

Abstract— Visual odometry can augment or replace wheel

odometry when navigating in high slip terrain which is quite

important for autonomous navigation on Mars. We present a

computationally efficient and robust visual odometry algorithm

developed for the Mars Science Laboratory mission. This

algorithm is a significant improvement over the algorithm

developed for the Mars Exploration Rover Mission because it is

at least four time more computationally efficient and it tracks

significantly more features. The core of the algorithm is an

integrated motion estimation and stereo feature tracking loop

that allows for feature recovery while guiding feature

correlation search to minimize computation. Results on

thousands of terrestrial and Martian stereo pairs show that the

algorithm can operate with no initial motion estimate while still

obtaining subpixel attitude estimation performance.

I. INTRODUCTION

ISUAL Odometry is the process that uses images to

estimate the motion of a robotic vehicle. Unlike

traditional wheel odometry, motion estimates from visual

odometry are not degraded by the slip of the vehicle, so they

can be used to reliably estimate motion in rugged and low

traction terrain. However, the high computational cost and

sensitivity to imaging conditions (e.g., terrain appearance,

vehicle motion, camera parameters) of visual odometry must

be overcome before visual odometry can be used reliably in

real-time.

On the Mars Exploration Rovers (MER) the visual

odometry algorithm [6] uses image feature tracking between

stereo image pairs to estimate the translation and rotation

between image captures. The software ensures vehicle safety

by halting a dangerous drive when the rover enters a

predefined keep-out zone and performs intermittent slip

checks in slippery terrain, which enable reliable mid-drive

imaging of science targets and reduces the overall number of

days needed to reach science targets. The MER Visual

Odometry algorithm (MER-VO) has been used extensively

and effectively on both rovers on Mars, but it has some

short-comings which led to funding of an update to the

algorithm for the Mars Science Laboratory (MSL) mission, a

Manuscript received September 14th, 2007. The work described in this

publication was performed at the Jet Propulsion Laboratory, California

Institute of Technology, under contract from the National Aeronautics and

Space Administration. The Mars Technology Program funded development

of algorithm and the Mars Science Laboratory Project funded testing.

Andrew.E. Johnson, is with the Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA 91109 USA (corresponding author:

phone: 818-354-0357; fax: 818-393-5007; e-mail: aej@ jpl.nasa.gov).

Yang Cheng and Larry H. Matthies are with the Jet Propulsion

Laboratory, California Institute of Technology, Pasadena, CA 91109 USA

(e-mail: {ycheng,lhm}@ jpl.nasa.gov).

Steven B. Goldberg is with Indelible Systems Inc., Northridge, CA

91324 USA (e-mail: indeliblesteve@gmail.com).

rover mission to Mars scheduled to land in 2010.

Specifically, MER-VO requires a large amount of

computation time. Given the extremely limited

computational resources on board MER (20MHz RAD 6000

running dozens of tasks under VxWorks), the operations

team rarely chose to run MER-VO and the autonomous

hazard detection software during the same traverse. This

presents a problem when autonomously navigating in rough

terrain because hazard detection and avoidance depends on a

reliable position estimate to navigate around hazards and

wheel odometry cannot be depended on to provide position

estimates of sufficient accuracy. MSL is a larger vehicle that

can mechanically tolerate more rugged terrain than MER, so

the ability to navigate precisely in rough terrain is desirable.

Occasionally, especially during the beginning of the

mission, MER-VO sent a grossly incorrect motion estimate

to the rover navigation system. This occurred mainly when

the scene was low texture and/or a small high contrast

element was in the scene (e.g., a rock or rover shadow). In

many of these failure cases, the number of features tracked

was low, but not low enough to throw out the motion

estimate (because good motion estimates often have a low

number of features as well). Increasing the number of

features tracked when the motion estimate is correct relative

to when the it is incorrect will make it easier to distinguish

correct from incorrect motion estimates. MER-VO also

failed to converge to a solution during many of the

Opportunty rover’s drives through sandy terrain due to lack

of detected or well-tracked features. Increasing the number

of tracks also improves the accuracy of the motion estimate.

MER-VO uses the on-board position from wheel

odometry as an initial estimate to decrease run time. This

estimate can be quite wrong due to slipping of the rover,

which can lead to failure of MER-VO to compute a motion

estimate. Unfortunately, when these estimates are wrong is

precisely when visual odometry is needed most. Visual

odometry should not depend on the input motion estimate.

