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Abstract— Oblique-viewing endoscopes (oblique scopes) are
widely used in minimally invasive surgery. The viewing direc-
tion of an oblique endoscope can be changed by rotating the
scope cylinder, which enables a larger field of view, but makes
the scope calibration process more difficult. The calibration is
a critical step for incorporating oblique scope into computer
assisted surgical procedures (robotics, navigation, augmented
reality), though few calibration methods of oblique endoscopes
has been developed. Yamaguchi et al. [1] first modelled and
calibrated the oblique scope. They directly tracked the camera
head and formulated the scope cylinder’s rotation to the camera
model as an extrinsic parameter. Their method requires five
additional parameters to be estimated. In this work, we track
the scope cylinder instead. Since the rotation of the camera
head with respect to the cylinder only causes the rotation of the
image plane, less parameter needs to be estimated. Experiments
demonstrate the ease, simplicity and accuracy of our method.

I. INTRODUCTION

One of the main goals of computer assisted orthopedic

surgery is to enable true minimally invasive surgery (MIS).

As a key MIS tool, endoscope is attracting increasing at-

tention for its potential role in computer assisted surgery,

especially in surgical navigation. By tracking the endoscope

in space using a position localizer, its function can be

significantly augmented. For example, it can be used to

create augmented reality systems, fusing the virtual and real

endoscopic images [2], to map real endoscopic images onto

anatomic surfaces derived from CT images [3], or to recover

the 3D shape from a single endoscopic image [4], [5] or

from multiple images [6], [7], [8]. Camera calibration, as an

important step in endoscope related applications, is mostly

based on Tsai’s model [9] (which has been addressed in

several work, including [1], [3], [10], [11]. However, except

[1], most of these methods deal with the hand-eye calibration

of the forward-viewing endoscope, in which the viewing

direction is aligned with the axis of the endoscope. Due to

the constraints of the small incision, the range of movement

of such a tool is restricted. In order to view sideways,

oblique scope has been designed to have a tilted viewing

direction, and a wider viewing field could be reached by

rotating the scope cylinder. Fig. 1 illustrates an oblique-

viewing endoscope. Rotation happens between the scope
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Fig. 1. An oblique endoscope consists of a scope cylinder with a lens and
point light sources at the tip (the tip has a tilt from the scope cylinder),
a camera head that captures video images, and a light source device that
supports the illumination. Scope cylinder is connected to the camera head
via a coupler. This connection is flexible such that you can rotate either the
scope cylinder or the camera head separately, or rotate them together.

cylinder and the camera head.

Yamaguchi et al. first modelled and calibrated oblique-

viewing endoscopes [1], [12]. They attached an optical

marker onto the camera head and formulated the rotation

angle of the scope cylinder as another external parameters

in Tsai’s camera model. In the first step they applied Tsai’s

camera model to the scope with zero rotation and estimate

the transformation from camera to the marker. Next when

the cylinder of the scope is rotated by θ , two more

transformations are added to compensate the rotation of the

lens system with respect to the camera head. Since these two

transformations are basically two rotations around different

axes by θ , four parameters need to be estimated. Finally in

order to estimate θ, they use a rotary encoder attached to the

camera head.

Yamaguchi et al’s camera model successfully compensates

the rotation effect but their method requires five additional

parameters and the model is complicated. In this work we

propose an alternative approach to simplify the calibration.

We attach an optical marker to the scope cylinder instead

of the camera head, with a newly designed coupler (as

Fig. 1(b) illustrates). When there is no rotation between the

camera head and the scope cylinder, we can still use Tsai’s

model to do the calibration. When the rotation happens,

the transformation from the lens system to the marker is

fixed and not affected by the rotation angle. Based on

our observation, the only change is that the image plane

will rotate around the principal point by the same angle.

