2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

Learning of Moving Cast Shadows for Dynamic Environments

Ajay J. Joshi and Nikolaos Papanikolopoulos
Department of Computer Science and Engineering
University of Minnesota-Twin Cities
{ajay,npapas} @cs.umn.edu

Abstract— We propose a novel online framework for detect-
ing moving shadows in video sequences using statistical learning
techniques. In this framework, Support Vector Machines are
applied to obtain a classifier that can differentiate between
moving shadows and other foreground objects. The co-training
algorithm of Blum and Mitchell is then used in an online
setting to improve accuracy with the help of unlabeled data.
We evaluate the concept of co-training and show its viability
even when explicit assumptions made by the algorithm are not
satisfied. Thus, given a small random set of labeled examples (in
our application domain, shadow and foreground), the system
gives encouraging generalization performance using a semi-
supervised approach. In dynamic environments such as those
induced by robot motion, the view changes significantly and
traditional algorithms do not work well. Our method can handle
such changing conditions by adapting online using a semi-
supervised approach.

I. INTRODUCTION

The problem of moving shadow detection has attracted
significant interest in the vision community. In spite of
its importance in various application domains, the problem
remains unsolved because of several underlying difficulties.
In robot vision in particular, the changing scene usually
demands a technique that can adapt itself automatically. Even
in transportation applications, the vision system is expected
to run continuously for all times of the day. Shadow detection
with fixed parameters tuned by humans for each different
scene in such a scenario is infeasible. If manual tuning
is not performed with changing scenes, it results in poor
performance with traditional shadow detection techniques.
This can be seen by how different tuning parameters are
required by different videos [7]. One approach to tackle
this difficulty is to use a learning method. In this paper,
we approach the problem from a statistical machine learning
perspective.

The entire literature on shadow detection techniques is too
vast to review here. We mention a few representative methods
for the reader. Prati et al. [1] present a comprehensive survey
and analysis of most of the shadow detection algorithms
published in the literature. They outline the strengths and
limitations of different methods, and also study the condi-
tions under which some techniques are better suited than
others. See [2]-[7] for a variety of methods proposed. In most
of these, shadow detection is done using either pixel-based
parameters, or scene geometry information, or a combination
of the two. There are three principal problems with the
current methods:

1) Most methods require explicit tuning for each new
video in large parameter spaces with multiple dimen-
sions. This could be infeasible for real applications.

2) Most previous methods rely on assumptions made
about image feature distributions, scene geometry, and
other factors based on observations from a few videos.
According to our experiments, these assumptions do
not hold for general applicability.

978-1-4244-1647-9/08/$25.00 ©2008 IEEE.

3) Most techniques to detect shadows do not work in an
online setting. System parameters once set, remain the
same throughout, thus making the method error-prone
to changes in the scene properties.

In this paper, we use a learning-based approach to address
these problems. Instead of tuning the system for a new
video, it is easy for a user to mark small regions belonging
to shadow and foreground in one frame of any new video
sequence. The system can then learn from these examples
and “find” the right parameters for each scene in particular.
Secondly, if a learning method can tune itself online, it can
be of great help since the scene might change from time to
time. We show how the learning algorithm can accomplish
this using a semi-supervised approach.

Our work is similar in motivation to work by Porikli and
Thornton [8]. They use Mixtures of Gaussians to model
moving shadows. However they target only surveillance
systems and use a predefined model that works well for that
domain. Our paper paper provides a more general learning
framework that can easily incorporate more features, and
is applicable to other semi-supervised classification tasks as
well.