This assessment leads to a list of desired improvements to

the MER visual odometry algorithm:

• decrease algorithm run-time

• increase number of features tracked

• eliminate dependence on initial motion estimate

Because MER-VO has worked well enough and a lot of

effort went into validating its performance before it was used

on Mars, there was also a desire to minimize the changes to

the MER algorithm. With these goals in mind an update to

MER-VO was designed, implemented and tested. The

update resulted in an integrated motion estimation and

feature tracking algorithm that is very efficient while

Robust and Efficient Stereo Feature Tracking for Visual Odometry

Andrew E. Johnson, Steven B. Goldberg, Yang Cheng and Larry H. Matthies, Members, IEEE

V

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 39

tracking a large number of features and still not relying on

an initial motion estimate. Due to the dramatic improvement

in run-time and number of features made possible by this

stereo tracker, it should be of general interest to the visual

tracking and autonomous navigation community.

The paper begins by describing related work with an

emphasis on the MER visual odometry algorithm. It then

describes the updated algorithm with an emphasis on the

integrated multi-resolution stereo tracker and motion

estimation loop. Results are then presented for terrestrial and

Martian image sequences which demonstrate the algorithm

performance with respect to run-time, motion estimation

accuracy and number of features tracked.

A. Related Work

The concept of visual odometry from stereo images has

been around for quite some time. Initial work started with

Moravec [9] and was then continued by Matthies [8]. Since

that time, refinements have continued [11] culminating in an

algorithm implemented in real-time flight software for the

Mars Exploration Rover mission [6].

The MER-VO algorithm is based on feature tracking;

features are selected and located in subsequent images using

spatial correlation search. The feature tracking approach

works better when there is an initial estimate of the motion,

which is often the case for robotic vehicles, so this approach

has been applied to many different navigation problems

[1][2][7]. On MER, the attitude estimate is very accurate

because it comes from inertial propagation of gyro

measurements; the position estimate from wheel odometry

can also be accurate in low slip terrains.

Recently a different approach based on feature matching

has been used to perform real-time visual odometry [10][4].

In this approach features are selected and then matched

based on a descriptor associated with the feature; no spatial

correlation search is performed. These approaches require

stable and salient descriptors to work well with large image

motions, but the advantage is that they do not necessarily

require an initial motion estimate. The Hirschmuller

approach [4] uses a dense stereo depth map. Since

computing resources are limited on Mars rovers, generating

a dense depth map is undesirable. The Nister approach [10]

assumes very small steps between images. But rover

operators try to run VO as infrequently as possible, to

minimize power consumption due to image acquisition and

computing. This forces the VO algorithm to be reliable for

large step sizes.

II. ALGORITHM DESCRIPTION

A. Definitions

In the description below left and right refer to the cameras

locations, first and second refer to the order in which the

stereo pairs are taken and top and bottom refer to the levels

of an image pyramid where top is the coarsest level and

bottom is the finest level of the pyramid. Template refers to

a square image patch that is correlated with a larger window

in another image. Feature is a pixel location and a track is

the location of the feature in another image established

through correlation. A feature is considered valid if it

survives various algorithm checks all the way to the final

motion estimation stage.

B. MER Visual Odometry Algorithm

An excellent description of the MER algorithm

implementation including performance on Mars is given in

[6]. The algorithm takes as input a two stereo image pairs,

camera models, a set of algorithm parameters and an

estimate of the motion between the images from wheel

odometry and integration of inertial measurements. It

outputs an estimate of the change in position and orientation

of the cameras between stereo image captures and the

covariance of this estimate. The algorithm steps are briefly

described below because they form the basis for the new

algorithm. The order of the steps and the use of image

pyramids are shown in Figure 1.

Feature Selection: Features are selected in the bottom first

left image using the Harris interest operator [3]. The image

is broken up into square blocks and the best feature in each

block is selected. This forces the features to span the image,

which improves motion estimation accuracy. Since feature

selection occurs in the input image, these features are

expected to be good features to track in the coarser levels of

the image pyramid, which is not always the case.

