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Abstract— This paper proposes two estimation algorithms
for the determination of attitude installation matrix for Laser
Detection and Ranging systems (LADAR) mounted onboard
autonomous vehicles. The use of autonomous vehicles equipped
with LADAR systems to conduct fully automatic surveys of
terrain, infrastructures, or just to navigate safely in unknown
environments, motivates the research on increasingly precise
LADAR data acquisition and processing algorithms, for which
the determination of the correct installation matrix is critical.
The proposed methods rely on the minimization of the errors
between the measured data set and a representation of the
real calibration surface. To minimize this error, two nonlinear
optimization techniques are proposed, one that estimates the
ZYX Euler angles and a second that uses optimization tools
for Riemannian manifolds enabling direct estimation of the
installation matrix on the group of special orthogonal matrices
SO(3). The proposed techniques are extensively tested and their
effectiveness compared resorting to simulated LADAR data sets
under realistic noise conditions.

I. INTRODUCTION

Laser Detection and Ranging (LADAR) systems technol-

ogy is nowadays widely used by the robotics and the remote

sensing research communities. The development of airborne

laser ranging sensors started in the 1970s in North America,

mainly for topographic applications, and later, with the devel-

opment of affordable Inertial Navigation System (INS) and

Global Positioning System (GPS) units, other applications

captured the attention of the research community, such as

monitoring ice sheets [1] or measuring canopy heights [2].

The robotics research community is nowadays employing

autonomous vehicles equipped with LADARs to perform

automatic acquisition and 3-D reconstruction of terrain,

buildings, large infrastructures or using this information to

safely navigate through unknown environments [3], [4]. For

all these applications the data accuracy is essential. However,

there are several sources of inaccuracy that can lead to

considerable nonlinear reconstruction errors, for instance, an

airborne LADAR acquiring terrain elevation 1 km above the

ground, with 0.01 rad of roll mounting bias will generate

points with an error of 10 m, with a planar terrain (otherwise

nonlinear distortions will appear). Thus, the calibration of
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these errors, specially the attitude installation bias, is funda-

mental to achieve the desired accuracy requirements.

In most applications the LADAR system is installed in

a platform equipped with an INS/GPS unit, which provides

position and attitude data that together with the relative dis-

tance measured by the LADAR enables the reconstruction of

the surrounding environment. Conversely to other calibration

problems, the available information for LADAR calibration

is only clouds of 3-D points, with no matching informa-

tion between them, and most calibration procedures require

particular terrain features, and specific vehicle trajectories in

order to calibrate a subset of the parameters [5]. For instance,

flying over a flat surface while performing pitch and roll

maneuvers, separately, enables the calibration of only these

two parameters. Since there is no direct technique to compare

the measured data set with the corresponding real points, the

idea is to compare the measured data set with a representation

of the real surface [6]. This technique is used in [7] with the

linearization of the error model to obtain a Gauss-Helmert

model, used then to estimate the installation bias.

The estimation problem is formulated within the scope of

maximum likelihood (ML) theory [8] allowing the formula-

tion of the calibration problem as an optimization problem

defined by the minimization of the errors between the

measured data set and the real surface, yielding a weighted

scalar cost function, for which two different minimization

techniques are proposed. The first technique consists of

estimating the ZYX Euler angles that parameterize the in-

stallation offset rotation matrix. This approach uses basic

concepts of nonlinear optimization, like the Gradient and

Newton methods to find a search direction, as well as line

search algorithms, like the Wolfe rule, to compute the step

size [9], [10]. The second approach resorts to optimization

tools on Riemannian manifolds enabling the use of Gradient

and Newton methods to directly estimate the installation

matrix on the group of special orthogonal matrices SO(3)

[11], [12]. This approach can also use the Wolfe rule to

compute the step size, nonetheless, there exists an exact

computation of the step size improving the performance of

the algorithm [13]. The proposed calibration techniques are

compared using simulated data sets to assess their perfor-

mance and limitations in the presence of noise.

