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Abstract— The paper introduces a new vision-based range
estimator based upon the Immersion and Invariance (I&I)
methodology, for leader-follower formation control. The pro-
posed reduced-order nonlinear observer achieves global
exponential convergence of the observation error to zero and
it is extremely simple to implement and to tune. A Lyapunov
analysis is provided to show the stability of the closed-loop
system arising from the combination of the range estimator
and an input-state feedback controller. Simulation experi-
ments illustrate the theory and show the effectiveness of the
proposed design.

I. INTRODUCTION

In the last few years we witnessed a growing interest

in robotics, in motion coordination and cooperative con-

trol of multi-agent systems. In this respect, several new

problems, such as, e.g., “consensus” [1], “rendezvous” [2],

“coverage” [3], “formation control”, etc., have been formu-

lated and solved using tools coming from computer science

and control theory. Among these, due to its wide range of

applicability, the formation control problem received a spe-

cial attention and stimulated a great deal of research [4]–[7].

By formation control we simply mean the problem of con-

trolling the relative position and orientation of the robots in

a group, while allowing the group to move as a whole.

In this paper we are interested to a leader-follower

formation control approach, in which a leader robot moves

along a predefined trajectory while the other robots, the

followers, are to maintain a desired distance and orientation

to it [6]. Leader-follower architectures are known to have

poor disturbance rejection properties. In addition, the over-

reliance on a single agent for achieving the goal may be

undesirable, especially in adverse conditions. Nevertheless

the leader-follower approach is particularly appreciated for

its simplicity and scalability.

Recently, a special interest has been devoted to sensing

devices for autonomous navigation of multi-robot systems.

An inexpensive and challenging way to address the navi-

gation problem is to use exclusively on-board passive vision

sensors, which provide only the projection (or view-angle) to

the other robots, but not the distance. In this respect, the for-

mation control problem can be solved only if a localization

problem has been addressed, i.e. only if a suitable observer

providing an estimate of the relative distance and orientation

of the robots w.r.t. a common reference frame, has been

designed.
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A new observability condition for general nonlinear

systems, based on the Extended Output Jacobian matrix,

has been proposed in [8] and applied to the study of

leader-follower formations localizability. The extended and

unscented Kalman filters have been then used in [8] and [9],

respectively, to estimate the robots relative distance (hereafter

referred to as range estimation). Although widely used in the

literature, these observers are known to have some serious

drawbacks: they are difficult to tune and implement, the

estimation error is not guaranteed to converge asymptotically

to zero and an a priori knowledge about noise is usually

required.

A new methodology, called Immersion and Invariance

(hereafter, I&I), has been recently proposed to design

reduced-order observers for general nonlinear systems [10].

Actually, the problem of constructing a reduced-order

observer is formulated as a problem of rendering attractive

an appropriately selected invariant manifold in the extended

space of the plant and the observer. The effectiveness of

the new observer design technique has been proved by

Astolfi and coworkers through several academic and practical

examples [10]–[12]. However, only a couple of other papers

(see [13], [14]) exploited the I&I methodology to design

nonlinear observers and no applications in formation control

are reported in the robotics literature up to now.

The original contribution of this paper is twofold: first,

we present an observer based upon the I&I technique

for leader-follower range estimation using on-board camera

information (bearing-only). The reduced-order observer pro-

vides a globally exponentially convergent estimate of the

range. It can be easily tuned to achieve the desired con-

vergence rate by acting on a single gain parameter and

it is extremely simple to implement as well. As a second

contribution, we present a input-state feedback control law

and an accurate Lyapunov analysis to prove the stability of

the closed-loop system arising from the combination of the

range estimator and the formation controller.

The rest of the paper is organized as follows. Sect. II is

devoted to the problem formulation. In Sect. III the basic

theory related to the I&I observer design methodology is

recalled. In Sect. IV the leader-to-follower range estimator

is presented. In Sect. V an input-to-state feedback con-

trol scheme is designed and the stability of the closed-

loop system is analytically proved via Lyapunov arguments.

In Sect. VI simulation experiments confirm the effectiveness

of the proposed designs. Finally, in Sect. VII the major con-

tributions of the paper are summarized and future research

lines are highlighted.
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II. PROBLEM FORMULATION

The setup considered in the paper consists of two unicycle

robots (see Fig. 1). One robot is the leader, whose control

input is given by its translational and angular velocities,

uL = [vL ωL]T . The other robot is the follower, controlled

by uF = [vF ωF ]T .