II. APPROACH

The approach involves using effective pixel-based features
from the frames of video to perform shadow detection.
Specifically, we use four image features from [7], which have
been shown to be effective in real world scenarios, indoors
and outdoors. These features, computed for each pixel are
summarized in the following: (1) The difference between
edge gradient direction at the pixel in the current frame and
that in the background model (f7). Here, the background
model is computed using the Mixtures of Gaussians tech-
nique [10], [11]; (2) The difference between edge strength
at the pixel in the current frame and that in the background
model (f2); (3) The color distortion between the pixel in the
current frame and that in the background model (f3) [3], [7].
This distortion is computed from the 3D color model in the
R, G, B space where each pixel is represented by a point; and
(4) The ratio of intensity of the pixel in the current frame
to that in the background model (f4) [3], [7]. These four
features (represented by feature vector f) attempt to extract
useful information from the scene in terms of presence or
absence of shadow on the particular pixel. See [7] for details.

We wish to solve the following classification problem.
Given a feature vector f € R* we want to find the
corresponding label | € {S, FG} where S indicates shadow
and F'G indicates foreground.

A. Support Vector Machines (SVM)

In the supervised learning case, the algorithm uses labeled
data to find the hyperplane in feature space that separates the

987

data with maximum margin. This hyperplane is then used for
subsequent classification of new data.

The standard Support Vector Machine formulation [14]
can be directly applied to the shadow detection problem,
since we have cast it as a two-class classification prob-
lem. Support Vector Machines can learn complex separating
surfaces in feature space. We thus do not make restrictive
assumptions on the distribution of the data unlike most of the
previous works on shadow detection, in which either some
distribution is assumed, or an approximation is made to the
histograms obtained from the available data [7].

The distributions assumed may not be accurate enough
for future pixel classification. Even if empirical data is used
to approximate these, some limitations exist. One is that the
distribution may not remain the same for all scenes in differ-
ing conditions. Secondly, even on looking at the histograms,
the final approximation is usually based on simple functions
for modeling ease. In our earlier work [7], this modeling is
done using sigmoid-like and Laplacian distributions which
provide reasonable matches to the empirical observations.

Our objective was to make the approach more general,
without relying on observations based on a few scenes. If we
let the Support Vector Machine (or any learning algorithm)
learn the decision boundary (which can actually be quite
complex, and different for each scene), the method does not
make restrictive assumptions as do previous methods.

Plot of Classification Accuracy versus Training set size
74 T T T T

~
X}

~
[=]

@
&

Sequence 1
Sequence 2

@
E
T

Classification Accuracy (%)
=)
3

@
X

G0 : : : : E

i | i i i i |
il 100 200 300 400 500 G500 700 800
Mumber of examples used for training the SYM

Fig. 1. The figure shows a plot of classification accuracy versus training
set size for two datasets acquired from two different video sequences.

In Figure 1, we show a plot of classification accuracy
using Support Vector Machines trained on different sizes
of training sets (Sequence 1: 800 examples, Sequence 2:
10000 examples). The two results are for two different video
sequences, one outdoor and one indoor. This is done to
evaluate effectiveness across general scenes with differing
illumination conditions and object sizes.

In all cases, we used the Radial Basis Function

K(X;,X;)=exp <M) as the kernel, and LIBSVM
[15] was used to perform the tests. Accuracy values were
obtained using 10-fold cross validation on each set.

B. Problems with using only one classifier

There are three main problems with using SVMs directly

for shadow identification:

1) From Figure 1, it can be seen that as the training
set size increases, classification accuracy improves for
both datasets. This improvement continues for even
larger sizes of training data. Also, improvement in

accuracy is in varying degrees for both datasets. Thus,
it is hard to predict what size of training data will
provide “good” accuracy values for any new video
sequence.

2) Because of the high computational cost associated with
training Support Vector Machines with a large number
of training examples, the use of a large training set
might be infeasible.

3) Enough manually labeled data might not be available to
learn from. In this case, accuracy will suffer since with
smaller training set sizes, future classification accuracy
is usually smaller as in Figure 1.

One solution is to use a semi-supervised learning tech-
nique, in which we can train the system using a small set
of labeled data, and allow it to improve with the help of a
possibly large number of unlabeled examples. This approach
has been dealt with extensively, especially in the machine
learning community [13], [16], [17]. The idea of co-training
first proposed by Blum and Mitchell [13] is particularly
attractive in our case for reasons described in the next
section.