Since principal point is the intrinsic parameter that has been

estimated in the first step. Thus, we only need to estimate

the rotation angle θ. In order to find the rotation angle, we

use two optical markers when the rotary encoder is absent.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1424



y1

x1

z1

O1

Optical Tracker

World Coordinates

Scope cylinderCouplerCamera head

Optical maker

y2

x2

z2

O2 Scope Coordinates

y3

x3

z3

O3

Camera Coordinates Coupler

Marker 1Marker 2

(a) (b)

sTw cTs

Rotation

Fig. 2. The geometric model of endoscope based on a tracking system. A new coupler (see Fig. 1 (b))is designed to mount an optical marker to the scope
cylinder which ensures that the transformation from scope(marker) coordinates O2 to the lens system (camera) coordinates O3 is fixed. World coordinates
O1 is defined by the optical tracker. Two optical markers are attached to the coupler and camera head separately in order to compute the rotation θ in
between.

We have two contributions in this work. We first develop a

simpler camera model for oblique-viewing endoscopes than

Yamaguchi et al.’s work. Less additional parameter needs

to be estimated. Next, we propose to use two markers to

estimate the rotation angle, instead of a rotary encoder. Since

the optical marker is easier to obtain than the rotary encoder

in surgical navigation systems based the discussion with

surgeons, our method is more practical for surgery.

II. METHOD

Orthopedic endoscopes have a single camera and one or

more point light sources equipped at the tip of the scope.

For this work, we use two oblique endoscopes as examples.

One of them is shown in Fig. 1 and another one is in Fig. 6.

A. Model for Oblique-viewing Endoscope

Yamaguchi et al’s camera model is based on Tsai’s model

[9], [10]:

λpi = A ·cTm(θ) ·mTw · Pw

cTm(θ) = TR(−θ; lh(θ))TR(θ; ls)
cTm(0)

(1)

where Pw is a 3D point in the world coordinates, pi is the

corresponding 2D image pixel. mTw is a rigid transformation

from the world coordinates to the optical marker coordinates,
cTm(θ) is a rigid transformation from the marker (camera

head) to the camera coordinates. cTm(θ) is dependent on

the rotation angle θ. By considering the marker coordi-

nates (camera head) as a reference, only the lens system

rotates while the camera head, i.e., the image plane, remains

fixed irrespective of the rotation. They describe such a

transformation due to the rotation by decomposing the one

physical rotation into two mathematical rotations. TR(θ; ls)
is a rotation of both scope cylinder and the camera head

(image plane) around the axis of cylinder ls. TR(−θ; lh(θ))
is an inverse rotation of the image plane around the z-axis of

lens system lh. Both ls and lh have two unknown parameters.

Although this model works well, it is very complicated.

As Fig. 2 shows, in our work, we attach an optical marker

on the scope cylinder instead. Our model is still an extension

of Tsai’s model, the geometric model illustrated in Fig. 2 (a)

can be written as:

λp′
i
= A ·cTm ·mTw · Pw

pi = R(θ) · (p′
i
− cc) + cc

(2)

where Pw is a 3D point in the world coordinates, p′
i

is the

corresponding 2D image pixel without rotation, pi is the im-

age pixel with rotation θ. mTw is a rigid transformation from

world coordinates to the optical marker coordinates, cTm is a

rigid transformation from the marker (scope cylinder) to the

camera coordinates and independent on θ. cc is the principal

point which is an intrinsic parameter. R(θ) represents a

rotation of the image plane around cc by θ. Thus camera

intrinsic matrix A and external matrix cTm can be calibrated

by using Zhang’s method [10] and mTw can be obtained

directly from the tracking system. In our model we only

need to estimate the rotation angle. Ymaguchi et al.’s method

needs to estimate the misalignment between the scope and

camera image plane since their model involve physical rota-

tions. However, in our model we simultaneously estimate the

intrinsic and extrinsic parameters without assuming anything

about camera coordinates. Misalignment will be included in

the estimation of intrinsic and extrinsic parameters. Thus we

do not need to estimate other parameters as Ymaguchi et al.

did.

Rotation angle can be estimated by using a rotary encoder,

as Yamaguchi et al [12] did. When it is absent, the rotation

angle can be estimated by using two optical markers: one

attached to the scope cylinder and the other one on the rod

(camera head).