First Stereo Matching: The features selected in the first

left image are searched for in the first right image using

Pseudo Normalized Cross Correlation (PNC)[5]. Image

pyramids are used to speed correlation. Down-sampling of

the selected feature location to the top left image determines

the location of the correlation template. The bounds of the

correlation search window in the top right image are set by

constructing a rectangular box that contains the projection of

the feature ray, truncated by parameters for maximum and

minimum feature depth, from the left camera into the right

camera (an epipolar segment). Spatial correlation between

the template and the search window is used to find the

location of the template in the first top right image. The

feature and its track are then up-sampled to the next finer

level of the pyramid. A template is established in the left

image, and it is correlated with a small search window that

just surrounds the track location in the right image. This

process repeats to the end of the image pyramid.

If a correlation peak is questionable (low or wide peak)

then the feature is eliminated from further steps of the

algorithm. If the correlation peak is good, then triangulation

is used to generate a 3D point and its covariance. Checks on

the distance between feature rays from left and right image

are used to eliminate some bad tracks.

Motion Tracking: The remaining features are tracked from

the first left to the second left image using the pyramidal

PNC method described above. However, the bounds of the

correlation search window are set through a different means.

First the 3D point defined by the first stereo match is

projected into the second left camera using the supplied

40

motion estimate. Then a single fixed parameter defines the

square extent of the correlation search window around this

pixel. The motion estimate and its associated uncertainty are

not used to set the search window, and no accommodation is

made for the fact that features that are far away may move in

the images much less than features that are close. As we will

show, this simple approach led to unnecessarily large search

windows. An example of the motion tracking search

windows for MER-VO is shown in Figure 4.

Second Stereo Matching: This step is similar to first stereo

matching with the following exceptions. The template

location is given by the motion track location in the second

left image. Projecting this pixel into the second right image

using the depth from the corresponding first stereo match

defines the center of the search window in the second right

image. The search window bounds are set based on fixed

max and min depth parameters that are tighter than the

global max and min depth parameters used in the first stereo

track where depth is not known at all. As in the motion

tracking stage, this method makes no use of a motion

estimate to predict the change in depth to the feature, which

can result in unnecessarily large correlation search windows.

Triangulation between the second left to and second right

matched pixels is used to generate a 3D point and its

covariance.

Motion Estimation: The corresponding 3D points and

covariances from the first and second stereo pair are used to

estimate the motion in three steps. First a rigidity test based

on the difference of distances between points in each stereo

pair (weighted appropriately by the point covariances [8]) is

used to find outlier points. A weighted Least Median

Squares technique is the applied to the remaining points to

generate an initial motion estimate and eliminate points that

do not agree with rigid the motion estimate. Finally,

Maximum Likelihood Estimation is used to estimate the

final motion estimate using the full point covariances.

Motion estimation details are given in [8][11][6].

C. MSL Visual Odometry Algorithm

Inspection of the MER-VO algorithm indicates that there

could be a number of improvements to make it more

efficient, track more features and eliminate dependence on

an initial motion estimate. First, the correlation search

windows are set somewhat blindly which results in

unnecessarily large search windows. Second, a significant

number of features are eliminated by various checks

throughout the algorithm without any attempt to recover

them. Third, features selected at the bottom of the pyramid

are expected to be good features to track at the top which

can lead to loss of features.

The MSL Visual Odometry algorithm (MSL-VO) starts

with the same stages as MER-VO but reorganizes them to

make a more efficient algorithm that also tracks more

features and does not require on an initial motion estimate.

Timing analysis showed that correlation incurred the most

computation, so improvements were focused there.

As shown in Figure 2, MSL-VO goes through all of the

VO stages (from feature selection through MLE motion

estimation) first using just the images at the top of the

pyramid. The resulting motion estimate, location of valid

features and the depth to valid features are all used to

constrain the search for feature tracks when the stages in VO

are applied to images at the next level of the pyramid. This

process repeats until the bottom of the pyramid is reached.

This iterative application of the VO stages increases the

number of features tracked because, as the pyramid is

traversed, the correlation search windows shrink based on

the improving confidence in the motion estimate. When the

bottom of the pyramid is reached, the correlation search

windows are so small that the chance of a incorrect feature

track due to noise or ambiguity is also very small.

Figure 1. MER VO algorithm. Algorithm only passes through stages once.

