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Abstract— This paper contributes to the problem of deter-
ministic localization of robot networks using local and relative
observations only. This is an important issue in collective and
cooperative robotics where global positioning systems are not
available, and the basic premise is the localization ability of the
group.

We prove that, giving a set of relative observations made
by the robots, the unique non ambiguous pose estimation
of the robot network in a deterministic way, is a NP-hard
problem. This means that no polynomial-time algorithm can
deterministically solve the unique pose estimation problem
based on relative observations. The consequence is that no
guaranty can be provided, in a polynomial time, that the
possibly estimated poses of the robots, will correspond to the
effective (actual) ones. The proof is based on complexity theory.
We build appropriate polynomial-time reductions acting on
the localization problem and leading to well known NP-hard
problems. The paper gives some tracks to overcome this issue.

I. INTRODUCTION

The group localization is a preliminary requisite to many

collective robotic tasks (mapping, surveillance, manipula-

tion, sample extraction, mining, etc). It is often resolved

by extending single robot localization techniques to handle

multi-robot pose (i.e. position and orientation) estimation.

Collaborative localization approaches integrate relative ob-

servations aiming to fuse interdependent (homogeneous or

heterogeneous) sensory information in a single estimate of

the group pose. It has been demonstrated [1], [2] that lo-

calization uncertainty in groups of robots is lower compared

to the situation where individual robots estimate separately

their pose.

Various techniques have been proposed to integrate rela-

tive observations, like maximum likelihood estimation [3],

extended Kalman filters [4], [5], particle filters and Monte-

Carlo simulation [6], and cooperative strategies constraining

the motion of the group [7], [8]. Although the designs of

the previous schemes have led to practical implementations

and have demonstrated their effectiveness in certain settings

through extensive simulations or limited experiments, some

fundamental questions have not been addressed.

Only few attempts [9], [10], [11] have proposed some

theoretical foundations to the problem of localization in

multi-robot formations. The work [10] is based on results

in kinematics of planar mechanisms where the problem is

expressed in a system of non linear closure equations and

the robot formation is modelled as a closed kinematic chain.

In [11], the authors aimed to derive necessary and sufficient

conditions for completely localizing a formation of three

or more robots equipped with omnidirectional cameras and

wireless communication. The approaches in [9], [11] are

based on graph rigidity and results on the localization in

sensor networks.

An interesting approach to theoretic sensor network lo-

calization was investigated by Aspnes et al. [12], [13].

The authors construct grounded graphs to model sensors

configuration and apply graph rigidity theory to test the

conditions for unique localizability of the network. This was

applied to construct uniquely localizable networks, in which

some nodes know their locations and other nodes determine

their locations by measuring the distances to their neighbors.

There is no trivial way to derive SE(2) (position and

orientation) localization from results on point formation R
2,

and many ambiguity cases annul and invalidate the pro-

posed adaptations. In this paper, we address the fundamental

question: What is the computational complexity of robot

network localization using relative observations? Although

various algorithms have been proposed, the computational

complexity of determining the pose of the robots in a

uniquely localizable network has not been investigated.

We hereafter consider the most challenging scenario where

the robot network localization problem can only be inferred

by relative observations. In such a framework, the absolute

position of the robots are not directly given but should

be measured or inferred from the cooperative localization

process using robot interactions and observations. As a

matter of fact, we provide a theoretical proof that shows

the NP-hardness of the robot formation localization, i.e.,

no deterministic algorithm can solve the robot network

localization problem in a polynomial time.

The paper is organized as follows. Section II introduces the

model of the robot network localization problem. In the same

section, we also state the problem and the result addressed

in this paper. The formal proof is given in Section III. Our

result is situated relatively to few existing works in sensor

networks in Section IV. We conclude this paper in Section V.

II. THE ROBOT NETWORK LOCALIZATION PROBLEM

Self-positioning could be achieved by endowing each

robot with a global positioning system (GPS), by triangula-

tion with fixed known landmarks or by proprio-localization

if the initial positions of robots are known. A GPS solution is

costly and would not work in indoor environments and where
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the line-of-sights between the receiver and the satellites are

broken because of obstructions (like dense vegetation, build-

ings). Furthermore, in most real environments, robots are

deployed without their pose information known in advance,

and there is no known external landmarks to support their

location estimation.

