
  

  

Abstract— Visual odometry can augment or replace wheel 

odometry when navigating in high slip terrain which is quite 

important for autonomous navigation on Mars. We present a 

computationally efficient and robust visual odometry algorithm 

developed for the Mars Science Laboratory mission. This 

algorithm is a significant improvement over the algorithm 

developed for the Mars Exploration Rover Mission because it is 

at least four time more computationally efficient and it tracks 

significantly more features. The core of the algorithm is an 

integrated motion estimation and stereo feature tracking loop 

that allows for feature recovery while guiding feature 

correlation search to minimize computation. Results on 

thousands of terrestrial and Martian stereo pairs show that the 

algorithm can operate with no initial motion estimate while still 

obtaining subpixel attitude estimation performance.  

I. INTRODUCTION 

ISUAL Odometry is the process that uses images to 

estimate the motion of a robotic vehicle. Unlike 

traditional wheel odometry, motion estimates from visual 

odometry are not degraded by the slip of the vehicle, so they 

can be used to reliably estimate motion in rugged and low 

traction terrain. However, the high computational cost and 

sensitivity to imaging conditions (e.g., terrain appearance, 

vehicle motion, camera parameters) of visual odometry must 

be overcome before visual odometry can be used reliably in 

real-time. 

On the Mars Exploration Rovers (MER) the visual 

odometry algorithm [6] uses image feature tracking between 

stereo image pairs to estimate the translation and rotation 

between image captures. The software ensures vehicle safety 

by halting a dangerous drive when the rover enters a 

predefined keep-out zone and performs intermittent slip 

checks in slippery terrain, which enable reliable mid-drive 

imaging of science targets and reduces the overall number of 

days needed to reach science targets. The MER Visual 

Odometry algorithm (MER-VO) has been used extensively 

and effectively on both rovers on Mars, but it has some 

short-comings which led to funding of an update to the 

algorithm for the Mars Science Laboratory (MSL) mission, a 
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rover mission to Mars scheduled to land in 2010.  

Specifically, MER-VO requires a large amount of 

computation time.  Given the extremely limited 

computational resources on board MER (20MHz RAD 6000 

running dozens of tasks under VxWorks), the operations 

team rarely chose to run MER-VO and the autonomous 

hazard detection software during the same traverse. This 

presents a problem when autonomously navigating in rough 

terrain because hazard detection and avoidance depends on a 

reliable position estimate to navigate around hazards and 

wheel odometry cannot be depended on to provide position 

estimates of sufficient accuracy. MSL is a larger vehicle that 

can mechanically tolerate more rugged terrain than MER, so 

the ability to navigate precisely in rough terrain is desirable.  

Occasionally, especially during the beginning of the 

mission, MER-VO sent a grossly incorrect motion estimate 

to the rover navigation system.  This occurred mainly when 

the scene was low texture and/or a small high contrast 

element was in the scene (e.g., a rock or rover shadow).  In 

many of these failure cases, the number of features tracked 

was low, but not low enough to throw out the motion 

estimate (because good motion estimates often have a low 

number of features as well). Increasing the number of 

features tracked when the motion estimate is correct relative 

to when the it is incorrect will make it easier to distinguish 

correct from incorrect motion estimates. MER-VO also 

failed to converge to a solution during many of the 

Opportunty rover’s drives through sandy terrain due to lack 

of detected or well-tracked features. Increasing the number 

of tracks also improves the accuracy of the motion estimate.   

MER-VO uses the on-board position from wheel 

odometry as an initial estimate to decrease run time.  This 

estimate can be quite wrong due to slipping of the rover, 

which can lead to failure of MER-VO to compute a motion 

estimate.   Unfortunately, when these estimates are wrong is 

precisely when visual odometry is needed most. Visual 

odometry should not depend on the input motion estimate. 