C. Co-training [13]

The original motivation to develop co-training came from
the fact that labeled data is scarce, whereas unlabeled data
is usually plenty and cheap to obtain. In this algorithm, two
classifiers are trained using two different feature sets on the
initial labeled data. Then each classifier is deployed on the
unlabeled data, and at each round, it chooses the example
which it can label most confidently from each class, and
adds it to the pool of labeled examples. This is carried out
iteratively until a fixed number of rounds, or until all the
originally unlabeled data is labeled. Figure 2 outlines the
algorithm. In this algorithm, F} and F5 are two mutually
exclusive feature sets which are part of the original feature
vector f.

e Given two sets, one of labeled examples and one
of unlabeled examples
e Loop for k£ rounds
e Train a classifier C; using only F} part
of the feature vector f with all labeled examples
e Train a classifier C5 using only Fy part
of the feature vector f with all labeled examples
e Pick one unlabeled example in each class for
which C is most confident and add it to the set
of labeled examples
e Pick one unlabeled example in each class for
which (5 is most confident and add it to the set
of labeled examples
e Return two classifiers C; and Cs. Labels for any
new examples can be predicted by combining these
classifiers, based on their confidence scores

Fig. 2. The Co-training Algorithm as proposed in [13], adapted from [9].

The idea behind co-training is the following. If the two
classifiers are trained using conditionally independent feature
sets, when one classifier labels an example, it is seen as
a random training example by the other classifier. In this
case, the other classifier benefits from this added example.
In this way, different “views” of the target concept may help
achieve better combined classification accuracy, even though

988

individual classifier accuracy may be much weaker. We use
the co-training approach to try and solve the problems caused
by using SVMs alone as described in section II-B. This
approach has two possible advantages:

1) It can use smaller training sets (with possibly large
unlabeled data), so the running time of the algorithm
is substantially reduced, and may be lower than the
original, even if now, we train multiple classifiers.

2) For good future classification accuracy, enough train-
ing points might not be initially available to train on.
In this scenario, performance will suffer when only
SVMs are used. In the co-training setting, even if
a small number of training examples are available,
classification accuracy may be improved using the
unlabeled examples. This is particularly useful for the
application considered here, since smaller the manual
labeling required, the easier for the user it is.

Although scarcity of labeled data is one consideration
while choosing to use co-training, we also look for the added
advantages of possibly improved speed of operation, and
adaptive behavior (discussed later). Henceforth, the semi-
supervised method refers to the one using co-training, and
supervised refers to the method using only one SVM and no
unlabeled data.

III. SETTING THE PARAMETERS FOR CO-TRAINING

As mentioned previously, we use a feature vector f
consisting of the four features for each pixel. The co-training
algorithm performs best when the two feature sets used are
conditionally independent, given the class label. Practically,
in the best case, this would mean that the feature split should
be done in such a way that the mutual information gain from
the two sets is the minimum.

In our case, it is not obvious how to split the original
feature vector to obtain a “good” split. Hence, we find a
“good” feature split as required by co-training, empirically,
using 50-fold cross validation tests on our vision data. The
testing was done for various values of training set sizes and
different number of co-training rounds. The results for two
representative cases from our tests are summarized in Table
I and Table II.

Table I shows classification accuracy results for a training
set of size 100 (test set of about 800), and Table II shows
classification accuracy on another dataset with a much larger
(800 examples) training set size. The test set in this case was
about 10000 examples. The two tables show behavior with
vastly varying dataset sizes, and differing scenes, to eliminate
any possible bias due to a particular size.

In the tables, Row 8 shows classification accuracy without
using co-training (using only one classifier). The other rows
show results with different feature splits. We note that in
some cases (Rows 1,3,6), co-training degrades accuracy,
while in others (Rows 2,4,5,7) it improves accuracy (as
compared to Row 8) quite substantially. It is further vital
to see that this improvement in accuracy comes for the same
splits in both datasets. This observation confirms the fact
that indeed, benefit to be achieved from co-training depends
hugely on the different “views” of the example we obtain.
Since in both cases the features used are the same, this throws
some light on which features are ‘more’ independent of the
other ones. It also emphasizes that the co-training algorithm
can improve classification accuracy if we can find a “good”
feature split. Now that “good” splits are found based on the
tests, we choose one of them ([f; fo] & [f3 fa]) for all

experiments henceforth. Both splits giving good results are
marked in boldface in the tables.