Figure 2. MSL VO algorithm. Algorithm passes through all stages at each

level of the image pyramid. i

Computation is also reduced in this approach because the

correlation search windows are set just large enough to

contain the current motion estimate and its uncertainty. Also,

as the pyramid is traversed, feature depths are used to refine

the maximum and minimum depth parameters so that the

first stereo matching search windows are as small as

possible. Finally, feature selection at each level is only

performed inside a box defined by the valid features from

41

the previous level, so searching for features that will not

eventually be used in motion estimation is avoided. The

algorithm details are given below.

Feature Selection: At the top level of the pyramid features

are selected inside of a bounding box set by user specified

parameters. This box can be used to avoid pieces of the

rover in the field of view or to avoid the sky or foreground

where tracking is known a-priori to be problematic. After

the top VO iteration, this bounding box is updated to just

surround the valid features from the top iteration (plus a user

specified parameter to grow the box slightly to prevent

excessive shrinkage as the pyramid is traversed). Features

are selected in this box in the first left image at the next

pyramid level. The idea is that the algorithm learns where

the good features to track are located in the image so that it

does not have to waste computations searching for features

that will not survive to motion estimation. This approach

also guarantees that the best features for tracking are

selected for the image resolution at the current pyramid

level, which is not the case for MER-VO. Figure 7 shows an

example of the features that are selected at each pyramid

level.

First Stereo Matching: At the top level of the pyramid,

user specified parameters for the maximum and minimum

depth to features define the correlation search window in the

top second image. After the top VO iteration, these

parameters are updated to just contain the depths to all the

features from the top iteration (plus a user specified

parameter to slightly grow the depths to prevent shrinkage of

the depth bounds as the pyramid is traversed). These new

bounds are then used to set the correlation search window at

the next pyramid level. Here again the idea is to learn the

depth to features in the scene so that excessive computation

is avoided.

Because an entirely new set of features is selected for

each pyramid level, it is not straightforward to pass the

feature depth information from the previous level of the

pyramid to the next (although we are looking into ways to do

this with bounding planes instead of bounding depths).

Given the desire to maximize the number of features tracked

and given that the depths could be incorrect or not exist, it is

debatable whether this is desirable. However, the

consequence is that this step requires more computation

because it searches the entire range of depths at each

pyramid level instead of just at the top level of the pyramid,

which is what the MER-VO does. However, resetting the

depth search does increase the chance that the correct stereo

match will be found for each selected feature, which would

not be the case if the depths to features were somehow

constrained based on previous possibly erroneous depth

estimates. Thus the path we have taken adds robustness to

the algorithm while still increasing the number of features

that are tracked at a slight computational penalty. As will be

shown the overall algorithm is still much faster. Figure 7

shows an example of the first stereo matching correlation

search windows for each pyramid level.

As in MER-VO, triangulation generates a 3D point and

covariance. Points with rays that are too far apart are

eliminated. An additional check added for MSL-VO

computes the angles between the rays; if the angle is too

small then, because the covariance computation is ill-

conditioned, the feature is eliminated. In general this

eliminates points that are far away.

Figure 3. Setting of motion ttracking correlation search window using

motion bounds.

Motion Tracking: The purpose of motion tracking is to

track features from first left image to second left image. The

position of the feature in the second left image depends on

the depth to the feature, which is known from the first stereo

track, and the motion between stereo pairs. The motion

typically has an estimate, but it may have a large uncertainty

which is unknown. The challenge is to translate the estimate

and uncertainty into bounds on the correlation search

windows.

An intuitive way for the user to specify the motion

uncertainty is by placing bounds on the maximum and

minimum motion uncertainty in all six degrees of freedom

(x,y,z,roll,pitch,yaw). For example, suppose the rover is

commanded to drive forward for 0.5 m over flat ground but

that there is also the possibility of the rover slipping. It is

reasonable to constrain the forward motion between full slip

and no slip (0.0m < x < 0.5m). The cross track motion is

probably small (-0.2m < y < 0.2m), and the vertical motion

is definitely small (-0.1m < z < 0.1m). The roll, pitch and

yaw are all small (-5˚<roll<5˚, -5˚<pitch<5˚, -5˚<yaw< 5˚).

