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Abstract— Sensor-based control is an emerging challenge in
UAV applications. It is essential in a sensing task to account for
sensor measurement errors when computing a target position
estimate. Source of measurement error includes those in vehicle
position and orientation measurements as well as algorithm
failures such as missed detections or false detections. Incorpo-
rating such errors in aerial sensors is non-trival because of the
camera’s perspective geometry. This paper is about a method
to incorporate such errors into target position estimates and a
calibration methodology to measure the error distributions. A
preliminary experiment with real flight data is presented.

I. INTRODUCTION AND PROBLEM STATEMENT

The importance of aerial sensing has increased due to

the explosively increasing use of Geographic Information

Systems (GIS) and emerging application of unmanned air

vehicles (UAV’s). The use of the image sensors, such as

visible-range video cameras, near-infra-red cameras, and the

thermal-infra-red cameras, is becoming more and more com-

mon due to their light weight and the richness of information

it can provide.

There is a developing literature on vision-based UAV

control and target tracking [1], [2], [3], [4], [5], [6]. The

research challenges are:

• realtime target detection in the video image,

• localization of the detected target position in world or

vehicle coordinates, and

• control based on the localized target position.

This paper contributes partly to the first challenge and

mainly to the second one. Recent developments in computer

vision have made reliable realtime object detection feasible

[7]. Given the position and orientation of the vehicle and

a terrain map (usually assumed to be flat), we can apply

a straight forward equation to convert the target position

in image coordinates to the position in world coordinates.

Position derivation in this manner is straightforward when the

position and orientation of the vehicle is known accurately.

This is the case when the vehicle is equipped with high

quality IMU’s and GPS, and flown at high altitudes where

six or more satellites are visible.

On the other hand, many UAV navigation systems (includ-

ing ours) use relatively cheaper GPS and INS. Here, even a

slight orientation error causes a significant localization error

in world coordinates. In this case, we need to incorporate

these IMU measurement errors in the target localizer.
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In addition, many errors occur in the object detection

stage: missed detection and false detection. The frequency

of these detection errors depends on the image resolution.

For example, when the camera is oblique, the far side of

the image will have a very low resolution compared to the

near side. Therefore, when an object is on the far side the

detection algorithm is more likely to fail than when it is on

the near side. Therefore, the localization of a target should

not only incorporate the measurement uncertainty of the IMU

but also the varying detection errors by the object detection

algorithm.

Previous efforts to generate a probability map of a target

position, [3], [4], [5], have focused on the target’s motion

rather than the sensor measurement errors. The target detec-

tion probability (detection rate) was incorporated in some of

the previous work, [3], [5], but only a constant detection rate

was used.

We incorporate sensor measurement errors and varying

target detection errors. Our goal is to model the target

detection and position likelihoods used to build a probability

map representing the location of a target. We consider two

random variables: Z is a binary random variable indicating

whether the target is detected on the image or not, and

U = (U,V ) is the detected target’s position in image (or

camera image plane) coordinates. When the target is not

detected we do not have any information on U. On the other

hand, we use U to localize the target when it is detected. We

want to know P(X|¬Z, T̂, R̂) for the no detection case and

P(X|Z,U, T̂, R̂) for the detection case where X is the true

target position in the world coordinates and T̂ and R̂ are

the position and orientation measurements. Applying Bayes’

rule,

P(X|¬Z, T̂, R̂) = αZP(¬Z|X, T̂, R̂)P(X) and

P(X|Z,U, T̂, R̂) = αU P(U|Z,X, T̂, R̂)P(X),
(1)

where αZ and αU are normalizing constants over X, the true

position of the target. X is independent of Z, T̂ and R̂. There-

fore, we need to know P(Z|X, T̂, R̂) and P(U|Z,X, T̂, R̂)
which are the target detection and position likelihoods,

respectively.

We present the derivation of the target detection and

position likelihoods in Section II. To apply the derived

equation in the real application, we need to estimate the

sensor measurement error. We present our error measure-

ment methodology and experiment in Section III. Finally,

we present an experimental result with real flight data in

Section IV, and the conclusion in Section V.
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Fig. 1. Basic camera geometry when the perfect position and orientation
of the camera is known.