Each robot is equipped with an omnidirectional camera,

which constitutes its only sensing device. Using well-known

color detection and tracking algorithms [15], the leader is

able to measure from the image, both the angle ζ (w.r.t. the

camera of the follower) and the angle ψ (w.r.t. the colored

marker P placed at a distance d along the follower trans-

lational axis) (see Fig. 1). Analogously, the follower can

compute the angle ν using its panoramic sensor.

Note that the measurement of both the angles ζ and ψ by the

leader, could not be a trivial task in practice, especially when

the robots are distant. This problem has been addressed and

solved in [9], where only the angle ζ needs to be computed.

As first shown in [6], the leader-follower kinematics can

be easily expressed using polar coordinates [ρ ψ ϕ]T , where

ρ is the distance between the leader and the marker P on

the follower and ϕ is the relative orientation between the two

robots, i.e the bearing. It is easy to verify that

ϕ = −ζ + ν + π. (1)

Proposition 1 ([8]): Consider the setup in Fig. 1.

The leader-follower kinematics can be expressed by the

driftless system,
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 =
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ρ
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ρ
sin ψ

ρ
−1
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vL
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(2)

where γ � ϕ + ψ.

In order to simplify the subsequent derivations and without

losing in generality, we will only consider formations with a

single follower (nevertheless, the results of this paper can be

immediately extended to the general case of n followers [8]).

The information flow between the robots is now briefly

described. The follower transmits the angle ν to the leader

and this robot computes the bearing ϕ using equation (1)

(to simplify the discussion, we will henceforth refer only to

the bearing ϕ implicitly assuming the transmission of ν).

The leader can then measure a two dimensional vector,

y � [y1 y2]
T = [ψ ϕ]T . (3)

The estimation of the range is carried out by the leader which

then uses it, together with (3), to compute the control input

uF . The leader subsequently transmits the vector [vF ωF ]T

to the follower.

In Sect. IV we will design a nonlinear observer based upon

the I&I methodology for the estimation of the range ρ given

the angular measurements [ψ ϕ]T , the control inputs of the

robots and their derivatives.
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Fig. 1. Leader-follower setup

III. OBSERVER DESIGN VIA I&I

For the reader’s convenience we provide here a brief

overview of the basic theory related to the observer design

via I&I [10], [12]. Consider generic nonlinear, time-varying

systems described by

ẏ = f1(y, η, t) (4)

η̇ = f2(y, η, t) (5)

where y ∈ IRm is the measurable output and η ∈ IRn is the

unmeasured state. The vector fields f1(·), f2(·) are assumed

to be forward complete, i.e., trajectories starting at time t0

are defined for all times t ≥ t0.

Definition 1: The dynamical system

ξ̇ = α(y, ξ, t) (6)

with ξ ∈ IRp, p ≥ n, is called an observer for the system

(4)-(5), if there exist mappings,

β(y, ξ, t) : IRm×IRp×IR+ → IRp and φy,t(η) : IRn → IRp

with φy,t(η) parameterized by y and t and left-invertible1,

such that the manifold

Mt ={(y, η, ξ)∈IRm×IRn×IRp : β(y, ξ, t)=φy,t(η)}

has the following properties:

1) All the trajectories of the extended system (4)-(6) that

start on the manifold Mt at time t remain on it for all

times τ > t, i.e., Mt is positively invariant.

2) All the trajectories of (4)-(6) that start in a neighbor-

hood of Mt asymptotically converge to the manifold,

i.e., Mt is attractive.

The above definition states that an asymptotic estimate η̂
of the state η is given by φL

y,t(β(y, ξ, t)), where φL
y,t denotes

a left-inverse of φy,t. The following proposition provides a

1A mapping φy,t(η) : IRn → IRp (parameterized by y and t) is
left-invertible if there exists a mapping φL

y,t(η) : IRp → IRn such that

φL
y,t(φy,t(η)) = η, for all η ∈ IRn (and for all y and t).
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general tool for constructing a nonlinear observer of the form

given in Definition 1.

Proposition 2 (I&I observer dynamics): Consider the

system (4)-(6) and suppose that there exist two mappings

β(·) : IRm×IRp×IR+ → IRp and φy,t(·) : IRn → IRp with

left-inverse φL
y,t(·) : IRp → IRn, such that the following

conditions hold:

(A1) For all y, ξ and t, we have det
(

∂β
∂ξ

)

�= 0.