Row Feature Split Rounds of Co-training
[Setl] [Set2] 20 50 100 200
1 [fil[f2 f3 fal | 61.96 | 60.56 | 59.91 | 60.20
2 [F2l1f1 f3 Jal | 7427 | 7348 | 7328 | 72.89
3 [f3] [f1 fo fal | 57.00 | 57.89 [59.21 | 60.41
4 [fal1f1 fo fal | 75.06 | 7522 | 74.62 | 74.72
5 [f1 foI1f3 fal | 74.95 | 7550 | 74.95 | 75.30
6 [fi f3l[f2 fal | 61.72 | 60.95 | 61.22 | 61.63
7 [f1 fallf2 f3l | 7359 | 73.09 | 73.01 | 73.24
8 No co-training 66.50
TABLE I

PPERCENTAGE CLASSIFICATION ACCURACY WITH VARYING ROUNDS OF
CO-TRAINING AND DIFFERENT FEATURE SPLITS ON ONE DATASET. SIZE
- TRAINING SET: 100, TEST SET:800.

Row Feature Split Rounds of Co-training

[Setl] [Set2] 20 50 100 200
I [f1illf2 f3 fal [70.15] 7534 [69.88 | 69.81
2 [Fol [f1 fa fal | 7447 | 74.64 | 7454 | 7443
3 [F3][f1 fo fal | 71.65 | 71.94 | 71.47 | 70.58
4 [fal[f1 f2 f3] | 76.63 | 76.82 | 76.55 | 76.26
5 [f1 fol1f3 fal | 76.06 | 75.86 | 75.52 | 75.19
6 [f1 f311f2 fal [71.83 1 71.4T [71.19 [70.92
7 [f1 fal [f2 f3] | 75.65 | 75.62 | 7538 | 75.22
8 No co-training 72.34

TABLE II

PERCENTAGE CLASSIFICATION ACCURACY WITH VARYING ROUNDS OF
CO-TRAINING AND DIFFERENT FEATURE SPLITS ON ANOTHER DATASET.
S1ZE - TRAINING SET:800, TEST SET:10000.

IV. PRACTICAL CONSIDERATIONS IN CO-TRAINING

One important consideration is the size of the initial
labeled set used for training. If this set is large, training
time will be large for the resulting algorithm. In order for
this framework to be useful, it is essential that the set of
labeled examples be kept as small as possible. Secondly, co-
training needs to run online, as new data becomes available.
Smaller the number of co-training rounds, the better it is
in terms of speed. Especially for vision applications, where
frame processing rate is of significant importance, co-training
should be done with as fewer rounds as possible.

In order to validate this, we ran tests with different number
of rounds of co-training, starting from as low as 5, going
up to 150 in some cases. Figure 3 (a) shows a plot of
classification accuracy versus the number of rounds of co-
training for the ‘Intelligent Room’ sequence (the ‘Intelligent
Room’ sequence along with its ground truth data and other
sequences used in Section VI are courtesy of the Computer
Vision and Robotics Research Lab of UCSD). The training
set size was 50 examples, while testing was done on 791
examples. Results are shown by averaging accuracy with
100-fold runs, with the training set chosen randomly at each
fold. The curve in red shows accuracy with co-training, while
the one in blue shows accuracy when only the initial set of
labeled data is used. Figure 3 (b) shows a similar plot for the
‘Highway’ sequence. In this case, the training set size was
400, while test set size was 1000 examples. The number of
rounds of co-training were varied from 5 to 40.