The paper is organized as follows: Section II introduces

the reconstruction error model, a ML formulation is pro-

posed, and the calibration problem is written as a nonlinear
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optimization problem. In Section III the optimization prob-

lem is addressed using ZYX Euler angles and section IV

introduces Riemannian optimization tools. Simulation results

and an in depth comparison of the different algorithms are

presented in Section V. Finally, in Section VI the main

conclusions are offered and directions for further work are

outlined.

II. RECONSTRUCTION ERROR MODEL

In this section the reconstruction error model and the

calibration problem are introduced. The reconstruction error

is generated by the computation of the 3-D points using

the measured range and angle provided by the LADAR,

assuming that the calibration parameters are correct. The

calibration problem is to find the optimal calibration parame-

ters that minimize the error between the set of reconstructed

points, Pm, and the real surface Sreal. The measured set

of points Pm = {pi}, i = 1, . . . , nm, where nm is the

number of measured reconstructed points. In the following

three subsections, the point reconstruction, the point-surface

comparison and the calibration problem are introduced.

A. Point Reconstruction

The point reconstruction model describes the transforma-

tion of the LADAR raw data, composed by a range measure-

ment and an incidence angle, into 3-D points. The following

coordinate frames are introduced: {I} as the inertial frame;

{ins} as INS/GPS frame; {l} as the LADAR frame, with

origin at the laser’s firing point and z-axis indicating the zero

scanning angle; {lb} as the laser beam frame, with origin at

the firing point, y-axis collinear with that of frame {l} and

z-axis oriented opposite to the direction of the laser beam.

These frames and the connections between them are depicted

in Fig. 1. Each measurement i is defined as the distance

Fig. 1. Ladar coordinate frames

between the laser firing point and the laser hit point, ρi, and

by the angular position of the laser beam, αi, that is, the

angle from {l} to {lb}. Thus, it can easily be seen that the

expression that transforms the LADAR measurement (ρi, αi)
into the reconstructed 3-D point pi, expressed in the inertial

frame, is given by

pi = Rinsi
(R Rl Rlb(αi) r(ρi) + b) + pinsi

, (1)

where Rinsi
is the platform attitude defined by the rotation

from {ins} to {I}, Rl is the known attitude mounting bias

defined by the rotation from {l} to {ins}, Rlb(αi) is the rota-

tion from {lb} to {l}, that defines the laser beam rotation and

is given by Rlb(αi) = RY (αi), with RY (.) standing for the

rotation matrix about the y axis, r(ρi) =
[

0 0 −ρi

]′
,

pinsi
is the INS/GPS unit position expressed in {I}. The

known position installation bias b denotes the laser firing

point described in {ins} and matrix R is the rotation matrix

that defines the unknown attitude installation bias, which

is an element of the group of special orthogonal matrices

SO(3). Let M(n, R) = {A : n × n matrix with real entries}
and the group of orthogonal matrices be defined as O(n) =
{U ∈ M(n, R) : U U ′ = In×n}, then the group of special

ortogonal matrices is SO(n) = {R ∈ O(n) : det(R) = 1}.

B. Point-Surface Comparison

The fact that in this problem there is no correspondence

between the points of the real surface Sreal and the mea-

surement set Pm, does not alow for a direct comparison.

The proposed solution consists of comparing Pm with an

approximation of the real surface, Sapprox. Therefore, the

following assumptions are considered:

Assumption 1 (Elevation map): The real surface Sreal can

be approximated by an elevation map, i. e., the height of the

surface can be expressed as a function fS : R
2 → R of the

x and y coordinates, z = fS(x, y).
Assumption 2 (Set of planes): The surface Sreal can be

approximated by a piecewise surface Sapprox defined by a

set of np planes, with arbitrarily small error (as np → ∞).

To compare the points pi ∈ Pm with the surface Sapprox,

each point is linked with the closest plane along its normal

vector. Considering the set of planes that define Sapprox, let

plane i be defined by the plane equation s′i pi + s4
i = 0,

where si =
[

s1
i s2

i s3
i

]′
∈ R

3 is the i-th plane normal

unitary vector and s4
i ∈ R.