II. DETECTION AND POSITION LIKELIHOOD

A. Basic Camera Geometry

A point in image coordinates (u,v)T can be transformed

to a ray (or a 3D vector), (x,y,1)T , coming from the camera

origin (0,0,0)T and passing through the image plane z = 1

(see Figure 1).

The ray (x,y,1)T can be transformed (rotated and rescaled)

into world coordinates, (rX ,rY ,rZ)T , where




rX

rY

rZ



 = R−1





x

y

1



 , (2)

where R is the rotation matrix (world to camera). For

convenience, we assume in the following that the camera

and vehicle coordinates (positions) are the same in the

world coordinate frame as adding an additional translation

is straightforward.

When the vehicle’s 3D position in world coordinates is

(TX ,TY ,h)T the target coordinates are




X

Y

0



 =





TX

TY

h



−
h

rZ





rX

rY

rZ



 , (3)

assuming that the target is on flat ground (Z = 0).

B. Position Likelihood

When a target is detected at image coordinates (u,v)T or

the camera coordinates (x,y,1)T , we use the localization like-

lihood function, P(U|X, T̂, R̂)1, to estimate the target position

in world coordinates, where U = (x,y)T , X = (X ,Y,0)T is

the true target position and T̂ = (T̂X , T̂Y , ĥ) and R̂ are the

position and the orientation measurements of the vehicle by

the onboard sensors. Note that P(U|X, T̂, R̂) is a PDF over

U as it is a continuous random variable. Then,

P(U|X, T̂, R̂) =P(U|D,X, T̂, R̂)P(D|X, T̂, R̂)

+P(U|¬D,X, T̂, R̂)P(¬D|X, T̂, R̂),
(4)

where D is a binary random variable indicating whether

the detection is a correct detection or a false detection.

1P(U|Z,X, T̂, R̂) of Equation 1 but we omit Z for simplicity.

P(D|X, T̂, R̂) is the probability of a detection being cor-

rect (the detection accuracy) and P(¬D|X, T̂, R̂) = 1 −
P(D|X, T̂, R̂) is the probability of a detection being a false

alarm. We may assume that these probabilities are constant

or apply some resolution constraints as in Section II-C.

P(U|¬D,X, T̂, R̂) is a PDF of the position given a false

alarm. We can assume it is uniformly distributed over the

image: P(U|¬D,X, T̂, R̂) = 1/ImageSize.

Now we need to estimate

P(U|D,X, T̂, R̂) =
∫

T,R
P(U|D,X,T,R)P(T,R|T̂, R̂)dTdR,

(5)

where T and R are for the true position and orientation of

the vehicle.

We approximate P(U|D,X,T,R) = δ (U−UTr(X,T,R)),
i.e., as a 2-D delta distribution over U where UTr

is the 2-D ground-to-camera transform: UTr(X,T,R) =
(XC/ZC,YC/ZC)T , where XC(R,T) = (XC,YC,ZC)T ≡ R(X−
T).

Next we assume the measurement errors for the position,
the height, and the orientation are independent to each other.
Accordingly,

P(U|D,X, T̂, R̂) =
∫

T,R
δ (x−XC/ZC,y−YC/ZC)P(TXY |T̂XY )P(h|ĥ)P(R|R̂)dTXY dhdR.

(6)

When a vehicle is moving at a fast speed but use a low-
temporal resolution measurement (the GPS), the position
measurement error will be large towards the vehicle’s head-
ing while the lateral error will be small because the temporal
error maps to an error in the direction of the heading. There-
fore, it is a good idea (see next section for the experimental
validation) to assume that P(TXY |T̂XY ) = P(DF)P(DL) where
DF and DL are the difference of the positions in the forward
and lateral direction, respectively. In other words, (DF ,DL)T

is TXY − T̂XY rotated by the yaw angle. When we further
assume that the rotation measurement errors for roll (ψ),
pitch (θ ), and yaw (φ ), are independent to each other, it
follows