These constraints can be converted into a motion estimate

and 12 motion bounds

(x,y,z,roll,pitch,yaw)est = (0.25, 0.0, 0.0, 0.0, 0.0, 0.0)

(x,y,z,roll,pitch,yaw)min = (-0.25, -0.2, -0.1,-5,-5,-5)

(x,y,z,roll,pitch,yaw)max = (0.25, 0.2, 0.1, 5, 5, 5)

Initially, for tracking at the top level of the pyramid, the

user specifies the motion bounds based on the rover

characteristics and the drive command. The motion

estimate, motion bounds and the known depths to the

features are then used to set the search windows. The search

window for a feature should be set such that all

transformations within the motion uncertainty bounds

project the feature into the search window. Enumerating all

transformations and computing the corresponding projection

is computationally infeasible, so a simpler, but conservative,

approach is taken. As shown in Figure 3, search window

42

bounds are first computed for the translational uncertainty

and then these are added to the search bounds from the

rotational uncertainty.

For each feature the 3D point associated with the feature

in the first stereo pair is transformed based on the motion

estimate (translation and rotation). The projection of this

point in to the second left image is called the nominal pixel.

Then six points are constructed that are offsets from the

transformed point along the coordinate axes with length

equal to the respective translational motion bound (c.f.,

Figure 3). These six points are projected into the second left

image and the bounding box of the projections is

determined. This process is repeated for the rotational

motion bounds except that the transformed point is rotated

by each motion bound instead of translated.

These bounding boxes are combined as follows. Each

bounding box has a left, right, top and bottom offset defined

by the difference between a bounding box edge and the

nominal pixel. The four edges of the final bounding box are

defined by the sums of the left, right, top and bottom offsets

from the translational and rotational bounding boxes.

Figure 4. Comparison of MER-VO (left) and MSL-VO (right) motion

tracking correlation search windows.

Figure 4 compares the MER search windows to the MSL

search windows for a forward motion test case. As can be

seen the MER search windows are all the same size while

the MSL search windows change size based on the distance

of the feature and the expect forward motion of the vehicle.

The MSL search windows are smaller for more distant

features because only the rotational uncertainty has an effect

on these windows. Furthermore, the features in the center

foreground have narrower search windows than the ones on

the edge of the image because the features are expected to

move mostly down while the ones on the edge will move

down and out.

Figure 5 shows the result of motion tracking with these

search windows. The red tracks in each picture indicate the

tracks that have survived to motion estimation. In the MER-

VO picture, the tracks in the center far field are tracked

while the ones in the foreground were not tracked because

the search windows were not set large enough and there is

no chance to recover lost features. In contrast, the MSL-VO

algorithm is able to track features over the entire image

because the search windows were set based on the expected

motion of the each feature. The end result is more features

with less total correlations.

The user specifies the motion bounds at the top level of

the pyramid, but for each subsequent level, the motion

bounds are set based on the covariance of the motion

estimate from the previous level (described later). As the

image pyramid is traversed the motion estimate covariance

shrinks. This forces the motion tracking search windows to

shrink and become more consistent with the motion

estimate. Since the correlation search windows are shrinking

around the correct location of the feature, the chance of an

incorrect feature track due to noise or ambiguity decreases as

the pyramid is traversed. The end result is that more

features are successfully tracked. Figure 7 shows an example

of the motion tracking correlation search windows for each

pyramid level.

Figure 5. Motion tracks comparison between MER-VO and MSL-VO.

If the user would like to eliminate any dependence on the

motion estimate or no motion estimate is available (e.g., if

the on-board inertial measurement unit fails) then at top

level of pyramid, the search window for each feature can be

set to the entire image. The motion estimate from the top

level is still used to set the search windows at the next level,

so this global search in only used at the top level. This

approach requires more computation, but as we will show it

is still faster than the MER-VO approach with no

degradation in algorithm robustness or accuracy.

Figure 6. Figure for setting search bounds based on depth bounds.

Second Stereo Matching: Like in the motion tracking

stage, the depth to features in first frame is known and

motion is unknown, but bounded. Following the motion

tracking concept the motion estimate and bounds are used to

set the bounds on the maximum and minimum depth for

each feature as follows. A 3D point along motion track pixel

ray is constructed. The translational motion bounds are

added to this point to generate six 3D points; rotational

motion bounds are not used because the feature depth does

not depend on rotational motion. As shown in Figure 6,

these six points are then projected back onto the pixel ray to

get the maximum and minimum depth for the feature. These

43

depth bounds are then used in the standard fashion to limit

the stereo matching correlation search window. This process

is repeated for each feature. Figure 7 shows an example of

the second stereo matching correlation search windows for

each pyramid level.