C. Calibration Problem

The calibration of a LADAR system can be formulated as

the minimization of the error between the measured set of

reconstructed points Pm and the surface Sapprox, subject to

the LADAR model constraint. The error between each point

pi and the associated plane of the control surface can be

defined as ei = p0i
− pi where p0i

= pi − si Di denotes

the point in the plane closest to pi and Di = s′i pi + s4
i is

the distance along si between pi and p0i
. Hence, after some

algebraic manipulation, the measurement error expression

can be written as

ei(R) = Hi Rhi + ci , (2)

where Hi = ρi Si Rinsi
, hi = −Rl Rlb(αi) r(1), ci =

−Si Rinsi
b − Si pinsi

− s4
i si and Si = si s

′
i. Also, R ∈

SO(3) is the calibration parameter matrix to be estimated

and the known parameters are Hi ∈ M(3,R) and hi, ci ∈
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R
3. In addition, the following assumption characterizes the

measurement error distribution.

Assumption 3 (Error distribution): The measurement er-

ror distribution is assumed to be Gaussian and defined by

p(ei) = N
(

ei;0, σ2
i I

)

.

The calibration problem can be formulated within the

scope of the ML estimation theory as that of maximizing

the reconstruction error probability function, i. e.

R∗ = arg min
R

f(R) , s. t. R ∈ SO(3) , (3)

with f(R) =
∑n

i=1
1

2 σ2
i

‖ei(R)‖2
. The usage of the follow-

ing nonlinear optimization techniques with Newton method,

instead of standard nonlinear least squares methods, allows

for a more efficient estimation algorithm, since the second

order derivative of the cost functional is used.

III. OPTIMIZATION ON EULER ANGLES SPACE

In this section the optimization problem is reformulated to

estimate the angle vector, x, instead of the rotation matrix

R. Let x ∈ R
3 be the ZYX Euler angles representation of

the rotation matrix, i. e. R = R(x), then, the optimization

problem (3) can be written as

x∗ = arg min
x

f(x) (4)

with f : R
3 → R given by

f(x) =
n

∑

i=1

1

2 σ2
i

‖Hi R(x)hi + ci‖
2

. (5)

The estimated calibration parameters, denoted by x̂, are

computed using the Gradient and Newton methods, that at

each k iteration provide a descent direction, dk ∈ R
6. This

descent direction is used to update the next estimate xk+1

by solving a minimization subproblem, usually called line

search, to find the optimal step size along the direction dk.

This is formalized in Algorithm 1, where γdk
(t) = xk+tdk.

Algorithm 1: Minimization algorithm for the LADAR cal-

ibration problem:

1) Initialize x0 and let k = 0;

2) Compute descent direction dk;

3) Compute the step size by solving the minimization

subproblem t∗k = arg mint≥0 f (γdk
(t));

4) Compute next parameter estimate: xk+1 = γdk
(t∗k);

5) Test if
∥

∥∇f |xk+1

∥

∥ < ǫ: if true, let x̂ = xk+1 be the

final estimated parameter and stop; if false, let k ←
k + 1 and go to step 2.

A. Descent Direction

To compute the descent direction dk, the most widely

used method is the Gradient method, for which dk is

computed using the gradient of the cost functional, ∇f(x)|x.

The Newton method uses the Hessian matrix, denoted by

∇2f(x)|x, yielding faster convergence near the optimum

value.

The descent direction for the gradient method is given by

dk = −∇f(x)|x (6)

where the gradient is computed using

∇f(x)|x =
[

∂ f(x)
∂x1

∂ f(x)
∂x2

∂ f(x)
∂x3

]′

, (7)

∂ f(x)

∂xj

=
n

∑

i=1

1

σ2
i

e′i Hi

∂ R(x)

∂xj

hi . (8)

For the Newton method, the descent direction is defined by

dk = −
(

∇2f(x)|x
)−1

∇f(x)|x (9)

where Hessian matrix is given by

∇2f(x)|x =
∂2 f(x)

∂x ∂x′
=

{

∂2 f

∂xj ∂xl

}

, (10)

∂2 f

∂xj ∂xl

=
n

∑

i=1

1

σ2
i

[

e′i Hi

∂2 R(x)

∂xj ∂xl

hi+

+

(

Hi

∂ R(x)

∂xj

hi

)′ (

Hi

∂ R(x)

∂xl

hi

)

]

. (11)