P(U|D,X, T̂, R̂) =
∫

T,R
δ (U+g(T,R)P(DF )P(DL)P(h|ĥ)

P(ψ|ψ̂)P(θ |θ̂)P(φ |φ̂)dTXY dhdψdθdφ ,

(7)

where g(T,R) = (−XC/ZC,−YC/ZC)T .
When the measurement errors are small enough, we can

approximate g(T,R) by

g̃(T,R) ≈g(T̂, R̂)+DF
∂g

∂DF
(T̂, R̂)+DL

∂g

∂DL
(T̂, R̂)

+(h− ĥ)
∂g

∂h
(T̂, R̂)+(ψ − ψ̂)

∂g

∂ψ
(T̂, R̂)

+(θ − θ̂)
∂g

∂θ
(T̂, R̂)+(φ − φ̂)

∂g

∂φ
(T̂, R̂).

(8)

Then, computing Equation 7 becomes a matter of applying

successive 1-D convolutions on a delta function. Intuitively,

when the camera is looking downwards, the pitch error will

roughly work as a y-directional 1-D convolution and the

roll error will be an x-directional one. In the same way, the
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Fig. 2. A degenerated case along the intersection of the image plane and
the ground plane. The probability values are exaggerated by applying a log
function to clearly illustrate the problem. The quadrilateral is the camera
visibility, the dot outside the quadrilateral is the estimated position of the
vehicle, and the dot inside is the estimated position of the target. Such a
case can be handled with a ignorable numerical error simply by thresholding
the probability distribution for a large ‖g‖.

position and the height errors will also be one directional.

The yaw error will not lie on a line but on an arc centered

at UTr((TX ,TY )T ,T,R). However, when the angular error is

small enough (usually at most several degrees) the arc can

be approximated by a line.
For each of the position, height, and rotation parameters

g′ = −((X ′
CZC −XCZ′

C),(Y ′
CZC −YCZ′

C))T /Z2
C, where

∂XC/∂DF = cosφ(∂XC/∂TX )− sinφ(∂XC/∂TY ),
∂XC/∂DL = sinφ(∂XC/∂TX )+ cosφ(∂XC/∂TY ),
∂XC/∂TX = (−R1,1,−R2,1,−R3,1)

T ,
∂XC/∂TY = (−R1,2,−R2,2,−R3,2)

T ,
∂XC/∂h = (−R1,3,−R2,3,−R3,3)

T ,
∂XC/∂ψ = (∂R/∂ψ)(X−T),
∂XC/∂θ = (∂R/∂θ)(X−T), and
∂XC/∂φ = (∂R/∂φ)(X−T).

(9)

R = RBCRWB where RBC is the body-to-camera rotation

and RWB is the world-to-body rotation. RBC is indepen-

dent of the attitude measurements, for example, ∂R/∂ψ =
RBC(∂RWB/∂ψ). Since RWB is represented by cosines and

sines of the yaw, pitch and roll angles, we can get its partial

derivatives in analytic forms.

Note that the approximation in Equation 8 fails when ‖g′‖
is extremely large. Such degenerated cases happens along

the intersection of the image plane and the ground plane

(Figure 2). In fact, when the camera angle is very oblique, the

image plane can intersect the ground plane near the vehicle.

One way to work around is to set P(U|D,X, T̂, R̂) = 0 for

a large ‖g‖. When the measurement errors are small, such

thresholding will result in a small numerical error especially

when P(¬D|X, T̂, R̂) 6= 0.

