
  

  

Abstract— In this paper, a novel method is presented for 
tracking ground targets from an unmanned aerial vehicle 
(UAV) outfitted with a single monocular camera.  The loss of 
observability resulting from the use of a single monocular 
camera is dealt with by constraining the target vehicle to follow 
ground terrain.  An unscented Kalman filter (UKF) provides a 
simultaneous localization and mapping solution for the 
estimation of aircraft states and feature locations, which define 
the target’s local environment.  Another filter, a loosely 
coupled Kalman filter for the target states, receives 3D 
measurements of target position with estimated covariance 
obtained by an unscented transformation (UT).  The UT uses 
the mean and covariance from the camera measurements and 
from the UKF estimated aircraft states and feature locations to 
determine the estimated target mean and covariance.  
Simulation results confirm the concepts developed.                  

I. INTRODUCTION 
ANY disciplines have investigated solutions to the 
target tracking problem for various applications 

including tracking military convoys, air traffic monitoring, 
and surveillance systems.  Much of this work utilizes range 
and bearing sensors such as radar or laser scanners.  Often 
theses sensors are located in stationary positions (i.e. fixed 
radar stations) [1].  However, small unmanned aerial 
vehicles (UAVs) are generally not equipped with either 
radar or laser range finders due to strict weight and power 
requirements.  For power and weight limited systems, 
cameras are the sensor of choice.  Such UAV mounted 
vision systems are suitable for geophysical surveying, 
remote sensing, ecological research, and autonomous 
navigation applications to name a few.  This paper develops 
a method for tracking ground targets from a UAV using a 
single camera. 
 It is well known within the machine vision literature that 
scene reconstruction from images alone cannot resolve 
scale.  Recovery of scale requires other sensors such as the 
global positioning system (GPS) that provide absolute 
position or a number of control points with known locations 
within the scene.  Even with GPS sensors, this loss of scale 
continues to pose observability problems when tracking 
moving targets with video.  Essentially, the component of 
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the target’s velocity along a line between it and the camera 
is ambiguous or unobservable.  To overcome this limitation, 
at least for moving ground targets, this paper constrains the 
target to follow the terrain.  Since terrain models are seldom 
available to the accuracy required, this paper borrows some 
techniques of simultaneous localization and mapping 
(SLAM) to estimate the terrain near the moving target.  
Unlike moving targets, stationary features are observable 
using vision from a moving platform.  
 The SLAM problem has received substantial attention in 
recent years.  In general, researchers of SLAM techniques 
frame the problem as an optimal state estimation where the 
states include both the locations of map features and the 
navigation solution of the vehicle.  A wide array of sensors 
and configurations of sensors have been studied including 
binocular vision, laser scanners, radar, and ultrasonic 
sensors.  Recently, SLAM techniques have been applied to 
monocular vision systems in [2], [3], [12], and [13].  In [2], 
the authors assume the air vehicle maintains a constant 
altitude and that all the features are located in a flat plane.  
With these assumptions, they can reconstruct the 2D 
location of the aircraft and a 2D map of the features.  In 
another work involving a UAV with monocular vision, [3], 
the researchers utilize artificially placed features with a 
known size.  In this case, the range to features is estimated 
directly from the image, allowing a fully 3D reconstruction.  
A bearing only SLAM approach for UAVs is outlined in 
[13] where scale is resolved from an inertial measurement 
unit (IMU) sensor.  This technique allows the development 
of a 3D map of the environment without knowledge of 
feature sizes.  While this bearing only corrected SLAM 
implementation provides increased accuracy over an 
uncorrected inertial navigation solution, the aircraft position 
estimates contain significant drifting biases as compared to 
GPS aided inertial navigation solution (GPS/INS) estimates.  
 In this paper, both GPS and IMU data are used to 
overcome the scale issue and obtain the 3D estimate of both 
the UAV’s navigation states and the terrain feature 
locations.  Terrain features that were observed, but have 
gone out of view, are discarded in order to maintain 
reasonable computational loads.  The moving target’s states 
are then determined using a separate, loosely coupled state 
estimator that incorporates the SLAM estimates.  An 
unscented transform (UT) is employed to propagate the 
means and uncertainties of the SLAM states and camera 
measurements into a 3D measurement vector with an 
estimated uncertainty. 
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This paper is organized as follows.  Section II begins by 
stating the fundamental assumptions necessary for this 
research.  The next section outlines the state equation model 
development.  Section IV follows with a brief heuristic 
explanation of the observability problems encountered in 
monocular vision approaches.  Section V details the 
proposed solution, which utilizes the UT and loosely 
coupled estimators.  Finally, simulated results are shown in 
Section VI, that illustrate the practicality of the theoretical 
development.           