B. Line Search

The step size optimization subproblem in Algorithm 1 is

numerically solved using the Wolfe conditions [10]. Consider

the function φ : R → R defined by φ(t) = f (xk + tdk)
and derivative given by φ̇(t) = ∇′f |xk+t dk

dk and let also

µk = φ(0) + σ φ̇(0) tk and µ0 = λ φ̇(0), where σ and λ are

parameters of the algorithm. The Wolfe rule classifies the

step size according to the sets

A =
{

tk > 0 : φ(tk) ≤ µk ∧ φ̇(tk) ≥ µ0

}

D = {tk > 0 : φ(tk) > µk}

E =
{

tk > 0 : φ(tk) ≤ µk ∧ φ̇(tk) < µ0

}

(12)

that define the acceptable, the right unacceptable and the

left unacceptable step sizes, respectively. The line search

algorithm consists of finding an acceptable step size, i. e.,

an estimate of the optimal step size.

IV. OPTIMIZATION ON RIEMANNIAN MANIFOLDS

This section introduces the optimization methodology on

Riemannian manifolds. Since the rotation matrix R is an

element of the group of special orthogonal matrices SO(3)

which is an embedded submanifold of M(3, R), the opti-

mization tools adopted in this section are based on simple

exercises of Riemannian Geometry theory and allow for

the minimization of the likelihood function directly on the

manifold of special orthogonal matrices SO(3). The concepts

of intrinsic gradient and Hessian derived for SO(3) produce

descent directions in the manifold and the cost functional is

minimized along geodesics in SO(3). For a comprehensive

introduction to the subject and for applications with orthog-

onality constraints the reader is referred to [11], [12].

Considering the log-likelihood function f : SO(3) → R

given by

f(R) =
n

∑

i=1

1

2 σ2
i

‖Hi Rhi + ci‖
2

, (13)
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the optimization problem reduces to the one defined in

(3). The estimate R̂ of the optimal value R∗ is computed

using the Gradient or the Newton methods generalized to

manifolds. Given the current parameter estimate Rk at iter-

ation k, these methods compute a descent direction in the

intrinsic tangent space, dk ∈ TRk
SO(3), and obtain the new

estimate Rk+1 by solving a minimization subproblem along

the geodesic of the manifold. This algorithm is structured

as Algorithm 1, however, γdk
(t) ∈ SO(3) is defined as the

geodesic of the manifold with initial conditions γdk
(0) = Rk

and γ̇dk
(0) = dk.

The accuracy of the estimate is determined by the constant

ǫ and the norm is determined using the metrics in the

parameter space SO(3). Hence it is necessary to define

the metric for the rotation matrix R ∈ SO(3), which is

inherited from the canonical metric in the Euclidean space

M(3,R). While the tangent space of M(3,R) is identified

with TRM(3,R) ≃ M(3,R) and represented by the usual

gradient, the tangent space of SO(3) at point R is identified

by TRSO(3) ≃ RK(3) = {R K : K ∈ K(3)}, where K(n) =
{K ∈ M(n, R) : K = −K ′}. To define the canonical

metric in SO(3), let two tangent vectors {δ1, δ2} ∈ TRSO(3),

which are identified by δ1 ≃ R K1 and δ2 ≃ R K2, with

{K1,K2} ∈ K(3), then 〈δ1, δ2〉 = tr (δ′1 δ2), where tr (.)
stands for the trace of a matrix.

The following three sections address: a) the computation

of a descent direction, using both the gradient and the

Newton methods, b) the line search algorithm with Wolfe

conditions and c) the deterministic line search algorithm that

computes an exact step size.

A. Descent Direction

To improve the accuracy of the descent direction estimate,

a generalization for manifolds of the Gradient and the

Newton methods is adopted. While the former is easier

to derive and implement, the Newton method yields very

fast convergence near the minimum. The derivation of the

gradient and the Hessian of the log-likelihood function are

described below specifically for the SO(3) manifold.
1) Gradient Method: The log-likelihood function (13) can

be generalized to M(3,R) by defining the smooth function

f̂ : M(3,R) → R such that f̂ |SO(3) = f . The tangent space

on M(3,R) is characterized as the direct sum of two tangent

spaces complementary to SO(3), that is

TRM(3,R) = TRSO(3) ⊕ (TRSO(3))
⊥

, (14)

where the operator ⊕ stands for the direct sum of two sets

and (TRSO(3))
⊥

is the orthogonal complement of TRSO(3).