We consider the question of the self-localization of a net-

work of robots, using relative observations only. This means

that robots positions and orientations will only be inferred

from their interactions and relative observation exchanges.

To have a global localization however, it is necessary that at

least one robot (as a reference robot) has absolute positioning

capabilities. This condition is also necessary to have the error

in global localization bounded.

A. Model

We consider a group of n robots denoted R =
{r1,r2, · · · ,rn} equipped with heterogeneous sensors and

moving in a planar world, i.e. the two-dimensional special

Euclidean group SE(2). We assume a distributed system of

robots, i.e. each robot performs sensing and communication

with all of its spatial neighbors (present in its field of view).

Robots can be in movement, but the estimation of the robot

formation is static and supposes the immediate acquisition

of the relative observations. A body-reference frame Fr j
1

is attached to each robot r j, where relative observations of

neighboring robots are measured. A global reference frame

Fr0
is defined by considering a virtual robot or by fixing the

position of an added robot (a reference robot) r0.

We extend the point-formation concept reviewed in [13]

to handle the robot distance and bearing observations. We

define a robot-formation Fr as the set of n robot poses Q =
{qt

1,q
t
2, ...,q

t
n}, qi = (xi,yi,θi) in R

2 ×SO(2) together with a

set L of k links, labelled (i, j), defining the existence and the

nature of the observations between robots ri and r j, where i

and j are distinct integers in {1,2, ...,n}. The links ρi j or ϕi j

(or, both) label those specific robot pairs whose inter-robot

observations (distance or bearing) are given (see figure 1 for

an example).

Fig. 1. An example of a robot network with sensory information modelling

The robot network localization problem is to uniquely

estimate the robot-formation Fr in any reference frame

attached to one robot. Obviously, if the robot-formation is

1We will also note the robot frame r j when there is no possible confusion.

known in a reference frame Fri
, it could be estimated in any

other reference frame Fr j
by a rigid transformation where r j

is a robot contained in the formation.

B. Relative Observations

Relative observations provide different kinds of positional

constraints on the robot network formation, such as the

distance between two robots (ρi j) or their relative bearing

(ϕi j). This can spell in the form of non linear equations in

the parameters of the relative observations and robot poses

(p ji = (x ji,y ji)
t for relative ri position in the robot r j frame,

and θ ji for relative ri orientation relatively to the r j frame):

ρik =

√

(

p ji − p jk

)T
·
(

p ji − p jk

)

(1)

ϕ ji = tan−1 (y ji/x ji) (2)

ϕik −ϕki +π = θik = θ jk −θ ji (3)

ϕi j −ϕik = cos−1 (p ji − p j j)
t(p ji − p jk)

‖p ji − p j j‖ · ‖p ji − p jk‖
(4)

Let Z denoting the measurements set. We have Z =
{(ρ1,2;ϕ1,2), · · · ,(ρ1,n;ϕ1,n),(ρ2,1;ϕ2,1), · · · ,(ρn,n−1;ϕn,n−1)}.

Obviously, if r j do not sense ri then (ρ j,i;ϕ j,i) /∈ Z. Further

if r j sense only either ρ ji or ϕ ji with r j then either

(ρ j,i;null) ∈ Z or (null;ϕ j,i) ∈ Z.

A robot will be able to infer its position and orientation

if some relative bearing and distance measurements are

available of the observed (neighbor) robots. The previous

relative observations (equations 1→4) when simultaneously

combined together are sufficient to estimate, without am-

biguity, the observed robot configuration in the observer

robot frame. They do not constitute necessary conditions

because the pose estimation could be filled using relative

observations among more than two robots. Furthermore, in

general framework, all the observations may not be available.

We say that the team is localizable iff the measurement

set Z is enough to determine, in a unique manner, all the

coordinates Q of all the robots in a system of any robot

frame r j. It is easy to see that if the cohort is localizable in

r j system then it is localizable in all the local systems.