Figure 7. Example of feature selection and correlation search windows for

each pyramid level.

Motion Estimation: MSL-VO uses the same rigidity test,

Least Median Squares motion estimation and Maximum

Likelihood Motion Estimation (MLE) that are used in MER-

VO. The difference is that they are applied at each at each

pyramid level. Following the notation in [6], the cost

function minimized in MLE motion estimation is

!

e j
T
W je j"

e j = PCj # RPPj #T, W j = R"Pj R
T +"Cj[]

#1

 (1)

PCj is the position of a 3D point in the second (current)

stereo pair, PPj is its position in the first (previous) stereo

pair, R is a rotation matrix constructed from the roll,pitch

and yaw estimates, T is a vector for the translational motion

estimate and !Pj and !Cj are the covariances of the points in

the first and second stereo pairs. The covariance of the

motion estimate is

!

C = H j

T
W jH j

i

"

$
%

&

'
(

)1

H j = J j I[], J j = RxPPj RxPPj RxPPj[]

 (2)

where R{x,y,z} are the partial derivatives of R with respect to

the three rotation angles.

In the MSL-VO algorithm, to improve numerical

conditioning, the mean of 3D points is subtracted from the

points in both stereo pairs before computing the MLE error

term; the means are added back in to correct the translation

estimate after MLE estimation is finished.

As mentioned previously, after the top level of the

pyramid, the motion covariance is used to set the motion

estimate bounds as follows. C is 6x6 matrix in

(roll,pitch,yaw,x,y,z) order. An eigen-vector decomposition

of C is computed

!

Ce
i
= "

i
e
i
i =1K6 (3)

with eigenvectors ei and eigenvalues "i. ei are principal

directions of 6 dimensional ellipsoid and

!

"
i

 are the

magnitudes of the axes. The motion bounds are a bounding

box aligned with the (roll, pitch, yaw, x, y, z) motion axes.

The motion bounds are set by scaling the principal axes by a

user specified parameter (S) and then projecting them onto

the motion space axes. The maximum and minimum

projections over all six principal axes define the maximum

and minimum motion bounds.

!

max_roll = S *MAX
i

("
i
e
i
[0])

min_roll = S *MIN
i

("
i
e
i
[0])

M

max_z = S *MAX
i

("
i
e
i
[5])

min_z = S *MIN
i

("
i
e
i
[5])

 (4)

Figure 8 shows a cross section of the motion covariance

ellipsoid and how its projection onto the motion axes do not

completely contain the motion covariance. However the

approximation used is very quick to compute and a

fractional increase to the scale factor S will ensure that the

motion covariance is completely contained.

Figure 8. Cross section of motion covariance showing how it is used to set

motion uncertainty bounds.

Validity Checking: In MSL-VO, number of features

tracked at the end of all the visual odometry iterations is a

very strong metric for the validity of the motion estimate.

Another metric employed is the condition number of the

motion covariance matrix

!

l
m

=max
i

("
i
) /min

i

("
i
) (5)

which should be small for well conditioned motion

estimates.

To check for collinear or compact configurations of

features where motion estimation is unstable, the scatter

matrix A for valid features is computed

!

A =

r
i

2 " (r
i

i

)
2

i

r
i
c
i
" r

i
c
i

i

#
i

#
i

#

r
i
c
i
" r

i
c
i

i

#
i

#
i

c
i

2 " (c
i

i

)
2

i

#

$

%

&
&
&

'

(

)
)
)

 (6)

An eigenvector decomposition of A is performed and the

condition number, as defined is in Equation 5, is computed.

If either condition number is larger than a threshold, then the

motion estimate is considered invalid.

III. ANALYSIS

Since efficiency and robustness are the primary

motivation for the update to MER-VO, the main metrics

tracked in this analysis are run time and number of features

44

tracked. In addition, the motion estimation accuracy and

optimal rover step size are important factors for operation of

the MSL rover.

A. Comparison between MER-VO and MSL-VO

The main objective of this work is to create an algorithm

that is faster and tracks more features than MER-VO. As

shown in Table 1, three test cases were selected for making

this assessment. All run-times are with both algorithms

running on the same computer, a 400 MHz R12000 SGI O2

processor. In each case, the MER-VO parameters were

optimized to maximize performance while the MSL-VO

parameters were not optimized.