C. Detection Likelihood

When no target is detected in image coordinates, we

estimate the detection (or missed detection) likelihood:

P(Z|X, T̂, R̂) where Z is the binary random variable indi-

cating whether the target is detected or not. We see that

P(Z|X, T̂, R̂) =

∫

T,R
P(Z|X,T,R)P(T,R|T̂, R̂)dTdhdR,

(10)

where T, h, and R are for the true position, height, and
orientation of the vehicle. P(Z|X,T,R) is the detection rate.
When the target is in the visible range, the detection rate
depends on the resolution of the image. Otherwise, the
detection rate is the false detection rate. In other words,

P(Z|X,T,R) = P(Z|V,X,T,R)P(V |X,T,R)

+P(Z|¬V,X,T,R)P(¬V |X,T,R)

= (P(Z|V,X,T,R)−P(Z|¬V,X,T,R))P(V |X,T,R)

+P(Z|¬V,X,T,R),
(11)

where V is a binary random variable indicating the camera

coverage and P(Z|¬V,X,T,R) is the false detection rate

(per image frame). V = true if and only if the target would

appear in the image given X , T , and R based on the camera

geometry.
P(Z|V,X,T,R) depends on the image resolution:

P(Z|V,X,T,R) = P(Z|V, res(X,T,R)), where res(X,T,R) is
the image resolution of the target at X. When we consider
a small image patch at U = UTr(X,T,R) and its transform
to world coordinates,

res(X,T,R) = res(U,T,R)

= lim
d→0

√

|(XTr(U+DU ,T,R)−X)× (XTr(U+DV ,T,R)−X)|

|DU ×DV |

=
h

rZ

√

rX

rZ
b1 +

rY

rZ
b2 +b3,

(12)

where XTr is the image to world (ground) transform,

DU = (d,0)T , DV = (0,d)T , b1 = R−1
3,1R−1

2,2 −R−1
3,2R−1

2,1, b2 =

R−1
3,2R−1

1,1 −R−1
3,1R−1

1,2, and b3 = R−1
1,2R−1

2,1 −R−1
1,1R−1

2,2.

To model P(Z|V, res(X,T,R)), we can collect the image

resolutions of example correct- and mis-detections. By ap-

plying a Bayesian rule:

P(Z|V, res(X,T,R)) =

P(res(X,T,R)|Z,V )P(Z|V )

P(res(X,T,R)|Z,V )P(Z|V )+P(res(X,T,R)|¬Z,V )P(¬Z|V )
,

(13)

where P(Z|V ) and P(¬Z|V ) are assumed to be constant. Then

we can fit the resolutions of the correct- and mis-detections

to a pair of parametric distributions for P(res(X,T,R)|Z,V )
and P(res(X,T,R)|¬Z,V ).

The camera coverage

P(V |X,T,R) = ∏
i∈{left, right, top, bottom}

si(UTr(X,T,R)), (14)

where si(T,R) is a 2-D step function along each of the

the left, right, top and bottom boundaries (in the camera

coordinates).

Since we derive both P(Z|V,X,T,R) and P(V |X,T,R) as

function of camera coordinates, in other words,

P(Z|V,X,T,R) = fZ(res(U,T,R)) and

P(V |X,T,R) = fV (U,T,R),
(15)

we can apply the approximation used in Section II-B.

P(T,R|T̂, R̂) works as a two dimensional convolution mask

in the camera coordinates. Since Equation 7 is the convolu-

tion on the delta function, its result itself is the convolution

mask for P(T,R|T̂, R̂).
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D. Gaussian Approximation of the Measurement Errors

When we approximate the position and the rotation errors

with Gaussian distributions or Gaussian mixtures, the target

position likelihood from Equation 7 will also be a Gaussian

or a Gaussian mixture distribution because the convolution

of a delta function and a Gaussian function is the Gaussian

function and convolutions of Gaussian functions are also

Gaussian.

The target detection likelihood, P(Z|X, T̂, R̂), can be ob-

tained either numerically or analytically with some assump-

tions. When we store P(Z|X, T̂, R̂) as a digitized matrix,

we can calculate the convolution mask for each and every

matrix element (in world coordinates) and apply it in the

transformed camera coordinates.