(A2) The system,

ż = −
∂β

∂y
(f1(y, η̂, t) − f1(y, η, t)) +

∂φy,t

∂y

∣
∣
∣
∣
η=η̂

f1(y, η̂, t)

−
∂φy,t

∂y
f1(y, η, t) +

∂φy,t

∂η

∣
∣
∣
∣
η=η̂

f2(y, η̂, t) −
∂φy,t

∂η
f2(y, η, t)

+
∂φy,t

∂t

∣
∣
∣
∣
η=η̂

−
∂φy,t

∂t
(7)

with η̂ = φL
y,t(φy,t(η) + z), has an asymptotically

stable equilibrium at z = 0, uniformly in η, y and t.

Under the assumptions (A1) and (A2), system (6) is a

reduced-order observer for (4)-(5) with,

α(y, ξ, t) = −

(
∂β

∂ξ

)−1(
∂β

∂y
f1(y, η̂, t) +

∂β

∂t

−
∂φy,t

∂y

∣
∣
∣
∣
η=η̂

f1(y, η̂, t) −
∂φy,t

∂η

∣
∣
∣
∣
η=η̂

f2(y, η̂, t) −
∂φy,t

∂t

∣
∣
∣
∣
η=η̂

)

where η̂ = φL
y,t(β(y, ξ, t)). The observer error dynamics are

given by (7).

Remark 1: Prop. 2 provides an implicit description of the

observer dynamics (6) in terms of the mappings β(·), φy,t(·),
φL

y,t(·) which must then be selected to satisfy (A2). Hence,

the problem of constructing a reduced-order observer for

the system (4)-(5) reduces to the problem of rendering the

system (7) asymptotically stable by assigning the functions

β(·), φy,t(·) and φL
y,t(·). This peculiar stabilization problem

can be extremely hard to solve, since, in general, it relies

on the solution of a set of partial differential equations (or

inequalities). However, as we will see in the next section,

these equations are easily solvable in the problem under

investigation.

IV. RANGE ESTIMATOR

In order to apply the methodology described in the

previous section, to design a nonlinear observer of the

range ρ, system (2) should be recast in the form (4)-(5).

In this respect, it is convenient to introduce the new variable

η � 1/ρ, that is well-defined assuming ρ �= 0. Using this

transformation, system (2) becomes,






η̇

ψ̇

ϕ̇




=






−η 2 cos γ −η 2d sin γ η 2 cosψ 0

−η sin γ η d cos γ η sinψ −1

0 −1 0 1












vF

ωF

vL

ωL






. (8)

Recalling that y � [ψ β]T , system (8) can be rewritten as,

ẏ =

[

−ωL

ωL − ωF

]

︸ ︷︷ ︸

h(t)

+

[

−vF sin γ + ωF d cos γ + vL sin y1

0

]

︸ ︷︷ ︸

g(y, t)

η

η̇ = − (vF cos γ + ωF d sinγ − vL cos y1)
︸ ︷︷ ︸

ℓ(y, t)

η2

(9)

where γ � y1 + y2.

The next proposition introduces a globally uniformly expo-

nentially convergent observer of η.

Proposition 3 (Range estimator): Suppose that the con-

trol inputs of the robots and the output y are bounded

functions of time, i.e., vL, ωL, vF , ωF , y ∈ L∞ and that

vL, vF , ωF are first order differentiable. Assume that the

following condition is satisfied,

g1(y, t) �= 0, ∀ t > 0, (10)

where g1(y, t) is the first component of the vector g(y, t)
defined in (9). Then:

ξ̇ = M [ g1(y, t) , −vF sin γ + ωF d cos γ ] (h(t) + g(y, t) η̂)

+ M(v̇F cos γ + ω̇F d sin γ − v̇L cos y1)

−
sign(g1(y, t))

g1(y, t) 2

(
[ℓ(y, t) , vF cos γ + ωF d sin γ]

× (h(t) + g(y, t) η̂) η̂ + (v̇F sinγ−ω̇F d cos γ−v̇L sin y1) η̂
)

+
sign(g1(y, t))

g1(y, t)
ℓ(y, t) η̂ 2

(11)

where M is a positive gain to be suitably tuned and

η̂ =
(
Mℓ(y, t) − ξ

)∣
∣g1(y, t)

∣
∣, (12)

is a globally uniformly exponentially convergent observer for

system (9).