The first test case was from the Rocky 8 research rover

with wide field of view cameras 30cm above the terrain and

a 25cm forward step. This is a challenging test case with

lots of image motion between stereo pairs. The MSL-VO

algorithm tracked 5.6x more features and took 15x less time

than the MER-VO algorithm.

The second test case was from the MER-B Opportunity

rover 45˚ FOV navigation cameras, which are 120cm above

the terrain, and essentially no motion between stereo pairs.

Even with no motion the MSL-VO algorithm is four times

faster than MER-VO; the number of features tracked is

comparable for the two algorithms because both are able to

track features across the entire image.

The final test case is from a stereo pair mounted on the

DARPA LAGR vehicle. The cameras have a 45˚ field of

view, are 2m above the terrain and the vehicle step size is

50cm. This is the most similar to the MSL navcam

configuration, so the results for this test case closely

represent the expected improvements for MSL. For this test

case, the algorithm is six times faster while still tracking 2.7

times more features. This is obviously a significant

improvement.
TABLE 1: COMPARISON OF MSL VO TO MER VO

MER VO MSL VO COMPARISON Test

Case
run

time

feats.

tracked

run

time

feats.

tracked

run time

decrease

feature

increase

Rocky8 6.91s 17 0.46s 95 15x 5.6x

MER-B 0.53s 45 0.13s 54 4x 1.2x

LAGR 4.72s 29 0.76s 79 6x 2.7x

B. Mars Terrain Performance

MSL-VO must work on Mars imagery. To investigate

this, the first 2757 of the down-linked MER-A VO navcam

stereo pairs were run through MSL-VO. The same

parameters were used for all cases. The MER onboard

attitude estimates (generated by integrating gyro

measurements during vehicle motion) were used for ground

truth. The position estimates could not be used because they

came from an unknown combination of wheel odometry and

visual odometry, and consequently could not be trusted to

convey the truth.

Figure 10 shows the error between the MSL-VO attitude

estimate and the MER onboard attitude estimate. Errors are

only shown for valid estimations where valid is defined as

cases with more than 25 valid features used in motion

estimation. All of the attitude errors are sub-degree and most

of them are less the MER navcam pixel size of 0.17˚, which

indicates very good estimation performance.

Figure 9. Error between the MSL-VO attitude and MER onboard attitude

estimates.

Figure 10. Assessment of valid test cases.

Figure 10 shows that there were 2677 valid motion

estimates and 80 invalid motion estimates (97% valid). Most

of the invalid test cases were for large motions where VO

should not have worked anyway (large change in attitude or

position). This performance is as good as or better than the

performance reported for MER-VO [6] (while using a much

more computationally efficient algorithm).

No initial motion estimate is used to generate these

results. The quality of the results indicates that MSL-VO

can be used without a motion estimate and still generate

robust motion estimates. Re-running the test cases with an

attitude estimate to constrain the correlation search shows

very similar estimation performance, but with a four times

faster computation time.

C. Motion Accuracy for Long Traverses

To test the motion estimation accuracy for long traverses,

a data set collected by the DARPA LAGR vehicle on a dry

lake bed in the Mojave Desert was used. The camera

configuration was similar to the MSL navcam configuration

45

(2m height, 30cm baseline, 45˚ FOV). The traverse was

1375 meters long over flat ground, and the images contained

vehicle tracks, repetitive terrain features and at times the

shadow of the sensor mast (c.f., Figure 11). Differential GPS

provided ground truth.

The initial camera attitude was not known in the GPS

frame, so the MSL-VO trajectory was aligned to the GPS

trajectory using a Least Squares alignment of the 3D points

in each trajectory. The aligned trajectories are shown in

Figure 11. Since this global alignment can remove some

errors the following procedure was used to assess motion

estimation accuracy for 100m traverses. Starting at the

beginning of the trajectory, 100 corresponding points

between the GPS trajectory and the MSL-VO trajectory

were used to generate the trajectory alignment. The GPS

trajectory is then traversed until 100m distance. At this

point the GPS position and MSL-VO position are compared.