If the map is too large and when we cannot afford such a

computation we may consider an analytic solution:

P(Z|X, T̂, R̂) = f (U;X, T̂, R̂)∗GU(U;X, T̂, R̂), (16)

where f (U;X, T̂, R̂) = ( fZ(U, T̂, R̂) − β ) fV (U, T̂, R̂) + β ,

β = P(Z|¬V,X,T,R) is a constant, and GU(U;X, T̂, R̂) is
the Gaussian (or Gaussian mixture) convolution mask for
P(T,R|T̂, R̂). Moreover, we may use the approximation

P(Z|X, T̂, R̂) = f (U;X, T̂, R̂)∗GU(U;X, T̂, R̂)

≈ ( fZ(U, T̂, R̂)−β )(∏si(U;X, T̂, R̂)∗GU(U;X, T̂, R̂))+β ,
(17)

The Gaussian convolution of a step function is a cumu-

lative Gaussian distribution which does not have a closed-

form expression. We approximate a one dimensional cumu-

lative Gaussian distribution, C(x; µ ,σ), representing a cut at

the boundary with a sigmoid function (cumulative Logistic

distribution): Sigmoid(x; µ ,σ ′) = 1/(1 + e−(x−µ)/σ ′
), where

the parameter σ ′ is given such that Sigmoid(µ −σ ; µ ,σ ′) =
C(µ −σ ; µ ,σ) ≈ 0.159. Then, σ ′ ≈ σ/ log(5.289).

III. ESTIMATING SENSOR MEASUREMENT ERROR

The estimation of detection and position likelihoods re-

quires various parameters. First, we need to know the IMU

sensor measurement errors: P(DF), P(DL), P(h|ĥ), P(ψ|ψ̂),
P(θ |θ̂), and P(φ |φ̂). We also need to know the detec-

tion and false detection rates: P(D|X, T̂, R̂) of Equation 4,

P(Z|¬V,X,T,R) of Equation 11, and P(res(X,T,R)|Z,V )
and P(res(X,T,R)|¬Z,V ) of Equation 13.

A. IMU Sensor Measurement Error

The challenge of estimating IMU sensor measurement

errors is that it is very difficult to obtain the ground truth. One

may use a high quality gyroscope (such as a ring gyroscope)

for ground truth, but such a gyroscope is difficult to purchase

because of its high cost and export restrictions.

Instead, we present a vision-based calibration. We used the

Piccolo II UAV autopilot by the Cloud Cap Technology Inc.

for the IMU measurements. The Piccolo II combines a GPS

reading with the gyroscope output to estimate the position

and the orientation. Since it uses the GPS position and speed

information to measure the position and the heading (for

yaw) of the vehicle and also to stabilize the pitch and the

Fig. 3. A pair of long parallel lines and a perpendicular line can provide a
fairly accurate position and orientation measurements of the UAV. Such
a pattern is easily found in most runways. We use these vision-based
measurements as ground truth to estimate the IMU measurement errors..

roll estimates, the resulting position and orientation estimates

are very inaccurate when the vehicle is on the ground or

not moving fast enough. Therefore, we cannot calibrate the

position and orientation of the vehicle using a calibration

board.

Instead, we flew several calibration flights over markings

on the ground. In our past work, [8], we presented a simple

calibration method to find the position and the orientation of

the camera from a rectangle (or two perpendicular pairs of

parallel lines), and showed that its performances compares

well with calibration with grids. We use even a simpler

(minimal) pattern for this experiment – a pair of parallel

lines and a perpendicular line, which we can easily get from

most runways (Figure 3).

The calibration procedure is similar to that of [8]. We first

calculate the vanishing point VX of the two parallel lines.

Note that we use camera coordinates. All the points are on

the image plane (Z = 1). The second vanishing point VY

should be on a line P0P1 in Figure 3: VY = P0 +α(P1−P0).
Since VX ·VY = 0,

α = −
VX ·P0

VX · (P1 −P0)
. (18)

We follow [8] to estimate the rotation and the orientation

from the vanishing points. The last axis VZ = VX ×VY , and

the rotation matrix R = (VT
X |V

T
Y |V

T
Z ). The translation T =

(AT A)−1AT b, where

A =









1 0 −p0

0 1 −q0

1 0 −p1

0 1 −q1









and b =









p0zR0 − xR0

q0zR0 − yR0

p1zR1 − xR1

q1zR1 − yR1









, (19)

where P0 = (p0,q0,1), P1 = (p1,q1,1), (xR0,yR0,zR0)
T =

RX0, (xR1,yR1,zR1)
T = RX1, and X0 and X1 are world

coordinates of P0 and P1, respectively.