II. ASSUMPTIONS 
 An integral step in the simulation process includes 

defining a set of realistic assumptions which accurately 
describe an experimental setup.  In this paper, the setup will 
consist of modeling a relatively small UAV flying at low 
velocity and altitude over varying terrain.  The UAV will 
obtain measurements from an IMU, a GPS estimator, and a 
monocular digital camera.  The target properties are 
unknown.  The following list details important assumptions 
used for model development. 
• The aircraft’s initial position defines the location of the 

inertial North East Down (NED) frame, }{i .  This 
assumption is valid for highly maneuverable low 
velocity aircraft flying over a small area. 

• The gravity vector will be constant during the duration 
of the flight.  Its orientation will be aligned with the 
“down” axis of the inertial frame. 

• The three angular rate sensors and three accelerometers 
within the IMU are located at the center of mass of the 
aircraft and are aligned with the axes of the body fixed 
reference frame, }{b .  The GPS antenna is near the 
center of mass. 

• The camera is located at the center of mass pointing 
down along the z axis of the body frame.  Therefore, the 
camera frame is coincident with the body frame. 

• The intrinsic parameters of the camera are known 
including the focal length, image center, skew 
coefficient, and radial and tangential distortions. 

• A scale invariant distinctive feature based extraction 
algorithm exists for locating features within discrete 
images and for specifying the corresponding image 
coordinate locations from overlapping images. 

• The targets are limited to ground targets that must 
remain in contact with local ground terrain.  

III. MODEL DEVELOPMENT 
As is typical for GPS aided inertial navigation solutions 

(GPS/INS), kinematic equations rather than dynamic 
equations are used.  This allows for estimation of the aircraft 
and target states without knowledge of the intrinsic 
parameters of the aircraft and target. The resulting state 
estimation technique is less application specific.  Also, 
kinematic relationships generally tend to decrease the 

number of states necessary for estimation while providing a 
quantifiable means for determining input and measurement 
noise.  

For our development, three sets of kinematic equations 
are required: one for the UAV, one for the features, and one 
for the target.  The general form for these nonlinear state 
equations is given by  
 ),,( wuxfx vvvv

&v =  (1) 

 ),( vxhz vvvr = . (2) 
where xv  is the state vector, uv  is the input vector, wv  is the 
zero mean white process noise vector, vv  is the zero mean 
white noise output vector, and zv  is the output vector.  In the 
following discussion, (1) will be referred to as the dynamic 
model as it defines the relationship between the time 
derivative of the state vector and the nonlinear vector 
function, )(⋅f

v
, of the states, inputs, and input noise.  

Equation (2) will be referred to as the observation or output 
model where the nonlinear output vector function, )(⋅h

v
, 

defines the combination of states and output noise that form 
the output vector.  

A. Aircraft Nonlinear State Equations 
The definitions for the aircraft state vector, input vector, 

and output vector are shown below.  The “a” subscript 
denotes aircraft vectors while the subscript within braces 
denotes the inertial or body fixed reference frame. 
Measurement vectors are augmented with an additional “m” 
subscript.  

 [ ]TTT
ia

T
iaa qppx v&vvv

}{}{≡  (3) 

 [ ]TT
bm

T
bma au }{}{ ωvvv ≡  (4) 

 [ ]TT
iam

T
iama ppz }{}{

&vvr ≡  (5) 

The state vector, axv , consists of the UAV’s inertial position 

vector, }{iapv , inertial velocity vector, }{iap&v , and the 

quaternion vector, qv , where 

 [ ]Tqqqqq 3210=v . (6) 
The input vector, auv , contains the body axes measurements 

from the IMU accelerometers, }{bmav , and gyros, }{bmωv .  The 

output, azv , contains GPS measurements for the inertial 

position vector,  }{iampv , and inertial velocity vector, }{iamp&v .    