This assessment leads to a list of desired improvements to 

the MER visual odometry algorithm: 

• decrease algorithm run-time 

• increase number of features tracked 

• eliminate dependence on initial motion estimate 

Because MER-VO has worked well enough and a lot of 

effort went into validating its performance before it was used 

on Mars, there was also a desire to minimize the changes to 

the MER algorithm. With these goals in mind an update to 

MER-VO was designed, implemented and tested.  The 

update resulted in an integrated motion estimation and 

feature tracking algorithm that is very efficient while 
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tracking a large number of features and still not relying on 

an initial motion estimate.  Due to the dramatic improvement 

in run-time and number of features made possible by this 

stereo tracker, it should be of general interest to the visual 

tracking and autonomous navigation community. 

The paper begins by describing related work with an 

emphasis on the MER visual odometry algorithm.  It then 

describes the updated algorithm with an emphasis on the 

integrated multi-resolution stereo tracker and motion 

estimation loop. Results are then presented for terrestrial and 

Martian image sequences which demonstrate the algorithm 

performance with respect to run-time, motion estimation 

accuracy and number of features tracked.  

A. Related Work 

The concept of visual odometry from stereo images has 

been around for quite some time. Initial work started with 

Moravec [9] and was then continued by Matthies [8].  Since 

that time, refinements have continued [11] culminating in an 

algorithm implemented in real-time flight software for the 

Mars Exploration Rover mission [6]. 

The MER-VO algorithm is based on feature tracking; 

features are selected and located in subsequent images using  

spatial correlation search. The feature tracking approach 

works better when there is an initial estimate of the motion, 

which is often the case for robotic vehicles, so this approach 

has been applied to many different navigation problems 

[1][2][7]. On MER, the attitude estimate is very accurate 

because it comes from inertial propagation of gyro 

measurements; the position estimate from wheel odometry 

can also be accurate in low slip terrains.  

Recently a different approach based on feature matching 

has been used to perform real-time visual odometry [10][4]. 

In this approach features are selected and then matched 

based on a descriptor associated with the feature; no spatial 

correlation search is performed.  These approaches require 

stable and salient descriptors to work well with large image 

motions, but the advantage is that they do not necessarily 

require an initial motion estimate. The Hirschmuller 

approach [4] uses a dense stereo depth map. Since 

computing resources are limited on Mars rovers, generating 

a dense depth map is undesirable. The Nister approach [10] 

assumes very small steps between images. But rover 

operators try to run VO as infrequently as possible, to 

minimize power consumption due to image acquisition and 

computing. This forces the VO algorithm to be reliable for 

large step sizes.  

II. ALGORITHM DESCRIPTION 

A. Definitions 

In the description below left and right refer to the cameras 

locations, first and second refer to the order in which the 

stereo pairs are taken and top and bottom refer to the levels 

of an image pyramid where top is the coarsest level and 

bottom is the finest level of the pyramid. Template refers to 

a square image patch that is correlated with a larger window 

in another image. Feature is a pixel location and a track is 

the location of the feature in another image established 

through correlation. A feature is considered valid if it 

survives various algorithm checks all the way to the final 

motion estimation stage. 

B. MER Visual Odometry Algorithm 

An excellent description of the MER algorithm 

implementation including performance on Mars is given in 

[6]. The algorithm takes as input a two stereo image pairs, 

camera models, a set of algorithm parameters and an 

estimate of the motion between the images from wheel 

odometry and integration of inertial measurements.  It 

outputs an estimate of the change in position and orientation 

of the cameras between stereo image captures and the 

covariance of this estimate.  The algorithm steps are briefly 

described below because they form the basis for the new 

algorithm. The order of the steps and the use of image 

pyramids are shown in Figure 1. 

Feature Selection: Features are selected in the bottom first 

left image using the Harris interest operator [3].  The image 

is broken up into square blocks and the best feature in each 

block is selected.  This forces the features to span the image, 

which improves motion estimation accuracy. Since feature 

selection occurs in the input image, these features are 

expected to be good features to track in the coarser levels of 

the image pyramid, which is not always the case. 