General techniques to multi-robot localization are built

upon these basic equations to estimate the robot poses. Col-

lecting available relative observations results in a redundant

non linear system of constraints on the network geometric

formation and contributes to its localization. An attempt to

solve the localization problem could be by linearizing the

system of constraints around an initial configuration, but

would not guarantee the uniqueness of the definite solution.

This approach was investigated by Zhang et al. [10] where

the functional independence of the observation constraints

was postulated as a necessary and sufficient condition for

the localizability of the network. Even for rigid geometric

formations, this condition is not sufficient to guarantee the

uniqueness of the solution, and can even not be necessary to

determine the configuration of the network.
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C. Problem and Result Statements

The problem of robot network localization using relative

observations can be stated as follows: Can we deterministi-

cally provide a localization algorithm to uniquely estimate

the robot group pose using relative observations only?

Theorem 2.1: The Robot Network Localization Problem

(RNLP) is NP-hard.

The theorem will be proved in the following sections.

The consequence is that, using relative observations only,

the uniqueness of a defined solution to the problem of

localization could not be guaranteed and so for the robot

formation in a non ambiguous way.

III. PROOF

A. Preliminaries on Complexity Theory

All definitions and problems described in this subsection

are well-known in Complexity Theory (refer to [14]).

A decision problem is a problem whose the answer is either

yes or no. P represents the set of decision problems that

can be solved in polynomial time. Intuitively, P is the set of

problems that can be solved quickly. NP is the set of decision

problems with the following property: If the answer is yes,

then there exists a proof of this fact that can be checked in

polynomial time. Intuitively, NP denotes the set of problems

where we can verify a YES answer quickly if we have the

solution in front of us.

Obviously, if a problem is in P, then it is also in NP-

to verify that the answer is yes in polynomial time, we

can just throw away the proof and recompute the answer

from scratch. One of the fundamental questions in theoretical

computer science is whether or not P = NP? Nobody knows.

Intuitively, it seems to be obvious that P 6= NP: A lot of

problems can be extremely hard to solve, even when the

solutions are obvious once you see them. However, no proof

exists for this question.

Definition 3.1: A problem π is said NP-Hard if a

polynomial-time algorithm for π would imply a polynomial-

time algorithm for every problem in NP (i.e. P = NP).

NP-Hard problems are at least as hard as any problem in NP.

Although this has never been proved, it is widely suspected

that there exists no polynomial-time algorithms for NP-Hard

problems.

The Partition Problem is an example of NP-Hard problems

stated as follows:

Definition 3.2: Partition Problem, called shortly PP:

Given a set S of n positive integers, does there exist any

partition {A,B} (called special partition) such that the state-

ment in Equation 5 is true?

∑
a∈A

a = ∑
b∈B

b (5)

B. The proof formulation

In order to prove that RNLP is NP-hard, we introduce the

following problem.

Definition 3.3: Unique Partition Problem, called shortly

UPP: Given a set S of n positive integers having at least

one special partition {A,B}, has it a unique special partition?

The proof of the localization solvability is based on two

reductions:

1) Firstly, we prove that UPP is NP-hard. The proof is

based on a polynomial transformation acting on the

well known NP-hard problem, the Partition Problem

(PP).

2) Secondly, we construct a reduction of RNLP to the

introduced UPP and deduce the NP-hardness of RNLP.

In the sequel, we demonstrate the theorem (3.4), followed

consequently by the proof of theorem 2.1.

Theorem 3.4: UPP is NP-Hard.