A comparison between our model and Yamaguchi et al’s

model is listed in Fig. 3. Yamaguchi et al’s use the camera

head as a reference coordinates in their hand-eye calibration

system. Since surgeons rotate the scope cylinder with respect

to the camera head in order to view sideways, it is a natural

way to consider the camera head as a reference. However

it makes the cameral model very complex. To think in

an opposite way, no matter how surgeons rotate the scope

cylinder, if the reference coordinates is on the cylinder, the

lens system is fixed with respect to the cylinder but the

camera head rotates around θ. Thus the external parameters

are not affected by the rotation anymore. Since the image
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Fig. 3. A comparison between Yamaguchi et al.’s system and ours. In Yamaguchi et al.’s system, the camera head is tracked such that the transformation
from the marker to the lens system is not fixed but depends on the rotation angle θ. Let the marker coordinates as a reference, the lens system is rotated
around the scope cylinder about θ, but the image plane (that is in the camera head) remains the same. They use two additional transformation to describe
the effect of rotation, so their model becomes complicated. Moreover, they need to calibrate the axis of both the scope cylinder and the lens system by
using another optical maker attached to the scope cylinder. Based on our observation, it is possible to simplify the model if we fix the transformation
between the marker and the lens system. We design a coupler that enables the mounting of the optical marker onto the scope cylinder. Then we set the
marker coordinates as a reference, the lens system is fixed. The rotation only affects the image plane since the camera head is rotated around the cylinder
(reference). And the image plane only rotates around the principal point. Since the principal point is an intrinsic parameter, we only need to estimate the
rotation angle. As a result, we come up with a very simple model (see details in the text).

plane is in the camera head, the rotation only affects the

image plane. Our method is therefore developed based on

above observations. Yamaguchi et al.’s model needs five more

parameters but we need less (only rotation angle). They use

two optical markers and one rotary encoder. We only need

two optical markers.

B. Estimate Rotation Angle Using Two Optical Markers

Let the marker attached to the scope cylinder be Marker

1 and the marker to the rod (camera head) be Marker 2

(Fig. 2 (b)). As Fig. 4 shows, when we rotate the camera

head around the scope cylinder by θ, point Pr in Marker

2’s coordinates O2 will move along a circle with respect to

a point O on the axis of the scope cylinder, in Marker 1’s

coordinates O1. Thus we can estimate the center O of the

circle first and compute θ as:

θ = arccos
‖ ~OPA

r ‖2 + ‖ ~OPB
r ‖2 − ‖ ~PA

r PB
r ‖2

2‖ ~OPA
r ‖ · ‖ ~OPB

r ‖
(3)

The center of the circle can be represented in terms of the

transformation from the world coordinates Ow to Marker 1’s

coordinates O1 and Marker 2’s coordinates O2, and at least

3 different positions of Marker 2 (O2) (with different θ) are

necessary.

C. Estimation of the center of circle in 3D

We rotate the camera head around the cylinder to acquire

3 different positions of Marker 2. Let the transformation

matrix from the world coordinates Ow to both Marker 1’s

coordinates O1 and Marker 2’s coordinates O2 for position

i be (o1Tow

i, o2Tow

i) (i = 1, 2, 3). Given any point ~Pr in

O2, we first compute the position ~Pi in O1 corresponding to

different rotations as:

~Pi = o1Tow

i · (o2Tow

i)T · ~Pr, i = 1, 2, 3. (4)

Therefore, O is the center of the circumcircle of the triangle

( ~P1, ~P2 and ~P3).

1426



Marker 0

y2

x2

z2

O2

Marker 1

Marker 1

yr

xr
zr

Or

A

B

Scope cylinder

Camera 

head

Coupler

yr

xr

zr

O2

O

O
p
tic

a
l T

ra
c
k
e
r

y1

x1

z1

O1

Rotation

O1Tw

O2Tw(0)

O2Tw(?)

Pr
A

Pr
B

Fig. 4. Illustration of the relationship between the rotation angle θ and
two marker coordinates. (O1 is attached to the scope cylinder and O2 is
attached to the camera head. A indicates the position of O2 when θ = 0
and B indicates the position of O2 given a rotation θ. Given any point
Pr in O2, its trace with the rotation of the camera head is a circle in
Marker 1’s coordinates O1. It moves from position P A

i to P B
i in Marker

1’s coordinates O1. This circle is also on the plane perpendicular to the
axis of scope cylinder. O is the center of the circle.