First Stereo Matching: The features selected in the first 

left image are searched for in the first right image using 

Pseudo Normalized Cross Correlation (PNC)[5]. Image 

pyramids are used to speed correlation. Down-sampling of 

the selected feature location to the top left image determines 

the location of the correlation template. The bounds of the 

correlation search window in the top right image are set by 

constructing a rectangular box that contains the projection of 

the feature ray, truncated by parameters for maximum and 

minimum feature depth, from the left camera into the right 

camera (an epipolar segment). Spatial correlation between 

the template and the search window is used to find the 

location of the template in the first top right image. The 

feature and its track are then up-sampled to the next finer 

level of the pyramid.  A template is established in the left 

image, and it is correlated with a small search window that 

just surrounds the track location in the right image. This 

process repeats to the end of the image pyramid.   

If a correlation peak is questionable (low or wide peak) 

then the feature is eliminated from further steps of the 

algorithm. If the correlation peak is good, then triangulation 

is used to generate a 3D point and its covariance. Checks on 

the distance between feature rays from left and right image 

are used to eliminate some bad tracks.  

Motion Tracking: The remaining features are tracked from 

the first left to the second left image using the pyramidal 

PNC method described above. However, the bounds of the 

correlation search window are set through a different means. 

First the 3D point defined by the first stereo match is 

projected into the second left camera using the supplied 
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motion estimate. Then a single fixed parameter defines the 

square extent of the correlation search window around this 

pixel. The motion estimate and its associated uncertainty are 

not used to set the search window, and no accommodation is 

made for the fact that features that are far away may move in 

the images much less than features that are close. As we will 

show, this simple approach led to unnecessarily large search 

windows. An example of the motion tracking search 

windows for MER-VO is shown in Figure 4. 

Second Stereo Matching: This step is similar to first stereo 

matching with the following exceptions. The template 

location is given by the motion track location in the second 

left image.  Projecting this pixel into the second right image 

using the depth from the corresponding first stereo match 

defines the center of the search window in the second right 

image. The search window bounds are set based on fixed 

max and min depth parameters that are tighter than the 

global max and min depth parameters used in the first stereo 

track where depth is not known at all. As in the motion 

tracking stage, this method makes no use of a motion 

estimate to predict the change in depth to the feature, which 

can result in unnecessarily large correlation search windows. 

Triangulation between the second left to and second right 

matched pixels is used to generate a 3D point and its 

covariance. 

Motion Estimation: The corresponding 3D points and 

covariances from the first and second stereo pair are used to 

estimate the motion in three steps.  First a rigidity test based 

on the difference of distances between points in each stereo 

pair (weighted appropriately by the point covariances [8]) is 

used to find outlier points. A weighted Least Median 

Squares technique is the applied to the remaining points to 

generate an initial motion estimate and eliminate points that 

do not agree with rigid the motion estimate.   Finally, 

Maximum Likelihood Estimation is used to estimate the 

final motion estimate using the full point covariances. 

Motion estimation details are given in [8][11][6]. 

C. MSL Visual Odometry Algorithm 

Inspection of the MER-VO algorithm indicates that there 

could be a number of improvements to make it more 

efficient, track more features and eliminate dependence on 

an initial motion estimate. First, the correlation search 

windows are set somewhat blindly which results in 

unnecessarily large search windows. Second, a significant 

number of features are eliminated by various checks 

throughout the algorithm without any attempt to recover 

them.  Third, features selected at the bottom of the pyramid 

are expected to be good features to track at the top which 

can lead to loss of features.  

The MSL Visual Odometry algorithm (MSL-VO) starts 

with the same stages as MER-VO but reorganizes them to 

make a more efficient algorithm that also tracks more 

features and does not require on an initial motion estimate. 

Timing analysis showed that correlation incurred the most 

computation, so improvements were focused there. 

As shown in Figure 2, MSL-VO goes through all of the 

VO stages (from feature selection through MLE motion 

estimation) first using just the images at the top of the 

pyramid. The resulting motion estimate, location of valid 

features and the depth to valid features are all used to 

constrain the search for feature tracks when the stages in VO 

are applied to images at the next level of the pyramid.  This 

process repeats until the bottom of the pyramid is reached.   