A. What happens with increasing co-training rounds?

It can be observed in both cases that increasing the
number of rounds of co-training does not improve accuracy
values much, if at all. At first, this seems contrary to our
understanding of the algorithm, as well as the result obtained
by Nigam and Ghani [9]. They show an experiment in which

989

2 W e @ 0 1@ 14 K 10 [
Rounds of cotraning

(@) (b)
‘Intelligent Room’ ‘Highway’

EEE [l
Rounds of co-taining

Fig. 3. Variation of accuracy with varying rounds of co-training on two
sequences. Note the improvement provided by co-training as opposed to
using only labeled data.

increasing the rounds of co-training improves classification
accuracy at every round. However, these results were only
produced for a semi-artificial dataset they generate, keeping
in mind the assumptions that co-training relies on. They
combine two datasets to form one single dataset, such that
the two separate feature sets they use are truly independent.
We know from previous discussion that when this conditional
independence assumption is satisfied, a new labeled example
given by one classifier is seen as a random training example
by the other, which can improve its performance. Therefore,
it is very much expected that with more rounds of co-training
(in effect more random labeled data for each classifier), the
classifier accuracy improves.

The features we use are not independent in the first place.
Secondly, our data comes from a vision system, which
includes camera sensor noise, compression noise, and other
artifacts expected from an ordinary camera system.

We believe that these (feature dependence and noise) are
the reasons for the observation that increasing the number of
rounds does not improve classifier accuracy at all times.

B. So how does this help us?

We can see from Figure 3 that even with a small number of
co-training rounds, classification accuracy is better as com-
pared to the accuracy obtained without using any unlabeled
data. This is a very useful result, since we would like to use
as small a number of rounds as possible, to speed up online
classification.

These results, therefore show that with similar training
set sizes, co-training does help improve classifier accuracy
quite significantly. The question that remains is this: Can
we use a larger initial labeled set (if available), and use
supervised learning to achieve the same benefit in accuracy
as that achieved by co-training?

We address this question in the following. Figure 4
shows a plot of classification accuracy in both settings
with changing training set size. We observe that co-training
always outperforms the supervised setting, with all data sizes.
Furthermore, the figure also shows that accuracy obtained
using co-training with only 50 labeled examples is better
than accuracy obtained without co-training using up to 500
labeled examples. In other words, within this range, accuracy
using only labeled examples for classification is always lower
than the accuracy using unlabeled data. Similar results have
been obtained on other datasets with extensive testing, and
we show only a representative case for space constraints.

Two conclusions can be drawn from this:

1) By using unlabeled data, we achieve very good classifi-
cation accuracy even with very small training set sizes.

Plot showing accuracy values with changing training set size
T T T T T T T T

-
@

~
2l

)
=

~1
%)

o
=]

Classification accuracy (%)

@
&

— With co-training
] Labeled data only

— —— Maximum labeled accuracy

1 ———Minimum co-training accuracy

@
2]

B4 i i ; i ; H 1 i
a0 100 150 200 280 300 350 400 450 £00
Training set size

Fig. 4. Classification accuracy with changing training set sizes on the
‘Intelligent Room’ sequence. The co-training setting always performs better
than the other even when the other uses much larger labeled set of examples.

This backs the reduced computational cost argument
made earlier. In this case, better classification accuracy
was achieved even with a 10 times smaller training set.
2) Even if we can train classifiers with any large training
set sizes, it is hard (if not impossible) to get compara-
ble accuracy if we do not make use of unlabeled data.

These results justify the use of unlabeled examples for
classification, in terms of speed as well as accuracy.

V. RESULTS ON VIDEO FRAMES

In this Section, we provide some results on the actual
video sequences. In the figures, blue indicates regions clas-
sified as foreground by the algorithm while red indicates
regions classified as shadows.

Two important aspects should be considered when evalu-
ating these results. One is that no global information is used
for labeling the pixels. Secondly, we use an initial labeled
set of examples sampled randomly from a labeled pool. This
can lead to unbalanced sampling (a large difference between
the number of training examples belonging to each label),
which may deteriorate performance of the system. If a human
manually labels a few pixels in both classes, the training data
can be made much more balanced. We use a random sample
so as to evaluate the concept of this method without relying
on specific assumptions on the training set distribution.