The smooth vector field defined by the extrinsic gradient

gradf̂ |R ∈ TRM(3,R) is decomposed as the sum of its

tangent and orthogonal components

gradf̂ |R =
(

gradf̂ |R
)⊤

+
(

gradf̂ |R
)⊥

(15)

and is identified with the usual gradient in M(3,R), that is

gradf̂ |R ≃ ∇f̂ |R :=
∂ f

∂R
:=

[

∂ f

∂rij

]

i,j∈{1,2,3}

. (16)

Hence, the intrinsic gradient ∇f |R ∈ RK(3) is obtained by

the projection of the extrinsic gradient on the tangent space

TRSO(3), i.e. ∇f |R = (∇f̂ |R)⊤.
The projection of the extrinsic gradient results from an

optimization problem with closed solution given by

∇f |R = R arg min
K∈K

∥

∥

∥
∇f̂ |R − R K

∥

∥

∥

2

= R skew
(

R′ ∇f̂ |R
)

, (17)

where skew(A) = 1/2 (A − A′) is the skew symmetric

component of A. The extrinsic gradient expression for the

considered cost functional is given by

∇f̂ |R =
n

∑

i=1

1

σ2
i

H ′
i (Hi Rhi + ci)h

′
i . (18)

Thus, at each iteration k the intrinsic gradient direction used

in the optimization algorithm is dk = −∇f |R.
2) Newton Method: The Newton method uses the second

order properties of the log-likelihood function to compute

descent direction. Although this method is harder to compute

and requires more memory, the convergence rate is greater

near the optimal value than that of the gradient method.
Given two tangent vectors {X, Y } ∈ TRSO(3) and the

correspondent extension {X̂, Ŷ } ∈ TRM(3,R), the intrinsic

Hessian is given by compensating the external Hessian

Hessf (X,Y ) = Hessf̂
(

X̂, Ŷ
)

+ ΠR (X, Y ) f̂ , (19)

where the second fundamental form ΠR (X,Y ) : TRSO(3)×
TRSO(3) → (TRSO(3))⊥ is a differentiable local vector

field on M(3,R) normal to SO(3). The external Hessian is

identified by the usual second order derivative in Euclidean

spaces

Hessf̂
(

X̂, Ŷ
)

= vec (X)
′ ∇2f̂ |R vec (Y) , (20)

∇2f̂ |R =
∂2 f̂

∂vec (R) ∂vec (R)
′ , (21)

where X̂ ≃ X ∈ M(3,R), Ŷ ≃ Y ∈ M(3,R) and the

vec (.) operator is the vectorization of a matrix. The second

fundamental form applied to f̂ yields

ΠR (X, Y ) f̂ = −〈R symm(X ′ Y ),∇f̂ |R〉 , (22)

where symm(A) = 1/2 (A+A′) is the symmetric component

of A, and

∇2f̂ |R =
n

∑

i=1

1

σ2
i

hi h
′
i ⊗ H ′

i Hi , (23)

where ⊗ is the Kronecker product operator. The Newton

method search direction is the unique tangent vector d ∈
TRSO(3) that satisfies Hessf (X,d) = −〈X,d〉 for all X ∈
TRSO(3). Let ε = {E1,E2, . . . ,Em} be an orthonormal

basis for TRSO(3), then the Newton direction coordinates

zi in the basis ε, d =
∑m

i=1 zi Ei, are computed by

solving the linear system Ahess z = bhess, where Ahess =
{Hessf (Ei,Ej)}, z = {zj} and bhess = −{〈Ei,∇f |R〉},

for i, j = 1, . . . ,m.
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B. Line Search

The geodesic is defined as the curve in the manifold with

zero acceleration. A geodesic curve is fully characterized by

the initial position and velocity conditions, γd(0) and γ̇d(0)
respectively, and to the particular case of SO(3), the geodesic

γd : J → SO(3) is defined as γd(t) = R eR′
d t, where J is

an interval in R and d ∈ RK(3) identifies the tangent vector.