Let ~R1 = ~P1 − ~P3, ~R2 = ~P2 − ~P3, the normal of the

triangle is ~n = ~R1 × ~R2. The perpendicular bisector ~L1 of
~R1 and ~L2 of ~R2 can be computed as:

~L1 = ~P3 + ~R1/2 + λ1 · ~n × ~R1

~L2 = ~P3 + ~R2/2 + λ2 · ~n × ~R2

(5)

where λ1 and λ2 are parameters of the line ~L1 and ~L2. The

intersection of these two lines are the center of the circle.

From Equation 5 we can derive the center of the circle as:

~O =
( ~R2 − ~R1) · ~R1/2

| ~R1 × ~R2 |2
· ( ~R1 × ~R2)× ~R2 + ~R2/2+ ~P3 (6)

It can be easily proved that O does not depend on the

selection of ~Pr. Since at least 3 different positions are

necessary, we rotate the camera head around the scope

cylinder by N different angles. We then apply a RANSAC

algorithm to estimate ~O using random positions, and select

~̃O which corresponds to the smallest variance as the center

of the circle. The pseudo code of RANSAC is listed in

Table I. It can be also proved that θ does not depend on

the selection of Pr either. A similar RANSAC algorithm as

Table II shows is then used to compute θ. Fig. 5 shows the

estimated rotation angle using RANSAC algorithm for two

different endoscopes. The red curves are output angles from

different RANSAC iterations, the black curve is the average

angle. We can see the variance of the estimation is very small

(less than 0.2 degree).

III. EXPERIMENTAL RESULTS

We tested our algorithm using two different systems. We

first tested it in our lab. We used Stryker 344-71 arthroscope

TABLE I

PSEUDO CODE OF RANSAC FOR ESTIMATING THE CENTER OF THE

CIRCLE

Loop k=1:K (K=2000)
Generate a random point Pr from 3D space
Generate random number x,y,z between [1,N]
Compute Px,Py ,Pz using Eq. 4
Compute Ok using Eq. 6

Compute | OkPj |, j ∈ [1, N ], j 6= x, y, z
Compute vk

Save Ok , vk

End loop
Return Oq , q = argkmin(vk)

TABLE II

PSEUDO CODE OF RANSAC FOR ESTIMATING THE ROTATION ANGLE

Loop k=1:K (K=1000)
Generate a random point Pr from 3D space
Compute PA and PB using Eq. 4
Compute θk using Eq. 3

End loop

Return θ = 1
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Fig. 5. Estimated rotation angles for two endoscopes. In each trial we
rotated the camera head with respect to the scope cylinder and captured an
image. We captured a few images for the initial position. After that we took
two images for each rotation angle. The red curves are estimated rotation
angles from different RANSAC iterations. The black curve indicates the
average rotation angle based on all RANSAC trials.
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Vista (70 degree, 4mm) oblique-viewing endoscope, DYON-

ICS DyoCamTM 750 video camera, DYONICS DYOBRITE

3000 light source, Polaris (Northern Digital Inc., Ontario,

Canada) optical tracker. Next we tested it in the operating

room. We used Smith & Nephew video arthroscope - auto-

clavable SN-OH 272589 (30 degree, 4mm), DYONICS video

camera and light source, OPTOTRAK (Northern Digital Inc.,

Ontario, Canada) optical tracker. Fig. 6 shows the different

endoscopes and optical trackers.

The endoscope was first fixed and the calibration pattern

was rotated on the table for capturing images. A set of images

were captured without a rotation between the scope cylinder

and camera head. They were used to estimate both the in-

trinsic matrix A (including focal length and radial distortion

coefficients) and extrinsic matrix cTm using Zhang’s method

[10] (implemented using OpenCV functions). After that,

when there was a rotation happening between the camera

head and the scope cylinder, another set of images were

captured and the center of the circle can be computed by

using Eq. 6. Next, we fixed the calibration pattern, with two

optical markers attached to the scope cylinder and the camera

head, we captured a set of images by applying general

motions of the endoscope (moving the whole scope body or

rotating the camera head with respect to the scope cylinder

(or more natural description: rotating the scope cylinder with

respect to the camera head)). This set of images were used

to estimate the rotation angles. The initial position of the

camera head was considered as the reference position A
illustrated in Fig. 4. Fig. 7 illustrates the back projection of

3D corners of the calibration pattern with (blue) and without

(red) a rotation compensation. Green points are ground truth.