Based on the ground truth, we fit the IMU sensor

measurement errors into parametric distributions. We use

Gaussian distributions to fit the errors for this experiment

but a Gaussian mixture may also be used to represent the

distributions for, for example, the GPS position measurement

(P(DF),P(DL)) which is supposed to be bell-shaped (shorter

tails).
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Note that both internal and external camera calibration is

needed to convert image coordinates to the airplane’s body

coordinates. When using a fixed-zoom camera, the internal

calibration parameters do not change and we obtain them off-

line by showing a calibration grid before or after the flight.

The external camera calibration (the relative rotation between

the camera and the IMU) is difficult to obtain because no

common reference is available between the camera and the

IMU.

One way to estimate the relative rotation is to manually

align the camera calibration grid to the IMU. For example,

we can put a calibration board on flat ground and manu-

ally align the vehicle such that its IMU is parallel to the

ground and its yaw direction is aligned to the calibration

board. Then, we know the vehicle-body-to-grid rotation (a

flipped identity matrix) and the grid-to-camera rotation can

be obtained by a simple camera calibration procedure (for

example, by finding two parallel lines and a perpendicular

line – which can be automated). Then, the vehicle-body-

to-camera rotation can be obtained by multiplying the two

matrices.

Another way to find the rotation, which we used in

this experiment, is to pick a reference image frame from

the calibration flight data, where we assume that the IMU

reading is correct in that particular frame. The reference

image frame was manually chosen such that the resulting

rotation minimizes the overall pitch, roll, and yaw errors. It

can give more accurate error measurement because it does

not involve any manual alignments. However, it may not

pick up the bias in the measurement, for example by a wind.

Therefore, the actual error can be slightly larger than the

estimates.

The resulting IMU sensor measurement error estimates

extracted from total 23 image frames and 3 flight paths

are shown in Table I. We observe that the position error in

forward direction (DF ) and the lateral direction (DL) is very

different which validates our model in the previous section.

TABLE I

IMU SENSOR MEASUREMENT ERRORS

Measurement Standard deviation of the error

Forward (DF ) 13.6m
Lateral (DL) 2.9m

Height (h) 4.5m
Roll (ψ) 2.5◦

Pitch (θ ) 1.9◦

Yaw (φ ) 3.1◦

B. Target Detection Error

The detection and false detection rates are obtained by

counting the number of detections, missed detections and

false detections from video images obtained from actual

flights. We developed a user interface to manually validate

correct detections and position the undetected targets. The

detection accuracy (probability that a detection is a correct

detection), P(D|X, T̂, R̂), is assumed to be constant and

it is estimated by simply counting the number of correct

(a) (b)

Fig. 4. A 2m × 2m red tarp was used as an experimental target and
a simple Bayesian color detector was applied to detect the target: (a) an
example target image and (b) the detection result.

detections and false detections. The probability of false

detection, P(Z|¬V,X,T,R), is also assumed to be constant

and estimated by counting the number of image frames that

contained the false detection.

P(res(X,T,R)|Z) and P(res(X,T,R)|¬Z) require resolu-

tion parameters. The resolution is obtained by Equation 12

assuming that the position and orientation estimates are

correct. We could also use the vision-based position and

orientation estimates when the target is close to the cali-

bration pattern. However, in this experiment, we used the

IMU sensor results.

We used a 2m × 2m red tarp as an experimental target and

applied a simple Bayesian color detector on the HLS color

space to detect the target. First, the image was converted

from RGB to HLS. We followed the implementation in

the OpenCV library for the color space conversion. Then,

a Bayesian color classifier was applied to each pixel. The

detected red pixels are grouped by a connected component

analysis and thresholded based on its size. An image of the

target and the detection result is shown in Figure 4.

