block matching
process is used. A search window selected from the center
of the memorised image is matched against an equivalent-
size window in the current view, calculating the horizontal
displacement that results in the smallest error e. Considering
two images I; and I, the matching error is defined as:

w—s

h
e(u) =Y > |h(z,y) - Lo(z +u,y)|

z=s y=0

3)

w and h are the width and height of the image, in pixels. u
is the offset, or horizontal displacement of the search window
s, which was set to 34 pixels. [;(x,y) is the graylevel
intensity of pixel (z,y) of image i. And the error that is
of interest for us is the minimum e(u), defined as follows:

“4)

This technique is not as robust as stereo matching
techniques, but it is more interesting for our approach
because of its computational simplicity. Moreover,
considering the camera cannot move, vertical displacements
are not likely to occur.

e =min(e(u)),—s <u<s

B. Dealing with noise

To calibrate the system, it is necessary to previously
estimate noise levels. We consider noise the distance between

two consecutive pictures taken without any environmental
change (i.e., the lighting and scenario are the same).

To make navigation a little more robust, a dynamic
algorithm was implemented, to automatically adjust to the
noise level before learning. Once the system is turned on,
Lizard captures 3 consecutive images and computes the
difference between the first and the second, and between the
second and the third. The average of the two values is taken
as a good approximation to the actual noise level.

As proposed in [11], to make sure the images are retrieved
from the memory when following the sequence, the access
radius was set as a function of the noise level. It was set
to the average value of the noise increased 40% for bitwise
operation, and 70% for arithmetic operation.

Under the conditions specified, Lizard showed a good
ability to learn and follow simple paths, even when
“kidnapped” in the middle of a sequence.

V. RESULTS

Several parameters were tested in practice, namely to
get experimental results that could show the differece in
performance of the robot with and without equalisation,
as well as the impact of using the arithmetic or bitwise
implementation.

All the data grabbed from the robot was recorded in
the computer hard disk, so that the same path could be
learnt again by the system, without the need of moving
the robot throughout the same exact path. This procedure
made it possible to test autonomous runs both with and
without preprocessing of the images, and different working
parameters.

A. Processing time

To measure the processing time, the memory was loaded
with 100 images in 3 hard locations each (a total of
300 addresses). The search for the closest matching image
takes about 190 ms in bitwise mode and less than 80
ms in arithmetic mode. It should be mentioned that the
bitwise operations take longer because they are simulated in
software. An hardware implementation should provide much
faster results for the bitwise operation. Nonetheless, these
measures confirm that real time operation of such a memory
requires the use of a fast processing unit.

B. Illumination changes

The effect of image processing was also tested, in order to
analyse the advantages of using algorithms to improve the
quality of the images grabbed from the camera. Although
simple, this processing is also time consuming, which is a
cost for real time operation.

Table II compares the performance of the memory with
and without application of image processing algorithms. The
results were obtained using a sequence of 80 images. Those
images were captured under a strong light and stored in the
computer’s hard disk without processing. The robot was then
placed in the beginning of the path, where it was expected
to see image 1, and the various algorithms were applied.

57

Fig. 5.

Paths learnt and predicted.

As table II shows, image processing succeeds in increasing
the matching error between the best matching image and
the the other images, specially if the lighting conditions are
changed. Additionally, changing the lighting conditions, a
gross image recognition error occurs if the images are not
processed, for image 53 is wrongly recognised. With contrast
stretching, image 2 is detected, which is close to the first,
and equalisation solves the problem.

C. Full sequence tests

Figure 5 shows an overall view of the paths followed
during a test run. The lines were drawn using a pen attached
to the rear of the robot, as shown in the image. Therefore,
they mark the path described by its rear, not its centre. The
blue line shows the path that was taught during the learning
stage. The whole path is described by 123 80x64 images.
During the autonomous run, the robot is expected to retrieve
(“see”) each image in the same sequence that it was stored
during the learning stage. If at any point in the navigation it
goes back in the sequence—say, from image im; to im;_;—,
that is considered a navigation error.

The blue line shows the path followed during an
autonomous run, in which the images were equalised and
compared using the arithmetic distance. There were 11 errors
during this run. The black line shows another path followed
during an autonomous run, using the bitwise mode. There
were 20 errors during this run. One reason for the poorer
performance of the bitwise mode may be the fact that the
binary code that represents the brightness intensity is not
continuous. The distance between 127 and 128, for example,
is 1 in the arithmetic mode, but 7 bits in binary code.

VI. CONCLUSIONS AND FUTURE WORK

The scrimpy results of Al over the last decades are leading
researchers to look for different approaches. One field that
still requires further investigation is that of artificial memory
systems, since there’s evidence that the human brain may
be working as a huge memory system, relying more on
associations and analogy than on mathematical processing.

TABLE I
COMPARISON OF MATCHING ERRORS FOR DIFFERENT IMAGE PROCESSING ALGORITHMS. SL STANDS FOR STRONG LIGHT, DL FOR DIM LIGHT, CS
FOR CONTRAST STRETCHING, EQ FOR EQUALISATION, AR FOR ARITHMETIC MODE AND BW FOR BITWISE MODE.