1) Aircraft Dynamic Equations 
The time derivatives of the states, ax&v , are given by the 

following equations. 

 }{}{ )( iaia pp
dt
d &vv =  (7) 

 [ ]T
baibbmibia gwap 00}{}{}{}{}{ ++= vv&&v RR  (8) 
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where 
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The time derivative of position within the inertial frame, 

}{iap&v , is simply the inertial velocity vector as expressed in 

(7).  Equation (8) defines the time rate change of velocity in 
the inertial frame, )(iap&&v , which must be equal to the 

kinematic accelerations within the inertial frame.  The 
accelerometers located on the body frame measure the true 
accelerations corrupted with components of zero mean white 
noise, }{bawv , and the constant magnitude gravity vector, g .  

Therefore, the true accelerations are obtained by eliminating 
the gravity vector component and rotating the acceleration 
measurement into the correct frame with the body frame to 
inertial frame rotation matrix, }{ibR .  The next two 

equations, (9) and (10), are commonly referred to as the 
“strapdown equations” as they represent the relationship 
between the time derivatives of the quaternion states, whose 
elements are functions of the rotation matrix, and the gyro 
measurements [6].  As with the accelerometer 
measurements, the gyro measurements, }{bmωv , are also 

corrupted with noise, }{bwω
v , as shown in (9).  

2) Aircraft Observation Equations 
The output given by the GPS includes estimates of both 

inertial position, }{iampv , and inertial velocity measurements, 

}{iamp&v .  Both of these measurement vectors contain the true 

inertial position and velocity and their corresponding noise 
components, }{ipa

νv and }{ipa&
vν . 
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B. Feature Nonlinear State Equations 
The following definitions list the state vector, input 

vector, and output vector associated with the features.  The 
“f” subscript denotes feature vectors.   

 ( ) ( ) TTN
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T
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fppx ⎥⎦
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L

vv  (12) 
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The feature state vector, fxv , in (12) contains the feature 

vector locations, 
}{ifpv , relative to the NED inertial frame.  

The number of estimated features may vary with time as 
new features come into observation and other features go 
out of observation.  The superscripts are used to distinguish 
the various features where fN  denotes the total number of 

features comprising the state vector at any given time. The 
variable size input vector, fuv , in (13) is all zero vectors 

since no input is required for the feature dynamic equations.  
The output vector, fzv , contains the image space vector 

measurements, }{bfmi
v

, for each feature.  Each }{bfmi
v

 consists 

of two elements which define the measured x and y 
components of a single image space feature representation 
relative to }{b .    

1) Feature Dynamic Equations 
Features are assumed stationary, which implies the time 

derivative of the feature state vector, fx&v , is zero. 

 0}{
v

&v =ifp  (15) 

2) Feature Observation Equations 
A monocular camera onboard the aircraft captures images 

at periodic intervals.  The observation equations determine 
the image coordinates of the features using aircraft position 
and orientation, the intrinsic camera parameters, and the 
feature locations.  Fig. 1 depicts relationships between the 
inertial frame, the camera frame, and a feature viewed 
through a pinhole camera model.  

{i}

{b}

ei ni
lf

}{ifpv

}{iapv

}{bcv

}{bxi}{byi

 
Figure 1: Feature observation development assuming pinhole camera 
model.. 

The vector, }{bcv , from the camera frame to the feature, is 

given by the following equation 
 )( }{}{}{}{ iaifbib ppc vvv −= R . (16) 

where the rotation matrix, }{biR , transforms the inertial 

frame representations of the feature and aircraft into the 
body frame.  The image space feature coordinates are 
realized when the z component of }{bcv  is equal to the focal 

length, lf , of the camera.  Therefore, the actual image 

coordinates }{bxi  and }{byi  of a feature are computed as 
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follows. 