This iterative application of the VO stages increases the 

number of features tracked because, as the pyramid is 

traversed, the correlation search windows shrink based on 

the improving confidence in the motion estimate. When the 

bottom of the pyramid is reached, the correlation search 

windows are so small that the chance of a incorrect feature 

track due to noise or ambiguity is also very small.  

 
Figure 1. MER VO algorithm. Algorithm only passes through stages once. 

 
Figure 2. MSL VO algorithm. Algorithm passes through all stages at each 

level of the image pyramid. i 

Computation is also reduced in this approach because the 

correlation search windows are set just large enough to 

contain the current motion estimate and its uncertainty. Also, 

as the pyramid is traversed, feature depths are used to refine 

the maximum and minimum depth parameters so that the 

first stereo matching search windows are as small as 

possible. Finally, feature selection at each level is only 

performed inside a box defined by the valid features from 
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the previous level, so searching for features that will not 

eventually be used in motion estimation is avoided. The 

algorithm details are given below. 

Feature Selection: At the top level of the pyramid features 

are selected inside of a bounding box set by user specified 

parameters. This box can be used to avoid pieces of the 

rover in the field of view or to avoid the sky or foreground 

where tracking is known a-priori to be problematic.   After 

the top VO iteration, this bounding box is updated to just 

surround the valid features from the top iteration (plus a user 

specified parameter to grow the box slightly to prevent 

excessive shrinkage as the pyramid is traversed). Features 

are selected in this box in the first left image at the next 

pyramid level. The idea is that the algorithm learns where 

the good features to track are located in the image so that it 

does not have to waste computations searching for features 

that will not survive to motion estimation. This approach 

also guarantees that the best features for tracking are 

selected for the image resolution at the current pyramid 

level, which is not the case for MER-VO. Figure 7 shows an 

example of the features that are selected at each pyramid 

level. 

First Stereo Matching: At the top level of the pyramid, 

user specified parameters for the maximum and minimum 

depth to features define the correlation search window in the 

top second image. After the top VO iteration, these 

parameters are updated to just contain the depths to all the 

features from the top iteration (plus a user specified 

parameter to slightly grow the depths to prevent shrinkage of 

the depth bounds as the pyramid is traversed). These new 

bounds are then used to set the correlation search window at 

the next pyramid level. Here again the idea is to learn the 

depth to features in the scene so that excessive computation 

is avoided.  

Because an entirely new set of features is selected for 

each pyramid level, it is not straightforward to pass the 

feature depth information from the previous level of the 

pyramid to the next (although we are looking into ways to do 

this with bounding planes instead of bounding depths). 

Given the desire to maximize the number of features tracked 

and given that the depths could be incorrect or not exist, it is 

debatable whether this is desirable. However, the 

consequence is that this step requires more computation 

because it searches the entire range of depths at each 

pyramid level instead of just at the top level of the pyramid, 

which is what the MER-VO does. However, resetting the 

depth search does increase the chance that the correct stereo 

match will be found for each selected feature, which would 

not be the case if the depths to features were somehow 

constrained based on previous possibly erroneous depth 

estimates.  Thus the path we have taken adds robustness to 

the algorithm while still increasing the number of features 

that are tracked at a slight computational penalty.  As will be 

shown the overall algorithm is still much faster. Figure 7 

shows an example of the first stereo matching correlation 

search windows for each pyramid level. 

As in MER-VO, triangulation generates a 3D point and 

covariance. Points with rays that are too far apart are 

eliminated. An additional check added for MSL-VO 

computes the angles between the rays; if the angle is too 

small then, because the covariance computation is ill-

conditioned, the feature is eliminated. In general this 

eliminates points that are far away. 

 
Figure 3. Setting of motion ttracking correlation search window using 

motion bounds. 