C. Proof of Theorem 3.4

From Definition 3.1, we can easily deduce that if a

polynomial-time algorithm α imply a polynomial-time al-

gorithm for a known NP-hard problem, then α is NP-hard

too. In this way, the proof consists by showing the following

statement:

UPP ∈ P =⇒ PP ∈ P

Given an instance Spp of PP, we can transform it into an

instance Supp of UPP having at least one special partition by

applying the following method according to the three cases:

1) ∑
s∈Spp

s is odd then consider Supp = Spp ∪{ ∑
s∈Spp

s}

2)
1

2
∑

s∈Spp

s ∈ Spp then consider Supp = Spp

3) otherwise consider

Supp = Spp ∪{
1

2
∑

s∈Spp

s,2 ∑
s∈Spp

s,
5

2
∑

s∈Spp

s}

In the three cases, note that Supp is an instance

of UPP because Supp is a set of positive integers

( 1
2 ∑s∈Spp

s,2∑s∈Spp
s, 5

2 ∑s∈Spp
s are integers because

∑s∈Spp
s is even) and have at least one special

partition {A,B} (case1: A = Spp,B = {∑s∈Spp
s},

case2 A = Spp − { 1
2 ∑s∈Spp

s},B = { 1
2 ∑s∈Spp

s}, case3

A = Spp ∪{2∑s∈Spp
s},B = { 1

2 ∑s∈Spp
s, 5

2 ∑s∈Spp
s}).

Lemma 3.5: In case1, Supp has a unique special partition

iff Spp has not a special partition.

Proof: Clearly, Supp has a unique special partition

{A,B} with A = Spp and B = {∑s∈Spp
s}. Further Spp has

not a special partition because ∑s∈Spp
s is odd.

Lemma 3.6: In case2, Supp has a unique special partition

iff Spp has a special partition.

Proof: Supp and Spp have the same special partition

{A,B} with A = Spp−{ 1
2 ∑s∈Spp

s},B = { 1
2 ∑s∈Spp

s}. Further

this partition is unique. Indeed assume by contradiction

there exists another special partition {C,D}. Without loss

of generality, suppose 1
2 ∑s∈Spp

s ∈ C. Since C 6= B, there

are at least two elements in C. Hence ∑d∈D d < 1
2 ∑s∈Spp

.
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Consequently, ∑c∈C c 6= ∑d∈D d and {C,D} is not a special

partition.

Lemma 3.7: In case3, Supp has a unique special partition

iff Spp has not a special partition.

Proof:

• Supp has a unique special partition =⇒ Spp has not a

special partition.

By contradiction, assume Spp has a special partition

{A,B}. By definition Supp has a special partition {C,D}
with C = Spp∪{2∑s∈Spp

s},D = { 1
2 ∑s∈Spp

s, 5
2 ∑s∈Spp

s}.

Further {E,F} with E = { 5
2 ∑s∈Spp

s} ∪ A and F =

{ 1
2 ∑s∈Spp

s,2∑s∈Spp
s}∪B is a special partition differ-

ent to {A,B}. Hence Supp has not an unique special

partition.

• Spp has not a special partition =⇒ Supp has a unique

special partition.

Supp has a least one special partition {A,B} with A =
Spp ∪ {2∑s∈Spp

s},B = { 1
2 ∑s∈Spp

s, 5
2 ∑s∈Spp

s}. Assume

by contradiction there exists another special partition

{C,D} different to {A,B}. Without loss of generality,

suppose that 5
2 ∑s∈Spp

s ∈C.

– 2 ∑
s∈Spp

s /∈C. Indeed, if 2∑s∈Spp
s∈C, then ∑c∈C c >

∑d∈D d.

–
1

2
∑

s∈Spp

s /∈C. Indeed, if 1
2 ∑s∈Spp

s ∈C, then:

1) either, C = {
1

2
∑

s∈Spp

s,
5

2
∑

s∈Spp

s} =⇒ C = B, a

contradiction;

2) or, C = {
1

2
∑

s∈Spp

s,
5

2
∑

s∈Spp

s}∪X with X 6= /0. In

this case, ∑c∈C c > ∑d∈D d.

– C 6= {
5

2
∑

s∈Spp

s}, otherwise ∑c∈C c < ∑d∈D d.

– C 6= {
5

2
∑

s∈Spp

s}∪Spp, otherwise ∑c∈C c > ∑d∈D d.