Proof: See the Appendix. �

Some remarks are in order at this point:

• Equation (11) is a reduced-order observer for sys-

tem (9): in fact it has lower dimension than the system.

• The observer can be easily tuned to achieve the

desired convergence rate by acting on the single gain

parameter M .

• There is an exact correspondence between (10), which

is necessary to avoid singularities in (11), and the ob-

servability condition derived in [8] using the Extended

Output Jacobian matrix. As pointed out in [8], this

condition is extremely attractive since it allows one

to define the set of all the trajectories of the leader

preserving the observability of the system.

V. FORMATION CONTROL AND CLOSED-LOOP STABILITY

Note that if the state s = [η ψ ϕ]T is perfectly known,

then system (8) can be exactly input-state feedback linearized
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and the asymptotic convergence of s towards any desired

state sdes is guaranteed. The stability analysis becomes more

involved when an observer is present inside the control loop.

In Prop. 4, we design a formation control law and we study

the effect of the I&I observer on the closed-loop stability

through an accurate Lyapunov analysis.

For the next derivations, it is convenient to rewrite

system (8) in the form:

ṡr = F (s)uL + H(s)uF (13)

ϕ̇ = ωL − ωF (14)

where sr � [η ψ]T is the reduced state space vector and

H(s)=

[

−η 2 cos γ −η 2d sinγ

−η sinγ η d cos γ

]

, F (s)=

[
η 2 cosψ 0

η sin ψ −1

]

.

Proposition 4 (Control law and closed-loop stability):

Consider the system (13) -(14) with vL > 0 and

ωL ≤ ωLmax , ωLmax ∈ IR+. For a given state estimate

ŝ = [η̂ ψ ϕ]T (with η̂ > 0) provided by the I&I observer

in Prop. 3 with gain M sufficiently large, the feedback

control law

uF = H−1(ŝ) (p − F (ŝ)uL) (15)

with p � −K(ŝr − sdes
r ), K = diag{k1, k2}, k1, k2 > 0,

ŝr = [η̂ ψ]T , guarantees the asymptotic convergence of

the control error sr − sdes
r to zero and the locally uniformly

ultimate boundedness (UUB) of the internal dynamics ϕ.

Proof: Substituting (15) in (13) we obtain the dynamics

of the controlled system :

ṡr = F (s)uL + H(s)H−1(ŝ)(p (ŝr) − F (ŝ)uL) .

Since sdes
r is constant, the dynamics of the control error

er = sr − sdes
r is simply given by,

ėr =

[
−k1(η/η̂)2 0

0 −k2(η/η̂)

]

︸ ︷︷ ︸

A(t)

er +

[
−k1(η̂ − η)(η/η̂)2

ωL(η/η̂ − 1)

]

︸ ︷︷ ︸

b(t)

(16)

where ŝr = sr + [η̂ − η, 0]T . To prove that the control

error asymptotically converges to zero, we have then to

study the stability of a linear time-varying system with

perturbation b(t).
First of all, let study the stability of the equilibrium point

er = 0 of the non-perturbed system. Given the candidate

Lyapunov function V = eT
r er, we have :

V̇ = eT
r ėr + ėT

r er = 2 eT
r A(t) er ≤ 2 λM‖er‖

2 = 2 λM V

where λM = max{−k1(η/η̂)2,−k2(η/η̂)}. Since η̂ > 0,

then λM < 0, which implies that er = 0 is a globally

exponentially stable equilibrium point for the non-perturbed

system.

To study the stability of the perturbed system, let consider

again the Lyapunov function V = eT
r er for which it results:

V̇ = 2 eT
r A(t) er + 2 eT

r b(t)

≤ 2 λM‖er‖
2 + 2 ‖er‖ ‖b‖

≤ 2 (1 − θ)λM‖er‖
2 + 2 θλM‖er‖

2+ 2 ‖er‖ δ (17)

where 0 < θ < 1 and ‖b‖ ≤ δ. From the last inequality

in (17) we have

V̇ ≤ 2 (1 − θ)λM ‖er‖
2 < 0

if δ ≤ − θ λM ‖er‖ for all er . (18)

Since by hypothesis ωL ≤ ωLmax, we can choose

δ =
∣
∣η
η̂
− 1

∣
∣

√

ωL
2
max +

k2

1
η4

η̂2 and rewrite the second

inequality in (18) as:

‖er‖ ≥ −
1

θλM

∣
∣
∣
∣

η

η̂
− 1

∣
∣
∣
∣

√

ωL
2
max +

k2
1 η4

η̂2
. (19)

We now study under which conditions (19) is verified, that is,

er = 0 is an asymptotically stable equilibrium point for

the perturbed system. If η̂ rapidly converges to η, we can

note that inequality (19) reduces to ‖er‖ ≥ 0, that is

always true. This implies that er = 0 is an asymptotically

stable equilibrium point for system (16). At this point it is

interesting to note that, due to the exponential convergence

of the I&I observer estimation error to zero, there will exist

two positive constants D and C such that

η̂ ≥ De−Ct + η

or equivalently,
∣
∣
∣
∣
1 −

η̂

η

∣
∣
∣
∣
≥

D

η
e−Ct. (20)

Using inequality (20) in (19) and observing that parameter

C is proportional to the observer gain M , we then note that

the asymptotic convergence of the control error to zero can

always be guaranteed by choosing a sufficiently large M .

It now remains to show that the internal dynamics ϕ is

locally UUB. Taking ωF from (15), equation (14) can be

rewritten as,

ϕ̇ = −
vL

d
sin ϕ −

sin γ

η̂2d
k1 er(1)

+
cos γ

η̂ d
k2 er(2) − ωL

( cos γ

η̂ d
− 1

)

. (21)

It is convenient to write (21) synthetically in the form,

ϕ̇ = −
vL

d
sin ϕ + B(t, ϕ) (22)

where B(t, ϕ) is a nonvanishing perturbation acting on the

nominal system ϕ̇ = − vL

d
sinϕ. The nominal system has

a locally uniformly asymptotically stable equilibrium point

in ϕ = 0 and its Lyapunov function V = 1
2 ϕ2 satisfies the

inequalities [16],

α1(|ϕ|) ≤ V ≤ α2(|ϕ|) , −
∂V

∂ ϕ

vL

d
sin ϕ ≤ −α3(|ϕ|)

∣
∣
∣
∣

∂V

∂ ϕ

∣
∣
∣
∣
≤ α4(|ϕ|)

in [0, ∞) × D, where D = {ϕ ∈ IR : |ϕ| < ǫ}, being ǫ a

sufficiently small positive constant. αi(·), i = 1, . . . , 4, are
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class K functions2 defined as follows: α1 = 1
4 ϕ2, α2 = ϕ2,

α3 = vL

d
ϕ2 and α4 = 2 |ϕ|. Since er is asymptotically

convergent to zero and, by hypothesis, ωL is bounded, there

exist suitable velocities for the leader such that B(t, ϕ)
satisfies the uniform bound,

|B(t, ϕ) | ≤ δ <
θ α3(α

−1
2 (α1(ǫ)))

α4(ǫ)
�

vL θ ǫ

8 d

for all t ≥ 0, all ϕ ∈ D and 0 < θ < 1. Then, for

all |ϕ(0)| < α−1
2 (α1(ǫ)) = ǫ/2, the solution ϕ(t) of the

perturbed system (22), satisfies

|ϕ(t)| ≤ χ(|ϕ(0)|, t), for all 0 ≤ t < t1

and

|ϕ(t)| ≤ σ(δ), ∀ t ≥ t1

for some class KL function χ(·, ·) and some finite time t1,

where σ(δ) is a class K function of δ defined by

σ(δ) = α−1
1

(
α2

(
α−1

3

(
δ α4(ǫ)

θ

)
))

� 2

√

2 d δ ǫ

θ vL

.

This proves that ϕ(t) is locally UUB.

VI. SIMULATION RESULTS

Simulation experiments have been conducted to illus-

trate the theory and show the effectiveness of the pro-

posed designs. The leader is supposed to move along

a circular path with velocities vL = 1 m
/

s and

ωL = π/10 rad
/

s. The initial condition of system (8) is

[η(0) ψ(0) ϕ(0)]T = [0.7186 1.5013 0.2618]T , the desired

state sdes
r = [1 2π/3]T and d = 0.1 m. The gains of the

observer and the controller are respectively M = 13 and

k1 = k2 = 0.1. These values, as requested in Prop. 4,

guarantee that the convergence rate of the observer is faster

than that of the controller. We experimentally noticed that

good closed-loop performances are assured by M from 1 to 2

orders of magnitude greater than k1 and k2 and that the

size of M is not affected by the sampling time chosen to

numerically integrate equation (11).