Motion Tracking: The purpose of motion tracking is to 

track features from first left image to second left image. The 

position of the feature in the second left image depends on 

the depth to the feature, which is known from the first stereo 

track, and the motion between stereo pairs. The motion 

typically has an estimate, but it may have a large uncertainty 

which is unknown.  The challenge is to translate the estimate 

and uncertainty into bounds on the correlation search 

windows.  

An intuitive way for the user to specify the motion 

uncertainty is by placing bounds on the maximum and 

minimum motion uncertainty in all six degrees of freedom 

(x,y,z,roll,pitch,yaw). For example, suppose the rover is 

commanded to drive forward for 0.5 m over flat ground but 

that there is also the possibility of the rover slipping. It is 

reasonable to constrain the forward motion between full slip 

and no slip (0.0m < x < 0.5m).  The cross track motion is 

probably small (-0.2m < y < 0.2m), and the vertical motion 

is definitely small (-0.1m < z < 0.1m).  The roll, pitch and 

yaw are all small (-5˚<roll<5˚, -5˚<pitch<5˚, -5˚<yaw< 5˚). 

These constraints can be converted into a motion estimate 

and 12 motion bounds 

(x,y,z,roll,pitch,yaw)est = (0.25, 0.0, 0.0, 0.0, 0.0, 0.0)  

(x,y,z,roll,pitch,yaw)min = (-0.25, -0.2, -0.1,-5,-5,-5) 

(x,y,z,roll,pitch,yaw)max = (0.25, 0.2, 0.1, 5, 5, 5) 

Initially, for tracking at the top level of the pyramid, the 

user specifies the motion bounds based on the rover 

characteristics and the drive command.  The motion 

estimate, motion bounds and the known depths to the 

features are then used to set the search windows. The search 

window for a feature should be set such that all 

transformations within the motion uncertainty bounds 

project the feature into the search window. Enumerating all 

transformations and computing the corresponding projection 

is computationally infeasible, so a simpler, but conservative, 

approach is taken. As shown in Figure 3, search window 
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bounds are first computed for the translational uncertainty 

and then these are added to the search bounds from the 

rotational uncertainty.  

For each feature the 3D point associated with the feature 

in the first stereo pair is transformed based on the motion 

estimate (translation and rotation). The projection of this 

point in to the second left image is called the nominal pixel. 

Then six points are constructed that are offsets from the 

transformed point along the coordinate axes with length 

equal to the respective translational motion bound (c.f., 

Figure 3). These six points are projected into the second left 

image and the bounding box of the projections is 

determined. This process is repeated for the rotational 

motion bounds except that the transformed point is rotated 

by each motion bound instead of translated.  

These bounding boxes are combined as follows. Each 

bounding box has a left, right, top and bottom offset defined 

by the difference between a bounding box edge and the 

nominal pixel. The four edges of the final bounding box are 

defined by the sums of the left, right, top and bottom offsets 

from the translational and rotational bounding boxes.  

  
Figure 4. Comparison of MER-VO (left) and MSL-VO (right) motion 

tracking correlation search windows. 

Figure 4 compares the MER search windows to the MSL 

search windows for a forward motion test case.  As can be 

seen the MER search windows are all the same size while 

the MSL search windows change size based on the distance 

of the feature and the expect forward motion of the vehicle.   

The MSL search windows are smaller for more distant 

features because only the rotational uncertainty has an effect 

on these windows.  Furthermore, the features in the center 

foreground have narrower search windows than the ones on 

the edge of the image because the features are expected to 

move mostly down while the ones on the edge will move 

down and out.    

Figure 5 shows the result of motion tracking with these 

search windows.  The red tracks in each picture indicate the 

tracks that have survived to motion estimation. In the MER-

VO picture, the tracks in the center far field are tracked 

while the ones in the foreground were not tracked because 

the search windows were not set large enough and there is 

no chance to recover lost features.  In contrast, the MSL-VO 

algorithm is able to track features over the entire image 

because the search windows were set based on the expected 

motion of the each feature. The end result is more features 

with less total correlations. 