As in the approach of Section III, the step size optimiza-

tion subproblem of Algorithm 1 is numerically solved using

the Wolfe conditions, generalized to line search on geodesics.

Considering the function φ : R → R defined as φ(t) =
f (γd(t)) with derivative given by φ̇(t) = ∇′f |γd(t) γ̇d(t)
we can introduce the same sets as in (12) and use the same

algorithm to provide an estimate of the optimal step size.

C. Deterministic Line Search

Taking advantage of the periodicity of the objective func-

tion, the exact optimal solution for line search problem can

be found by simply determining the roots of a fourth order

polynomial. This can be seen in [13], where this approach is

used for a similar cost functional. Given a search direction d,

computed using either the Gradient or the Newton methods,

the line search optimization subproblem is defined by t∗ =
arg mint≥0 φ(t), where φ(t) = f (γd(t)). To tackle a more

general type of optimization problem let the cost functional

be written as

φ(t) =
n

∑

i=1

1

2 σ2
i

tr
(

M ′
i e−Ω t R′ Ni R eΩ t Mi

+2 W ′
i R eΩ t Mi + Ci

)

(24)

where Mi = hi, Ni = H ′
i Hi, Wi = c′i Hi, Ci = c′i ci and

Ω = 1
‖ω‖ [ω×] with [ω×] = R′ d. The skew-symmetric ma-

trix [a×] stands for the cross product operator for vector a. In

this way Ω has unit length allowing the usage of Rodrigues’

formula eΩ t = I + Ω sin t + Ω2 (1 − cos t). Substituting

this formula into (24) and simplifying, it can be seen that

φ(t) = k1+k2 sin t+k3 cos t+k4 sin 2 t+k5 cos 2 t, where

kj , j = 1, . . . , 5 are constant scalars. To find the optimal

value for the step size the first order condition of optimality,

that is
d φ(t)

dt
= 0, yields k2 cos t − k3 sin t + 2 k4 cos 2 t −

2 k5 sin 2 t = 0 and the optimization subproblem is now

to find the values of t ∈ [0, 2 π[ for which the previous

condition is satisfied.

The first step is to make a trigonometric half-angle sub-

stitution, i. e., x = tan t
2 , reducing the first order condition

of optimality to a fourth order polynomial in x, x4 +b3 x3 +
b2 x2 + b1 x + b0 = 0, where bi, i = 0, . . . , 3 are constant

scalars. After finding the roots of this quartic polynomial,

which is a standard procedure [14], the optimal value of t is

the real root for which the cost functional is minimal.

V. SIMULATION RESULTS

To compare the performance of the algorithms presented

above a digital elevation map is used to define the simulated

real surface Sreal and, for the sake of simplicity, the approxi-

mated surface Sapprox has lower resolution. This can be seen
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Fig. 2. Calibration example: Sapprox, trajectory and laser beams

in the example of the calibration setup shown in Fig. 2, where

the platform trajectory (in magenta), the optimal acquired

points (in green) and the reconstructed points using the initial

condition (in yellow), are overlayed on the approximated

surface.

From the presented optimization methods and line search

algorithms, three different configurations are tested: 1) op-

timization on Euler angles space with Wolfe rule; 2) Rie-

mannian optimization with Wolfe rule; and 3) Riemannian

optimization using exact step size. These methods will be

compared in this section in order to highlight the advantages

and disadvantages of each of them. In all these methods, the

computation of the search direction is performed using the

Newton’s method. Evaluating the Euler angles solution x as

R(x̂) ∈ SO(3), an error distance that is defined in SO(3) is

used to compare the solutions of the different configurations.

Let R∗, R̂ ∈ SO(3) be optimal and the estimated rotation

matrices, respectively, and let also R̃ = R̂′ R∗ ∈ SO(3) be

the error matrix, the performance of each method is evaluated

by defining the distance from R̃ to I as

‖R̃‖SO(3) = arccos( 1
2 (tr(R̂′ R∗) − 1)) .