– C 6= {
5

2
∑

s∈Spp

s}∪X , with /0 6= X ⊂ Spp. Indeed as-

sume by contradiction that C = { 5
2 ∑s∈Spp

s} ∪ X

with /0 6= X ⊂ Spp. Let Y = Spp−X . Then, we have:

D = { 1
2 ∑s∈Spp

s,2∑s∈Spp
s}∪Y . So, ∑x∈X x = ∑y∈Y y

with X ∩Y = /0 and X ∪Y = Spp. Therefore, {X ,Y}
is a special partition of Spp. A contradiction.

Finally we cannot construct any other special partition

{C,D}.

Clearly in the three cases, the transformations are in poly-

nomial time. If there exists a polynomial time algorithm for

UPP, called AlgoUPP, we have immediately a polynomial

time algorithm from Lemmas 3.5, 3.6 and 3.7 for PP (refer

to Algorithm 1).

This shows the correctness of Theorem 3.4—i.e., UPP is

NP-Hard.

D. Proof of Theorem 2.1

Suppose that we have a polynomial-time algorithm that

takes in input the measurement set Z and return yes/no

localizable. We will show that such an algorithm can be used

to solve UPP in polynomial time.

To simplify the discussion, assume first that W = SE(1).
In other words, the robots are located on the same line.

Without loss of generality, assume that the reference

robot is r1 and the y−coordinates y1i = 0 for each

robot ri. So the robot formation is characterized

by the variables (x1i,θ1i) for each ri. Obviously

(x11,θ11) = (0,2π). Given an instance S = {s1,s2,s3, · · · ,sn}
for UPP, consider RNLP in SE(1) with n robots where

Z = {(ρ1,2,ϕ1,2); . . . ;(ρi,i+1,ϕi,i+1); . . . ;(ρn−1,n,ϕn−1,n)} ∪
{(ρn,1,ϕn,1)} and (ρi,i+1,ϕi,i+1) = (si,2π) with 1≤ i≤ n−1,

(ρn,1,ϕn,1) = (sn,2π).

So the distance between the first and the second robot

is equal to the first integer in S, the distance between the

second and the third is equal to the second integer in S,

and so on and so forth. Finally, the distance between the

last robot and the first robot is equal to the last integer

in S. Locally, the bearing of ri+1 in relation to ri is 2π .

Remark that if we can place the robots by folding the

linear chain in a way that the distances between all adjacent

robots are satisfied, the robots orientations can be deduced

immediately without ambiguities.

Lemma 3.8: Z is well an instance of RNLP

Proof: S has at least one special partition (A,B).
Thus we have ∑a∈A a = ∑b∈B b. Hence ∑a∈A a−∑b∈B b = 0.

Consequently we can construct a linear chain in a way the

distance between all adjacent robots are satisfied by applying

this method: The distances corresponding to A point to the

right and the distances corresponding to B point to the left.

Once the robots placed, we can deduce the orientations.

Hence there exists coordinate satisfying the constraint Z. Z

is an instance of RNLP.

From the Proof III-D we can easily deduce the following

Lemma:

Lemma 3.9: S has a unique special partition iff the coor-

dinates satisfying Z are unique in SE(1).

Seeing transforming S to Z is in polynomial time, if there

exists a polynomial-time algorithm for RNLP then, from

Lemma 3.9, we have a polynomial algorithm for UPP. This

concludes RNLP is NP-Hard in SE(1). In SE(2), RNLP is

NP-hard too. We come down to the previous case SE(1)
by adding a virtual robot r0 in the formation. Then we

express the fact that the robots are aligned by adding in the

measurement set, Z, the observations (null,2π) = (ρ0i,ϕ0i)
with 1≤ i≤ n. Finally, to ensure that the added robot r0 wont

influence the yes/no decision of localization of the n−robot

formation, we make the r0 robot localizable with regard to

the reference robot r1 by adding the following observations:

(∑s∈S s,2π) = (ρ01,ϕ01) and (∑s∈S s,π) = (ρ10,ϕ10). Note

that the distance between the virtual robot and the reference

one is chosen relatively large to not affect the permutations

(if there exists) of the robots placement in the chain forma-

tion.
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Algorithm 1 Function AlgoPP(Spp) solving the Partition Problem

function AlgoPP(Spp): boolean
if ∑s∈Spp

s is odd

then return NOT(AlgoUPP(Spp ∪{∑s∈Spp
s}));

else if 1
2 ∑s∈Spp

s ∈ Spp

then return AlgoUPP(Spp);

else return NOT(AlgoUPP(Spp ∪{ 1
2 ∑s∈Spp

s,2∑s∈Spp
s, 5

2 ∑s∈Spp
s}));

IV. RELATED WORKS

The localization problem in sensor networks is often con-

sidered using graph rigidity [15], [16] and graph embeddabil-

ity [17], [18]. The problem of sensor network localization

with distance information is to determine the locations of all

the nodes, given the connected graph of the network and the

known positions of some nodes (the beacons).

An interesting approach in [16] formulates the problem

of solvability in terms of injective mappings between the

configuration space and the distance information space. The

authors [16] addressed the problem of uniquely localizable

networks using graph theory rigidity. Even though this theory

provides many advances in sensor network localization,

unfortunately the results apply in networks connected using

homogeneous information only, namely the distance between

network nodes in an undirected connected graph.

The computational complexity of graph embeddability has

been investigated in case of general distance information

graphs by Saxe [17] and unit disk graphs (with limited

distance observability) by Breu and Kirkpatrick [18]. Saxe

[17] has shown that testing the realizability of weighted

graphs is NP-hard. Aspnes et al. [13] argued that realizing

a graph is still hard, even if it is known that the graph

is globally rigid and that it has a realization. They [12],

[13] construct grounded graphs to model sensor network and

apply graph rigidity theory to test the conditions for unique

localizability and to construct uniquely localizable networks

in which the positions of some nodes are known.

There is no comparable results for networks with multi-

sensory information and no work at our knowledge dealing

with distance and bearing (SE(2)) information in graphs,

though there are partial results with distance information in

3-space. There is no trivial way to derive SE(2) network

localization from results in point formation R
n,n = 2;3, and

many ambiguity cases invalidated our attempts of adapta-

tions.

The NP-hardness proved for distance network localization

does not trivially imply that the problem of robot localization

is NP-hard, because bearing observations could add new

constraints on the system that make it more tractable. An

example is determining the position of a robot giving a

distance information will result in an infinity of positions on

a circle of radius the measured distance. However, adding a

bearing measurement, will reduce the set of solutions to a

point, the actual position of the observed robot.

V. CONCLUSION

The general localization schemes of robot networks are

mainly heuristic-based and a full theoretical foundation of

network localization is lacking.

We have addressed the question of the non ambiguous

group localization, using relative observations acquired by

the robots, and proved that deterministically resolving the

Robot Network Localization Problem (RNLP) is NP-hard.

Thus, one could not provide a localization algorithm that

uniquely estimate, in a polynomial time, the robot group

pose using relative observations (distance and bearing infor-

mation) only. To prove that RNLP is NP-hard, we construct

polynomial time reductions based on a well known NP-hard

problem, namely the set partition problem.

Note that the proposed results never consider mobility as

an ability to determine the group poses. Some results in the

current literature seem to be ignored ,e.g., [19]. However, the

result presented in this paper is applicable to static sensor

as well as mobile robot networks. Indeed, consider first

that the algorithm is based on the decision to move made

by the robot with respect to the set of measurements. In

that case, a robot could decide to make a move to remove

the localization ambiguity, but this means that the robot is

able to determine whether the configuration is localisable,

which is impossible. In another approach, the robots could

always make moves to evaluate all the poses. But, since

we consider deterministic systems only, starting from an

ambiguous configuration, the collective movements could

lead the robots in another ambiguous configuration.

This absence of a sufficient uniqueness condition permits

the computation of erroneous positions that may in turn lead

applications to produce flawed results. The work presented

here is a first step towards some theoretical foundations to the

robot network localization. In future works, we would like

to characterize classes of measurement sets for which RLNP

becomes polynomial. Such sets exist, e.g., each robots sees

the pose of all the others robots. Does there exist such classes

with relaxed measurement requirements?
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