The user specifies the motion bounds at the top level of 

the pyramid, but for each subsequent level, the motion 

bounds are set based on the covariance of the motion 

estimate from the previous level (described later). As the 

image pyramid is traversed the motion estimate covariance 

shrinks. This forces the motion tracking search windows to 

shrink and become more consistent with the motion 

estimate. Since the correlation search windows are shrinking 

around the correct location of the feature, the chance of an 

incorrect feature track due to noise or ambiguity decreases as 

the pyramid is traversed.  The end result is that more 

features are successfully tracked. Figure 7 shows an example 

of the motion tracking correlation search windows for each 

pyramid level. 

 
Figure 5. Motion tracks comparison between MER-VO and MSL-VO.  

If the user would like to eliminate any dependence on the 

motion estimate or no motion estimate is available (e.g., if 

the on-board inertial measurement unit fails) then at top 

level of pyramid, the search window for each feature can be 

set to the entire image. The motion estimate from the top 

level is still used to set the search windows at the next level, 

so this global search in only used at the top level.  This 

approach requires more computation, but as we will show it 

is still faster than the MER-VO approach with no 

degradation in algorithm robustness or accuracy. 

 
Figure 6. Figure for setting search bounds based on depth bounds. 

Second Stereo Matching: Like in the motion tracking 

stage, the depth to features in first frame is known and 

motion is unknown, but bounded. Following the motion 

tracking concept the motion estimate and bounds are used to 

set the bounds on the maximum and minimum depth for 

each feature as follows. A 3D point along motion track pixel 

ray is constructed.  The translational motion bounds are 

added to this point to generate six 3D points; rotational 

motion bounds are not used because the feature depth does 

not depend on rotational motion.  As shown in Figure 6, 

these six points are then projected back onto the pixel ray to 

get the maximum and minimum depth for the feature. These 
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depth bounds are then used in the standard fashion to limit 

the stereo matching correlation search window. This process 

is repeated for each feature. Figure 7 shows an example of 

the second stereo matching correlation search windows for 

each pyramid level. 

 
Figure 7. Example of feature selection and correlation search windows for 

each pyramid level. 

Motion Estimation: MSL-VO uses the same rigidity test, 

Least Median Squares motion estimation and Maximum 

Likelihood Motion Estimation (MLE) that are used in MER-

VO.  The difference is that they are applied at each at each 

pyramid level. Following the notation in [6], the cost 

function minimized in MLE motion estimation is 
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PCj is the position of a 3D point in the second (current) 

stereo pair, PPj is its position in the first (previous) stereo 

pair, R is a rotation matrix constructed from the roll,pitch 

and yaw estimates, T is a vector for the translational motion 

estimate and !Pj and !Cj are the covariances of the points in 

the first and second stereo pairs. The covariance of the 

motion estimate is  
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where R{x,y,z} are the partial derivatives of R with respect to 

the three rotation angles. 

In the MSL-VO algorithm, to improve numerical 

conditioning, the mean of 3D points is subtracted from the 

points in both stereo pairs before computing the MLE error 

term; the means are added back in to correct the translation 

estimate after MLE estimation is finished.  

As mentioned previously, after the top level of the 

pyramid, the motion covariance is used to set the motion 

estimate bounds as follows. C is 6x6 matrix in 

(roll,pitch,yaw,x,y,z) order.  An eigen-vector decomposition 

of C is computed 
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with eigenvectors ei and eigenvalues "i. ei are principal 

directions of 6 dimensional ellipsoid and 
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magnitudes of the axes. The motion bounds are a bounding 

box aligned with the (roll, pitch, yaw, x, y, z) motion axes. 

The motion bounds are set by scaling the principal axes by a 

user specified parameter (S) and then projecting them onto 

the motion space axes. The maximum and minimum 

projections over all six principal axes define the maximum 

and minimum motion bounds.  
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Figure 8 shows a cross section of the motion covariance 

ellipsoid and how its projection onto the motion axes do not 

completely contain the motion covariance.  However the 

approximation used is very quick to compute and a 

fractional increase to the scale factor S will ensure that the 

motion covariance is completely contained. 