The three methods where tested using a perfectly acquired

data set where the acquired points, Pm, belong to the

control surface Sapprox, and another data set with additive

white gaussian noise with zero mean and standard deviation

σ = 103 m. The objective is to see the influence of the

imperfections when the real surface Sreal is approximated by

the control surface Sapprox and also when the acquired points

do not belong to the real surface.

The experience consisted of 500 Monte Carlo runs with

random initial conditions, and for each initial condition all

methods were tested with and without noise addition. The

initial conditions were computed using a uniform distribution

between −π
6 and π

6 for each component of the ZYX Euler

angle vector x0 yielding the rotation matrix R0 = R(x0).
The optimal value for all the trials is defined by the rotation

matrix, R∗ = R(x∗), obtained from the ZYX Euler angles

x∗ =
[

0.10 0.05 −0.04
]′

. The stopping criterion used

was
‖∇f |R‖
‖∇f |R0

‖ < 10−10. All the simulations were performed
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TABLE I

SUMMARY OF RESULTS.

Method
1 2 3

Average Computation No Noise 18.1 18.7 14.7
Time [s] Noise 30.3 34.8 17.1

Number of No Noise 6.8 6.8 5.8
Iterations Noise 7.4 7.9 6.8

Failure [%] No Noise 5.6 3.0 0
Noise 5.6 1.4 0

Distance to Mean 0.028 0.019 0.016
optimal [rad] Maximum 0.085 0.028 0.023

Minimum 0.015 0.007 0.016

using Matlab on an Intel Pentium Centrino processor at 1.7

GHz.

Table I presents three statistical indicators of the simu-

lation described above: the average computation time, the

number of iterations and the percentage of failure. The

first and the second indicators show the efficiency of each

method, and it is evident that the Riemannian method with

exact step size (method 3) is the best. The percentage of

failure is not commonly used, but is justified by the fact

that the problem that is being dealt with is nonconvex,

since the control surface has discontinuities and even the

real surface may introduce local minima. As it can be seen

the only method unaffected by this particularities is the one

that utilizes the exact step size (method 3). As expected, the

Euler and the Riemannian methods, both with Wolfe rule

line search, have similar computation times and number of

iterations, nevertheless, the Riemannian approach tends to be

more reliable on finding the right solution.

To effectively evaluate the performance of each method,

the table also presents the average, maximum and minimum

distance in SO(3) to the optimal solution with noise addition

for each of the methods. Without noise, the maximum error

distance for all the methods is less than 5.5×10−8 [rad]. In

the simulation with noise, as expected, the best performance

is obtained with the Riemannian method with exact step size

(method 3), followed by the Riemannian method with Wolfe

rule (method 2) and finally the Euler method with Wolfe rule

(method 1).

Looking at these results we can say clearly that the best

of these three methods is the Riemannian optimization using

the exact step size, since it consistently presents the best

qualities in the analyzed aspects: computation time, number

of iterations, no failures and best estimates in the presence

of noise.

VI. CONCLUSIONS

This paper deals with the problem of laser calibration

by suggesting three numerical optimization methods that

estimate the mounting bias rotation matrix R ∈ SO(3) by

minimizing the distances between the acquired laser points

and a known control surface. The first method estimating

the mounting bias ZYX Euler angle vector, and it was tested

using the Newton’s method with the Wolfe rule. The second

method uses the generalization of the Newton method to

SO(3), estimating the mounting bias rotation matrix. To

compute the step size it also uses the Wolfe rule as the

previous method. Finally, the third method uses the Newton

method for SO(3) with an exact computation of the optimal

step size instead of the Wolfe rule for the line search

algorithm.

The performance and limitations of each of these methods

was extensively tested in Matlab and the results indicate that

all methods are able to find good estimates for the laser

calibration problem. Moreover, the third method displays im-

munity to local minima, the smallest average estimation error

in the presence of noise and the fastest average computation

time.

The principal limitation of these methods is introduced

by the necessity of a known control surface. One direction

of research is to consider scanning trajectories that overlap

and minimize the error between the overlapped clouds of

data points. Further work is also needed in order to include

other sources of reconstruction errors, like the time delay

between laser acquisition and the INS/GPS data or the range

measurement error.
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