For each rotation angle of the endoscope, we computed the

average back projection error for this angle as:

ǫ(θ) =
1

M

M∑

i=1

| pi − p(Pi, θ) | (7)

where Pi is a 3D point in the world coordinates, pi is the

corresponding 2D image pixel, p(Pi, θ) is the back projected

2D image pixel of Pi. M is the number of corners on the

calibration pattern. We have used different grid patterns (3x4

as shown in Fig. 7, 4x5 and 5x6. The size of each checker

is 2mm x 2mm). In order to obtain enough light on the grid

pattern, the endoscope needs to be placed very close to the

target (usually 5-15mm). So the smaller grid cannot capture

the radial distortion but the bigger grid will exceed the field

of view. The 5x6 grid gave the best results.

Finally we did many trials by moving and rotating the

endoscope randomly and estimate θ simultaneously. The

average back projection error with respect to the different

rotation angles are shown in Fig. 8. Fig. 8 (a) is the result

using Stryker 344-71 arthroscope Vista (70 degree, 4mm)

and Polaris optical tracker. Fig. 8 (b) is the result using

Smith & Nephew video arthroscope - autoclavable SN-OH

272589 (30 degree, 4mm) and OPTOTRAK optical tracker.

The red curve represents the back projection error without

taking into account of the rotation angle, and the blue curve

(a)

(b)

(c) (d)

Fig. 6. Optical trackers and endoscopes used in the experiments. (a)
OPTOTRAK optical tracker (Northern Digital Inc., Ontario, Canada). (b)
Polaris optical tracker (Northern Digital Inc., Ontario, Canada). (c) Smith
& Nephew video arthroscope - autoclavable SN-OH 272589 (30 degree,
4mm). (d) Stryker 344-71 arthroscope Vista (70 degree, 4mm).

(a) (b)

Fig. 7. (a) Illustration of the back projection with and without a rotation
compensation. Green points are ground truth - 2D corner pixels on the
image of the calibration pattern. Red points are back projection of the 3D
world positions of the corners using the first equation of Eq. 2, which has no
rotation compensation. Blue points are back projection using both equations
of Eq. 2. Since the rotation is included in the camera model, the back
projected pixels are much closer to the ground truth than the red points.
(b) An image used in Yamaguchi et al. [1], [12]’s paper. This image has a
higher resolution, better lighting and less distortion than ours.

shows the error with considering the rotation angle. The

results show that including the rotation angle into the camera

model significantly improve the accuracy of the calibration.

Fig. 8 shows that final calibration accuracy depends on the

magnification of endoscopes and accuracy of optical trackers

(according to the manufacturer, RMS error is 0.1mm for

OPTOTRAK and 0.3mm for Polaris). Yamaguchi et al. [1],

[12] used an OTV-S5C laparoscope (Olympus Optical Co.

Ltd., Tokyo, Japan) and Polaris optical tracker. They have

achieved a high accuracy of less than 5mm back projection

error when the rotation angle is within 140 degrees. Our

results show that we can achieve the same level accuracy
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when the rotation angle is within 75 degrees. Beyond this

range, due to the bigger magnification, larger radial distortion

and poorer lighting (a comparison between images used in

our experiment and Yamaguchi et al.’s experiment is shown

in Fig. 7), the back projection error is increased to 13mm

when the rotation angle is 100 degrees. When given the same

quality endoscopes, we should be able to achieve the same

level of accuracy.

IV. CONCLUSION

In this paper we propose a new method to calibrate oblique

viewing endoscopes. Based on our knowledge only Yam-

aguchi et al. [1], [12] has worked on this topic. Compared

with their method, we simplify the geometric model by

attaching the optical marker to the scope cylinder instead of

the camera head, which makes the calibration much simpler

and more straightforward. In order to estimate the rotation

angle, Yamaguchi et al. suggested to use a rotary encoder.

When such a device is absent, we propose to use two markers

to estimate the rotation angle. Experimental results show that

our method is easy and practical for real surgery. Even with

poor quality endoscopes, our method can still achieve a good

accuracy.
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