Fig. 2(a) shows the trajectory of the leader and the follower

(in order to have a time reference, the robots are drawn

every two seconds). In Fig. 2(b) the time history of the

observation error ρ− ρ̂ is provided. The error exponentially

converges to zero as expected. In Fig. 2(c) the control errors

ρ−ρdes and ψ−ψdes asymptotically converge to zero (recall

that ρ = 1/η). Finally, Fig. 2(d) depicts the time history

of the bearing angle ϕ. According to Prop. 4, the internal

dynamics ϕ remains bounded while the robots move to reach

the desired formation.

2For the definition of class K and class KL functions the reader is referred
to [16], pag. 144.

VII. CONCLUSIONS AND FUTURE WORK

The paper introduces an original vision-based leader-

to-follower range estimator based upon the Immersion

and Invariance methodology. The proposed reduced-order

nonlinear observer achieves global exponential convergence

of the observation error to zero and it is extremely simple to

implement and to tune. An input-state feedback control law

is designed and the closed-loop stability is proved through

Lyapunov arguments. Simulation experiments illustrate the

theory and show the effectiveness of the proposed designs.

Future research lines include the experimental validation

of the proposed scheme and the extension of our results to ve-

hicles with more involved kinematics (e.g., car-like robots).

APPENDIX

PROOF OF PROPOSITION 3

With reference to the general design procedure presented

in Sect. III, let suppose for simplicity, that φy,t(η) =
ε(y, t) η, where ε(·) �= 0 is a function to be determined [12].

Consider an observer of the form given in Prop. 2,

ξ̇ = −

(
∂β

∂ξ

)−1(
∂β

∂y
(h(t) + g(y, t) η̂) +

∂β

∂t
−

∂ε

∂y
(h(t) + g(y, t) η̂) η̂ −

∂ε

∂t
η̂ + ε(y, t) ℓ(y, t) η̂2

)

,

η̂ = ε(y, t)−1 β(y, ξ, t).
(23)

From (7) the dynamics of the error z = β(y, ξ, t) −
ε(y, t) η = ε(y, t)(η̂ − η) is given by,

ż = −

(
∂β

∂y
g(y, t) −

∂ε

∂y
h(t) −

∂ε

∂t

)

ε(y, t)−1z

+

(
∂ε

∂y
g(y, t) − ε(y, t) ℓ(y, t)

)

(η̂2 − η2).

(24)

The observer design problem is now reduced to finding func-

tions β(·) and ε(·) �= 0 that satisfy assumptions (A1)-(A2)

in Prop. 2. In view of (24) this can be achieved by solving

the partial differential equations

∂β

∂y
g(y, t) −

∂ε

∂y
h(t) −

∂ε

∂t
= κ(y, t) ε(y, t) (25)

∂ε

∂y
g(y, t) − ε(y, t) ℓ(y, t) = 0 (26)

for some κ(·) > 0. From (26) we obtain the solution

ε(y, t) = −
(
|g1(y, t)|

)−1
which by (10) is well-defined and

nonzero for all y and t. Let,

κ(y, t) = M |g1(y, t)| 3 +

(
∂ε

∂y
h(t) +

∂ε

∂t

)

|g1(y, t)|.

By boundedness of the control inputs and y(t), it is always

possible to find M > 0 (sufficiently large) such that κ(·) > 0.

Equation (25) is now reduced to

∂β

∂y
g(y, t) = −Mg1(y, t)2
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Fig. 2. (a) Trajectory of the leader and the follower; (b) Observation error ρ − ρ̂; (c) Control errors ρ − ρdes and ψ − ψ des; (d) Bearing angle ϕ.

which can be solved for β(·) yielding

β(y, ξ, t) = −Mℓ(y, t) + τ(ξ, t),

where τ(·) is a free function. Selecting τ(ξ, t) = ξ ensures

that assumption (A1) is satisfied. Substituting the above

expression into (24) yields the equation ż = −κ(y, t) z
which is globally uniformly exponentially stable, hence

assumption (A2) holds. By substituting the expressions of

ε(·) and β(·) (with τ(ξ, t) = ξ ) in (23), equations (11)-(12)

are obtained.
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