Since we have simplified the detection problem, the de-

tection performance is very good. For example, we collected

data from 392 image frames. The target was detected in

363 of them. For all detections and missed detections,

the resolutions of the target were computed and used to

fit P(res(X,T,R)|Z) and P(res(X,T,R)|¬Z) to Gaussian

distributions with the same mean. The detection accuracy,

P(D|X, T̂, R̂), was 0.99 and the false detection rate per frame,

P(Z|¬V,X,T,R), was under 0.001 in our test flights.

IV. EXPERIMENTAL RESULT

For experimental evaluation, we used a fixed wing UAV

equipped with a Piccolo II UAV autopilot made by the Cloud

Cap Technology Inc. The true ground position of the target

(Figure 4) was measured using a hand-held GPS.

An example target position likelihood is shown in Fig-

ure 5a. The likelihood is shown in world coordinates where

X is pointing North and Y West. We observe that the

distribution is a long ellipse shape due to the high forward-

directional error (DF ). To verify if the likelihood follows

the derivation in Section II, we exaggerated the error of

each measurement after reducing the dominant DF errors

(Figure 5b-e). When the h-direction error is exaggerated,

the distribution stretches towards the vehicle position, the
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Fig. 5. (a) An example target position likelihood. The red (dark) dot is the
estimated target position without applying the sensor error, the green dot
is the projected position of the vehicle, and the quadrilateral boundary is
the camera coverage. We see that the forward directional error (for DF ) is
dominant. The rest of the figures are the likelihoods when an individual error
is exaggerated: (b) h, (c) roll, (d) pitch, and (e) yaw. (f) An example target
detection likelihood. Previous work only used binary camera coverage (the
quadrilateral boundaries) but our estimation provides smooth boundaries.

roll error causes u-directional stretch, the pitch error causes

v-directional stretch, and the yaw error causes a banana-

shaped stretch. Note that the arc center of the banana-shaped

stretch is supposed to be the vehicle position, but our linear

approximation (Equation 8) moves its center to the mid-point

between the vehicle and the target position. However, this

does not introduce a significant error because such an arc

curvature is observable only when the yaw error is dominant

(in the example, the error was exaggerated by 10 times).

An example detection likelihood map is shown in Fig-

ure 5f. When no target is detected in the image, the target

likelihood is higher outside the camera coverage than the

inside. We observe that the binary camera coverage (the

quadrilateral boundary) used by most previous work cannot

properly model the smooth likelihood estimates obtained by

our method.

The suggested derivation can be applied to various lo-

calization algorithms including Bayesian filtering and par-

ticle filtering. An example application to sensor-based path

planning of a UAV is presented in [9] where the suggested

derivation was used for a target search and localization.

Finally, we present a preliminary experiment to evaluate

the performance of the target localization from multiple

frames. When we assume that a target is not moving,

we can apply a simple Bayesian reasoning assuming the

independence of the individual measurements in each frame:

P(X|U1, T̂1, R̂1,U2, T̂2, R̂2, . . .) = αP(X)∏
i

P(Ui|X, T̂i, R̂i), (20)

where α is the normalizing constant over X.

We applied the above equation to a probability grid of

0.2m × 0.2m resolution, and localized the target using the

maximum likelihood estimation. From two flight paths, the

target was detected in 28 frames including one false detec-

tion. We compared our result with a Gaussian distribution of

fixed position errors in world coordinates, where the localiza-

tion result is simply the average of the estimates of individual

frames. The plain Gaussian distribution resulted in a large

error (22.0m) when the false detection was included and a

relatively smaller error (15.0m) without counting the false

detection. The false detection did not affect the localization

performance of our method because it was modeled in the

derivation. The localization error using our distribution was

11.2m.

V. CONCLUSION AND FUTURE WORK

We introduced a method to incorporate sensor measure-

ment errors when using a vision sensor to produce the target

position estimates. We also presented a calibration method-

ology to measure the error distributions of the sensors. Our

method models the orientation and position errors of an IMU

and the varying detection rates corresponding to varying

image resolutions. It also models the false detections. The

approach can be applied to a wide range of vision- (including

IR) based target localization and control tasks emerging in

UAV applications. The future work is to thoroughly evaluate

our model and the calibration methodology using a larger

number of empirical and synthetic dataset.
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