 
Figure 8. Cross section of motion covariance showing how it is used to set 

motion uncertainty bounds. 

Validity Checking: In MSL-VO, number of features 

tracked at the end of all the visual odometry iterations is a 

very strong metric for the validity of the motion estimate.  

Another metric employed is the condition number of the 

motion covariance matrix 
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which should be small for well conditioned motion 

estimates.  

To check for collinear or compact configurations of 

features where motion estimation is unstable, the scatter 

matrix A for valid features is computed 
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An eigenvector decomposition of A is performed and the 

condition number, as defined is in Equation 5, is computed.  

If either condition number is larger than a threshold, then the 

motion estimate is considered invalid. 

III. ANALYSIS 

Since efficiency and robustness are the primary 

motivation for the update to MER-VO, the main metrics 

tracked in this analysis are run time and number of features 
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tracked. In addition, the motion estimation accuracy and 

optimal rover step size are important factors for operation of 

the MSL rover.  

A. Comparison between MER-VO and MSL-VO  

The main objective of this work is to create an algorithm 

that is faster and tracks more features than MER-VO. As 

shown in Table 1, three test cases were selected for making 

this assessment. All run-times are with both algorithms 

running on the same computer, a 400 MHz R12000 SGI O2 

processor. In each case, the MER-VO parameters were 

optimized to maximize performance while the MSL-VO 

parameters were not optimized. 

The first test case was from the Rocky 8 research rover 

with wide field of view cameras 30cm above the terrain and 

a 25cm forward step.  This is a challenging test case with 

lots of image motion between stereo pairs.  The MSL-VO 

algorithm tracked 5.6x more features and took 15x less time 

than the MER-VO algorithm. 

The second test case was from the MER-B Opportunity 

rover 45˚ FOV navigation cameras, which are 120cm above 

the terrain, and essentially no motion between stereo pairs. 

Even with no motion the MSL-VO algorithm is four times 

faster than MER-VO; the number of features tracked is 

comparable for the two algorithms because both are able to 

track features across the entire image. 

The final test case is from a stereo pair mounted on the 

DARPA LAGR vehicle.  The cameras have a 45˚ field of 

view, are 2m above the terrain and the vehicle step size is 

50cm. This is the most similar to the MSL navcam 

configuration, so the results for this test case closely 

represent the expected improvements for MSL. For this test 

case, the algorithm is six times faster while still tracking 2.7 

times more features.  This is obviously a significant 

improvement. 
TABLE 1: COMPARISON OF  MSL VO TO MER VO 

MER VO MSL VO COMPARISON Test 

Case 
run 

time 

# feats. 

tracked 

run 

time 

# feats. 

tracked 

run time 

decrease 

feature 

increase 

Rocky8  6.91s 17 0.46s 95 15x 5.6x 

MER-B  0.53s 45 0.13s 54 4x 1.2x 

LAGR  4.72s 29 0.76s 79 6x 2.7x 

 

B. Mars Terrain Performance 

MSL-VO must work on Mars imagery. To investigate 

this, the first 2757 of the down-linked MER-A VO navcam 

stereo pairs were run through MSL-VO. The same 

parameters were used for all cases. The MER onboard 

attitude estimates (generated by integrating gyro 

measurements during vehicle motion) were used for ground 

truth.  The position estimates could not be used because they 

came from an unknown combination of wheel odometry and 

visual odometry, and consequently could not be trusted to 

convey the truth.  

Figure 10 shows the error between the MSL-VO attitude 

estimate and the MER onboard attitude estimate. Errors are 

only shown for valid estimations where valid is defined as 

cases with more than 25 valid features used in motion 

estimation. All of the attitude errors are sub-degree and most 

of them are less the MER navcam pixel size of 0.17˚, which 

indicates very good estimation performance.  