 [ ] }{
}{}{

}{
}{ 010

001
*

100 b
b

l

by

bx
bf c

c
f

i
i

i v
v

v
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=  (17) 

The measured image space coordinate vectors, }{bfmi
v

,  

consist of the true image coordinate vector, }{bfi
v

, plus a 

noise vector, }{bi f
νv , due to camera calibration and feature 

extraction errors.     
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C. Target Nonlinear State Equations 
Like the aircraft states, the target states will consist of 

kinematic relationships.  However, unlike the aircraft model, 
no direct acceleration measurements are available from the 
target.  One commonly used motion model assumes the 
velocity of the target is a random walk with acceleration 
modeled using zero mean Gaussian white noise.  For this 
technique, a larger standard deviation in acceleration noise 
corresponds to greater uncertainty in the target states thereby 
weighting the observation more heavily than the prediction 
in the state estimation process.   

Modeling the target velocity as a random walk with 
unchanging noise statistics and dynamic model may not be 
adequate for highly maneuverable targets.  The Interacting 
Multiple Model (IMM) estimator can provide improved 
accuracy for modeling such targets at the expense of 
increased computational complexity.  The interested reader 
should consult [1], [7], and [8].  The target tracking concepts 
developed in this paper pertain equally to both the IMM 
target estimator and the basic single target model estimator 
used for the remainder of this development.  

The following equations represent the target state vector, 
input vector, and output vector.  The “t” subscript denotes 
target vectors.         

 [ ]TT
it

T
itt ppx }{}{

&vvv ≡  (19) 

 }{itt wu vv ≡  (20) 

 }{btmt iz
vr ≡  (21) 

In (19), the target state vector, txv , contains the target 

position vector, }{itpv , and velocity vector, }{itp&v , relative to 

the inertial frame.  Since the velocity is modeled using a 
random walk, the input vector for the target model, tuv , is a 

noise term, }{itwv .  The target output vector, tzr , consists of 

the camera sensor measurement vector, }{btmi
v

, which 

contains the two image space coordinate measurements for 
the target. 

1) Target Dynamic Equations 
The time derivative of the target state vector, tx&v , is a 

concatenation of the velocity and acceleration terms.   

 }{}{ )( itit pp
dt
d &vv =  (22)

 }{}{ itit wp v&&v =  (23) 

2) Target Observation Equations 
The target observation model is very similar to the feature 

observation model since the camera image provides the only 
output measurement for the target.  The image space 
coordinate vector, }{bti

v
, is given by (17) when }{ifpv  in (16) 

is replaced with }{itpv .  The target observation model 

consists of the true image space vector, }{bti
v

, and a noise 

vector, }{bit
vv , for similar reasons as described for the feature 

observation equations. 
 }{}{}{ bibtbtmt t

viiz vvvv +==    (24) 

IV. OBSERVABILITY PROBLEMS  
This section discusses the observability of the state 

equations developed for the aircraft, feature, and target state 
representations.  A set of state equations is said to be 
observable when knowledge of the input and output over a 
finite time interval allows unique determination of the initial 
state vector [9].  A traditional test for linear systems 
analyzes the rank of the observability matrix.  If the rank of 
the observability matrix is greater than or equal to the 
number of states, the system is considered observable.  
Observability is the fundamental requirement for any 
observer, as the loss of observability corresponds to the 
inability to generate converging state estimates. 

Nonlinear equations, unfortunately, have to be linearized 
before the observability matrix can be formed.  The 
analytical observability matrix developed from the first 
order term of the Taylor series expansion of the nonlinear 
equations contains elements dependent upon current states 
and inputs.  Therefore, in certain instances, observability 
may be lost for some states depending upon the current 
operating point.  The process of determining rank from 
linearized nonlinear systems results in a complicated matrix 
and sometimes prohibits physical intuition of observability 
loss conditions.  This paper provides an intuitive 
observability explanation based upon heuristic arguments 
developed during simulations. 

A. Feature Observability 
The target tracking solution requires information obtained 

from the 3D location of features, and therefore, their 
observability is analyzed here.  As the camera poses are 
consistent with the position and orientation of the aircraft, 
the state equations must include both the aircraft and feature 
states, thus defining the SLAM problem.   
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T
a zzz vvv =  (26) 

Fig. 2 illustrates the relationships between the aircraft 
states and feature states through multiple observations.  At 
time tk Δ− )1( , the UAV, denoted with a solid outline, flies 
directly over a stationary feature and captures an image.   