This process is repeated for every MSL-VO position in the

trajectory (walking along the trajectory) and the statistics

shown in Table 2 were generated. Worst case error of

6.39% of distance traveled is better than the MSL

performance requirement.

Figure 11. 1km+ traverse images and trajectory comparison to GPS.

TABLE 2: POSITION ERROR STATISTICS FOR LONG TRAVERSE

Position Error Traverse

Distance

of

Cases Mean Std. Dev Mean + 3 Std. Dev.

100m 2500 2.91m 1.16m 6.39m

D. Effect of Rover Step Size

The final analysis investigates the effect of rover step size

on MSL-VO performance. The same DARPA LAGR

vehicle with MSL navcam configration was used to collect a

275m image sequence with 50cm steps between image

captures. By skipping stereo pairs the effect of 1.0, 1.5 and

2.0 m step sizes were investigated. GPS was not available

for this image sequence, so the MSL-VO estimates for the

50cm steps were uses as a truth measurement. The left plot

in Figure 12 shows that the number of features drops with

increasing step size. The right plot shows position estimation

error for 1.0 and 1.5m steps remains small, but the variance

of the error becomes much larger for 2.0m step sizes. This

analysis indicates that a maximum 1.5m step size should be

used for visual odometry on MSL.

Figure 12. Analysis of step size on performance.

IV. CONCLUSION

The update to the MER visual odometry capability has

created an algorithm that is at least 4x faster while tracking

significantly more features. The updated algorithm can also

be operated when no motion estimate is available. The

algorithm has been tested with thousands of MER and MSL-

like images over a variety of terrain and this testing strongly

indicates that MSL VO will meet all MSL mission

requirements.

The algorithm has been coded in C++ and delivered for

MSL flight software implementation. The code has been

ported to the Rocky 8, FIDO and ATHLETE real-time

robotic platforms where it has been shown to perform more

efficiently and robustly than the MER-VO algorithm.

ACKNOWLEDGMENT

The authors would like to thank Andrew Howard and

Mark Maimone for providing image sequences, DARPA for

provided the LAGR vehicle and Mike McHenry and Todd

Litwin for helping with the real-time implementation.

REFERENCES

[1] M. Agrawal, K. Konolige, R. Bolles, Localization and Mapping for

Autonomous Navigation in Outdoor Terrains: A Stereo Vision

Approach”, Proc. IEEE Workskop on Apps. of Computer Vision, 2007.

[2] P. Corke, D. Strelow and S. Singh, “Omnidirectional Visual Odometry

for a Planetary Rover,” Proc. IEEE/RSJ Int’l Conf. Robotics and

Systems, 2004.

[3] C. Harris and M. Stevens, “A Combined Corner and Edge Detector,”

Proc. 4th Alvey Vision Conf., pp. 147-151, 1988.

[4] H. Hirschmüller, P. Innocent, and J. Garibaldi, “Fast Unconstrained

Camera Motion Estimation from Stereo without Tracking and Robust

Statistics,” Int’l Conf. Control, Automation Robotics & Vision, 2002.

[5] J. P. Lewis, ``Fast Template Matching'', Vision Interface, 1995.

[6] M. Maimone, Y. Cheng and L. Matthies, “Two Years of Visual

Odometry on the Mars Exploration Rovers,” Jour. Field Robotics:

Special Issue on Space Robotics 24(3), pp. 169-186, March 2007

[7] A. Mallet, S. LaCroix, L. Gallo, “Position Estimation in Outdoor

Environments using Pixel Tracking and Stereovision,” Proc. IEEE

Int’l Conf. Robotics and Automation (ICRA00), 2000.

[8] L. Matthies, Dynamic Stereo Vision, PhD Thesis, Dept. of Computer

Science, Carnegie Mellon University, CMU-CS-89-195, 1989.

[9] H. Moravec, Obstacle Avoidance and Navigation in the Real World by

a Seeing Robot, PhD Thesis, Stanford University, 1980.

[10] D. Nister, O. Naroditsky and J. Bergen, “Visual Odometry,” Proc.

IEEE Conf. Computer Vision Pattern Recognition, 2004.

[11] C.F. Olson, L. H. Matthies, M. Schoppers and M.W. Maimone,

“Robust Stereo Ego-motion for Long Distance Navigation,” Proc.

IEEE Conf. Computer Vision Pattern Recognition (CVPR00), 2000.

46