 
Figure 9. Error between the MSL-VO attitude and MER onboard attitude 

estimates.  

 
Figure 10. Assessment of valid test cases.  

Figure 10 shows that there were 2677 valid motion 

estimates and 80 invalid motion estimates (97% valid). Most 

of the invalid test cases were for large motions where VO 

should not have worked anyway (large change in attitude or 

position). This performance is as good as or better than the 

performance reported for MER-VO [6] (while using a much 

more computationally efficient algorithm). 

No initial motion estimate is used to generate these 

results.  The quality of the results indicates that MSL-VO 

can be used without a motion estimate and still generate 

robust motion estimates.  Re-running the test cases with an 

attitude estimate to constrain the correlation search shows 

very similar estimation performance, but with a four times 

faster computation time.  

C. Motion Accuracy for Long Traverses 

To test the motion estimation accuracy for long traverses, 

a data set collected by the DARPA LAGR vehicle on a dry 

lake bed in the Mojave Desert was used. The camera 

configuration was similar to the MSL navcam configuration 
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(2m height, 30cm baseline, 45˚ FOV). The traverse was 

1375 meters long over flat ground, and the images contained 

vehicle tracks, repetitive terrain features and at times the 

shadow of the sensor mast (c.f., Figure 11). Differential GPS 

provided ground truth.  

The initial camera attitude was not known in the GPS 

frame, so the MSL-VO trajectory was aligned to the GPS 

trajectory using a Least Squares alignment of the 3D points 

in each trajectory. The aligned trajectories are shown in 

Figure 11. Since this global alignment can remove some 

errors the following procedure was used to assess motion 

estimation accuracy for 100m traverses. Starting at the 

beginning of the trajectory, 100 corresponding points 

between the GPS trajectory and the MSL-VO trajectory 

were used to generate the trajectory alignment. The GPS 

trajectory is then traversed until 100m distance.  At this 

point the GPS position and MSL-VO position are compared.  

This process is repeated for every MSL-VO position in the 

trajectory (walking along the trajectory) and the statistics 

shown in Table 2 were generated.  Worst case error of 

6.39% of distance traveled is better than the MSL 

performance requirement.  

   

 
Figure 11. 1km+ traverse images and trajectory comparison to GPS.  

TABLE 2: POSITION ERROR STATISTICS FOR LONG TRAVERSE 

Position Error  Traverse 

Distance  

# of 

Cases Mean Std. Dev Mean + 3 Std. Dev. 

100m 2500 2.91m 1.16m 6.39m 

D. Effect of Rover Step Size 

The final analysis investigates the effect of rover step size 

on MSL-VO performance. The same DARPA LAGR 

vehicle with MSL navcam configration was used to collect a 

275m image sequence with 50cm steps between image 

captures. By skipping stereo pairs the effect of 1.0, 1.5 and 

2.0 m step sizes were investigated. GPS was not available 

for this image sequence, so the MSL-VO estimates for the 

50cm steps were uses as a truth measurement. The left plot 

in Figure 12 shows that the number of features drops with 

increasing step size. The right plot shows position estimation 

error for 1.0 and 1.5m steps remains small, but the variance 

of the error becomes much larger for 2.0m step sizes.  This 

analysis indicates that a maximum 1.5m step size should be 

used for visual odometry on MSL. 

 
Figure 12. Analysis of step size on performance. 

IV. CONCLUSION 

The update to the MER visual odometry capability has 

created an algorithm that is at least 4x faster while tracking 

significantly more features. The updated algorithm can also 

be operated when no motion estimate is available. The 

algorithm has been tested with thousands of MER and MSL-

like images over a variety of terrain and this testing strongly 

indicates that MSL VO will meet all MSL mission 

requirements. 

The algorithm has been coded in C++ and delivered for 

MSL flight software implementation. The code has been 

ported to the Rocky 8, FIDO and ATHLETE real-time 

robotic platforms where it has been shown to perform more 

efficiently and robustly than the MER-VO algorithm.  
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