Camera

UAV

Feature

}{ifpv

)(kapv)1( −kapv
tpd aΔ≈ &v

v

ap&v

 
Figure 2: The triangulation of a feature in space as viewed from two 
different poses. 
The vector pointing from the camera through the actual 
feature location denotes the line in space corresponding to 
the family of possible, but still unknown, 3D feature 
locations.  A short time later, tΔ , the UAV, now denoted by 
its dashed outline, has traveled a small distance and captures 
another image.  A new vector, pointing from the new camera 
location to the feature, symbolizes the line along which the 
feature should reside.  Assuming the feature’s location did 
not change, measurement of these two vectors fully 
triangulates the feature’s location.  However, the scale of the 
resulting triangle remains unknown.  The scale of this 
triangle is determined from the distance vector, d

v
, pointing 

from the previous aircraft position to the current position, 
which is predicted by the integration of the IMU 
measurements and observed through GPS.  Realistically, the 
measurement of these two vectors is corrupted by noise and 
uncertainty among the state estimates, resulting in skew 
vectors with some residual error in the feature’s location.  
With sufficient measurements taken from different aircraft 
positions and orientations, the mean location of the feature 
in 3D space can be estimated accurately.  The camera, and 
hence, the aircraft must move to allow triangulations and 
residual corrections to exist. 

B. Target Observability 
The state equations necessary for the examination of 

observability for the target tracking model must contain both 
the aircraft and target state equations as the target 
measurement depends upon the aircraft states in much the 
same way as the feature observations did. 

 [ ]TT
t

T
a xxx &v&v&v =  (27)   

 [ ]TT
t

T
a zzz vvv =  (28) 

The major difference between target estimation and 
feature estimation originates from the dynamic nature of the 
target.  This is illustrated in Fig. 3. 

Camera

UAV

Target

)1( −kapv
tpd aΔ≈ &v

v )(kapv

ap&v

)1( −ktpv tp&v

)(ktpv

)(ktpv

 
Figure 3: The lack of triangulation of a moving target in space as viewed 
from two different poses. 
Once again, the vectors from the camera passing through the 
target represent the families of possible target locations.  
The target, in this case, has a velocity component near the 
same magnitude and direction as the aircraft, resulting in the 
same target images.  Triangulation of the target’s position is 
not possible.  The target’s velocity also retains ambiguity 
along the direction of observation, as illustrated by the two 
dashed target positions in Fig. 3.  Simulations based upon 
the dynamic and observation models of (27) and (28) have 
supported this heuristic argument.  A moving vehicle cannot 
observe the states of another moving vehicle from 
monocular vision alone. 

V. NOVEL SOLUTION 
The unobservability issues for monocular tracking of 

moving targets from a moving platform are addressed for 
ground targets.  The ground target constraint is used to 
extrapolate a 3D measurement from the 2D image 
coordinates.  The general target observation model is 
redefined as illustrated in Fig. 4, where the target is assumed 
to lie in a plane defined by nearby features.  

{i}

{b}

lf

}{inv

}{iuv

}{21 ivv

}{31 ivv}{iapv
1

}{ifpv

2
}{ifpv

3
}{ifpv }{itpv

}{bxi}{byi

 
Figure 4: The relationships for the redefined target observation model. 

In Fig. 4, the ground plane is defined by the three closest 
features to the target.  The normal vector for the ground 
plane is given by 
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 }{31}{21}{ iii vvn vvv ×=  (29) 

where 
 1

}{
2

}{}{21 ififi ppv vvv −=  (30) 

 1
}{

3
}{}{31 ififi ppv vvv −= . (31) 

The unit vector pointing from the camera toward the target 
is found using the image of the target and the aircraft state.  
This vector is expressed in the inertial frame as follows. 
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lbybx

T
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ibi fii
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u R=v
 (32)   

The position of the target, }{itpv , can now be written as a 

vector sum 
 }{}{}{ iaiit pup vvv += λ  (33) 
where λ  is an unknown scalar at this point.  To solve for 
this scalar, we use the fact that the dot product of any vector 
in the plane with the normal vector, }{inv , must be zero.  We 

define a vector in the plane using the difference between a 
feature location and the target location. 
 0)( 1

}{}{}{ =− ifit
T
i ppn vvv  (34) 

Substituting (33) into (34) and rearranging results in the 
following. 
 )( }{

1
}{}{}{}{ iaif

T
ii

T
i ppnun vvvvv −=λ  (35) 