[Lighting | Processing [Mode [Best match | Second match | Tnc. [Average [Inc. | Remarks |
SL None AR 240342 266458 10.87% | 440792.10 | 83.40%
SL CS AR 271550 300208 10.55% | 539367.31 | 98.63%
SL Eq AR 401707 419718 4.48% 709934.27 | 76.73%
SL CS + Eq AR 400324 418955 4.65% 709363.06 | 77.20%
SL None BW 36912 37469 1.51% 39758.20 7.71%
SL CS BW 35890 36178 0.80% 39168.33 9.13%
SL Eq BW 35369 35732 1.03% 39352.21 11.26%
SL CS + Eq BW 35311 35723 1.17% 39367.54 11.49%
DL None AR 662573 665912 0.50% 842004.94 | 27.08% | Detects image 10
DL CS AR 311795 326919 4.85% 577167.11 | 85.11%
DL Eq AR 454176 461733 1.66% 712281.14 | 56.83%
DL CS + Eq AR 452801 460476 1.70% 711719.65 | 57.18%
DL None BW 39579 40224 1.63% 41448.90 4.72% | Detects image 53
DL CS BW 36436 36551 0.32% 39529.25 8.49% Detects image 2
DL Eq BW 37358 37580 0.59% 39559.84 5.89%
DL CS + Eq BW 37269 37276 0.02% 39584.21 6.21%

It seems to retrieve solutions, more than computing new
ones. Considering those facts, we implemented a Sparse
Distributed Memory and equipped a small robot to navigate
making use of it. The SDM is a kind of associative
memory which exhibits typically human characteristics, such
as storing and retrieval of sequences, natural learning and
forgetting, as well as graceful degradation.

Lizard is able to learn and follow paths based on view
sequences, captured by its onboard camera. During learning
it stores images of unknown scenes. During navigation
it compares images from its current view to the closest
matching image, and decides its next action based on the
action associated with the retrieved image. Small horizontal
drifts are corrected based on the horizontal distance between
the current view image and the retrieved view image. It
is naturally immune to being kidnapped and transposed to
another known location, for its navigation is solely based on
vision.

The main limitation of this approach is that, being vision-
based, the system is very sensitive to image noise and
illumination (although other sensorial information may be
used). Another drawback is that the SDM itself requires
computational processing, and provides storage of about 0.1
bits per bit. It also cannot be selectively erased—data must
be forgotten over time.

Future work includes the design and implementation of
more sophisticated navigation algorithms, making use of the
overhead information stored with each vector. The robot is
currently only using the visual information stored in the
image, but it may also use time and odometry information,
thus being ‘“aware” of time and detecting when it was
kidnapped, or erroneously skipped from one sequence to
another. Another subject of study may be the use of a
different binary system to code the brightness intensities,
with the goal of improving the results of bitwise operations.

REFERENCES

[1] Jeff Hawkins and Sandra Blakeslee. On Intelligence. Times Books,
New York, 2004.

58

[2] Pentti Kanerva. Sparse Distributed Memory. MIT Press, Cambridge,
1988.

[3] Joy Bose. A scalable sparse distributed neural memory model.
Master’s thesis, University of Manchester, Faculty of Science and
Engineering, Manchester, UK, 2003.

[4] Dileep George and Jeff Hawkins. A hierarchical bayesian model of
invariant pattern recognition in the visual cortex. In Proceedings of
the International Joint Conference on Neural Networks, 2005.

[5] David Rogers. Predicting weather using a genetic memory: A
combination of Kanerva’s sparse distributed memory with Holland’s
genetic algorithms. In NIPS, 1989.

[6] Ashraf Anwar, Dipankar Dasgupta, and Stan Franklin. Using
genetic algorithms for sparse distributed memory initialization. In
International Conference Genetic and Evolutionary Computation
(GECCO), July 1999.

[7]1 Rajesh P. N. Rao and Dana H. Ballard. Object indexing using an iconic
sparse distributed memory. Technical Report 559, The University of
Rochester, Computer Science Department, Rochester, New York, July
1995.

[8] Stephen B. Furber, John Bainbridge, J. Mike Cumpstey, and Steve

Temple. Sparse distributed memory using n-of-m codes. Neural
Networks, 17(10):1437-1451, 2004.
[9]1 Yoshio Matsumoto, Masayuki Inaba, and Hirochika Inoue. View-

based approach to robot navigation. In Proceedings of 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2000), 2000.

[10] Bohdana Ratitch and Doina Precup. Sparse distributed memories for
on-line value-based reinforcement learning. In ECML, 2004.

[11] Mateus Mendes, A. Paulo Coimbra, and Manuel Criséstomo. Al and
memory: Studies towards equipping a robot with a sparse distributed
memory. In Proceedings of the IEEE International Conference on
Robotics and Biomimetics, Sanya, China, December 2007.

[12] James D. Keeler. Comparison between Kanerva’s SDM and Hopfield-
type neural networks. Cognitive Science, 12(3):299-329, 1988.

[13] Rodney A. Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1), March 1986.