Solving (35) for λ  gives 
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Substituting (36) into (33) results in an expression for the 
target location. 
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All of the terms on the right side of (37) are obtained from 
the camera sensor and estimated SLAM states.  By 
providing a position estimate in 3D space, the observability 
loss for the ground target is eliminated.  The measurement 
equation for the target, in (24), is thus modified to consist of 
a target position measurement with noise.   
 }{}{}{ ipititmt t

vppz vvvv +==  (38) 

The covariance of the noise term, }{ipt
vv , in the target 

position measurement can be estimated using the unscented 
transformation and the covariance of the feature estimates, 
aircraft estimate, and camera coordinates used in (29), (32), 
and (37).  

A. Unscented Transformation 
The problem of estimating the predicted mean and 

covariance from nonlinear functions (i.e. (29), (32), and 
(37)) of Gaussian random variables (GRV) has been 
addressed by many filtering techniques including the 
extended Kalman filter (EKF).  The EKF assumes that the 

second and higher order terms of the Taylor series 
expansion of a nonlinear function are negligible.  With this 
assumption, the new mean is predicted using the nonlinear 
function, and the new covariance is predicted using the first 
order term or Jacobian of the nonlinear function.  While 
effective for many applications, highly nonlinear systems 
demand a higher fidelity mean and covariance estimation 
technique.  Central to the unscented Kalman filter (UKF), 
the UT addresses these deficiencies by using a sampling 
technique that improves covariance and mean estimates.    

The primary concept of the UT involves selecting a set of 
deterministically chosen weighted “sigma points” (vectors), 
which have a known mean and covariance.  These points are 
propagated through the nonlinear model, resulting in 
transformed points.  The statistical data represented by the 
transformed points approximates the true probability density 
function.  It has been shown that the UT accurately predicts 
the mean and covariance to the second order and has similar 
computational cost as the EKF [4].  This paper does not 
present the details of the UT and its use in the UKF.  The 
open literature addresses many papers on this subject, 
specifically [4] and [5].  

Various sigma point sets exist.  The set used for the UT in 
this paper is known as the basic symmetric set.  Intuitively, 
the symmetric sigma points represent vectors in xN  
dimensional space where xN  is the number of GRVs 
defining the nonlinear equations.  These points are perturbed 
about the mean estimate by an amount that properly models 
the current mean and covariance.  For a thorough description 
of this and other advanced sigma points see [4]. 

B. Loosely Coupled Estimation Solution 
While the UT provides a method for determining a mean 

measurement with predicted covariance, care must be taken 
when applying the target observation model given by (38) 
within a tightly coupled Kalman filter (KF).  Tightly 
coupled, in this paper, refers to the combination of the target 
states and SLAM states within a single filter.  A 
fundamental assumption made within the derivation of the 
KF requires orthogonality between measurement noise terms 
and the estimated state covariance [10].  By using (38), 
which is a function of the current state estimate and camera 
measurement, within a tightly coupled filter, correlation will 
be induced.  This problem can be eliminated by estimating 
the target states within another loosely coupled KF.  Fig. 5 
illustrates the high-level perspective of the loosely coupled 
estimators and their relationships. 

The SLAM model consists of state equations (25) and 
(26).  An UKF is utilized to estimate the aircraft and feature 
states due to the noise terms and nonlinear nature of the state 
equations.  The input and output measurements are 
contained in dashed boxes, which represent the conversion 
from continuous to discrete time.  The output of this SLAM 
UKF estimator, including the mean values for aircraft 
position, aircraft orientation, and feature locations and their 
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associated error covariance terms, becomes the input to the 
UT block.  Another input to this block includes the output 
measurements of the target location in image space 
coordinates.  The UT then converts the input means and 
covariance into a target position measurement and 
covariance matrix estimate via the relationships defined by 
(29), (32), and (37).  The output of the UT block becomes 
the output measurement to the target KF.  The input to the 
target model is simply the random walk zero mean noise 
term.  A basic Kalman Filter is used for the target estimator 
since the target state equations are linear. 
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Figure 5: The relationships between the SLAM UKF, UT, and the Target 
KF. 

VI. SIMULATION RESULTS 
Simulation has been used to test the validity of the SLAM 

and target tracking estimators discussed above.  The analysis 
includes assessment of the convergence of feature locations, 
the aircraft state estimation accuracy as gained by SLAM 
estimation techniques over the typical GPS/INS estimation, 
and the convergence of the target tracker to a known value.   

The simulation requires accurate modeling of an aircraft’s 
dynamic equations, and the generation of IMU, GPS, and 
camera data for filter estimation.  A conventional six degree 
of freedom aircraft model, taken from [11], is implemented 
in MATLAB/SIMULINK.  An autopilot in the simulation 
allows tracking of commands from a straight-line waypoint 
navigator.  The state outputs from the modeled aircraft, 
including accelerations and angular velocities, are combined 
with zero mean random noise in order to simulate 
accelerometer and gyro measurements.  The aircraft position 
and velocity outputs are also corrupted with noise to model 
GPS measurements.  The noise statistics were approximated 
from a commercial grade UAV IMU.  The UKF estimator 
algorithm is contained within a discrete time S-Function 
operating at 25Hz.  The UKF correction occurs at 5Hz when 
new simulated GPS and image measurements are available.         

The environment for simulation is illustrated in Fig. 6.  
The aircraft begins flight in a northwest direction with a 
nominal velocity of 44.704m/s and altitude 100m above a 
ground plane, defined by features.  More features are used in 
the simulation than shown in the illustration, although the 

generally layout of the features, which allows easy 
reference, is similar.  Some environments with complex 3D 
structure may require additional programming logic to 
extract the three features that best define the local target 
ground plane at any given time.  At 750m to the north of the 
aircraft’s initial position, the ground terrain begins sloping 
downward at approximately 20 degrees.  The target’s initial 
position is located at 550m to the north of the aircraft’s 
initial position.  After 14 seconds of flight, the target, 
heading due north with the same nominal velocity as the 
aircraft, comes into view.  After the target travels 200m to 
the north of its starting position, it turns and follows the 
slope maintaining its same velocity.  The slope provides a 
proof of concept analysis emphasizing the ability of this 
method to track targets in undulating terrain.  After 
environment definition, the filters are initialized with state 
estimates that are perturbed from their true values with 
amounts consistent to the initial error covariance matrices. 

North

East

North

East

m750

m550

Feature

Target

UAV Altitude

North

Altitude

North

m100

Ground PlaneGround Plane

FeatureFeature

TargetTarget

o20≈Θ

(a) (b)  
Figure 6: Simulation environment (a) top view and (b) side view. 

The error magnitude of a feature’s location estimate is 
shown in Fig. 7.  During the first ten seconds of flight, the 
feature is not in view.  Once in view, the UKF dynamically 
updates and improves the position estimate of the feature.  
Other features exhibit similar behavior. 
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Figure 7: Feature 1 position error magnitude. 

The next plot emphasizes the orientation accuracy for the 
aircraft gained through SLAM estimation as compared to a 
traditional GPS/INS estimation.  As the features come into 
view, the SLAM filter improves the estimated aircraft 
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orientation, especially pitch.  This behavior is expected 
because the observation model for the features depends 
heavily upon the position and orientation of the aircraft.  In 
fact, the EKF GPS/INS solution actually developed a 
substantial orientation bias.   
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Figure 8: RMS aircraft orientation error magnitude. 

The target position error illustrates the effectiveness of the 
target tracking technique developed.  Fig. 9 plots the target 
position error magnitude as a function of the time during 
which the target is observed.  The error peak between three 
and four seconds corresponds to the point when the target 
vehicle turns down the slope.  While the error never 
converges completely to zero, the target state estimates do 
track the target.  This technique may be used to provide 
tracking information for a range of applications.   
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Figure 9:  Target position error magnitude. 

VII. CONCLUSION 
A novel method has been presented for the tracking of 

ground targets observed from camera images taken from a 
moving platform.  The observability problems caused by 
using a monocular camera are addressed using loosely 
coupled SLAM and target state estimators and by utilizing 
the UT to obtain measurement mean and covariance data for 
the target position as a function of the SLAM states and 
camera measurements.  Simulation shows the effectiveness 
of the method presented.  The relative ease of 
implementation of this method warrants its consideration for 
several practical applications and additional experimental 
research.   
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