In Figure 5, we use labeled data (100 points) from one
frame of the video to construct the base classifiers. Then
another frame is fed to the classifiers, and using 50 examples
from the new frame, the combined classifier is built using
co-training.

In the first 6 rows of Table III, we compare our results
to other pixel-based methods (methods in which no post-
processing is performed). The two metrics - Shadow Detec-
tion Accuracy () and Shadow Discrimination Accuracy (£),
are defined in [1]. Detection accuracy aims to measure the
percentage of true shadow pixels detected. Discrimination
accuracy is an indicator of the false positive rate, higher the
discrimination accuracy, lower is the false positive rate. We
compare our results with those from [1] on the ‘Intelligent
Room’ sequence. Ground truth data from this sequence was
obtained from UCSD (109 manually marked frames), and
it is the same that was used to obtain the results reported
in [1], making the comparison fair (ground truth data for
other sequences was not available). From Table III, we can
see that Co-training gives favorable results compared to the

990

(b) ()

Fig. 5.

(d) (e) ®

Output of the combined classifier using co-training on different sequences. (a) and (d) show the original frames, (b) and (e) show output of the

algorithm using co-training, and (c) and (f) show output using labeled data only. Note the drastic improvement in classification quality provided by the

use of unlabeled data.

(b)

Fig. 6. (b) shows results when labeled data from the ‘Highway’ sequence
is used, while (d) shows results when labeled data from the ‘Intelligent
Room’ sequence is used.

best previous methods. The last 3 rows in the Table will be
discussed in the following sections.

n (%) | € (%) | Combined Score

(Mean)

SNP [1] 72.82 | 88.90 80.86

SP [1] 7627 | 90.74 83.50

DNMT [1] 78.61 | 90.29 84.45

DNM2 [1] 62.00 | 93.839 77.94
[Co-training [86.49 [92.27] 89.38 |
[Co-training (Adaptive) [81.23 [8512] 83.18 |
[Method in [7] (post-processing) [87.99 T 97.08 | 92.54 |
| Co-training + post-processing | 91.12 | 97.55 | 94.33 |

TABLE III

COMPARISON OF OUR RESULTS WITH THOSE REPORTED BY PRATI ET
AL. [1] AND JOSHI ET AL. [7]. OUR RESULTS ARE SHOWN IN BOLDFACE.

A. Co-training is adaptive

Figure 6 shows results obtained by using an initial labeled
set from the ‘Intelligent Room’ sequence and testing on the
‘Highway sequence’ and vice versa.

Observing the intensity of shadow and foreground regions
in the two sequences, we see that they differ widely. One of
the features we use is the ratio of intensity of the pixel in the
current frame to the intensity of the pixel in the background
model. For the ‘Highway’ sequence, shadow regions have
this value in the range of 0.5 to around 0.75, whereas for
the other video, this ratio ranges from 0.65 to about 0.95.
Even with this difference in the feature values, training on
the labeled set of one, and then using co-training on the other
produces good results. This is surprising, and very useful at
the same time. Other methods need to explicitly tune the
parameters for each particular video. We do not need to do
that in this co-training setting, which shows an interesting
adaptive behavior of the algorithm.

991

. Feature 1 . —— — Co-training

¥ 80 ¥ 80 1 ———Only labeled data

= =, : p———

£ A T

2 2 70 :

4 4

5 5 I z §

E E BD \ B REEREERPPP

= = S ; :

E‘, E‘, . \,Hgfﬂa_—r\,/—

= “ 7 0s 1 15
Feature “alue shift Feature Value shift

. Feature 3 . Feature 4

& 80 £ a0 -

) z é

2 z T e T T T

D s T e — T e e T T T Z 75 T A

g : g : :

5 s T T e T T

E TObeens E E FObons _\\

= e e e : : S

]]

2 s i i 2 s i i ~

c o 05 1 15 27D 05 1 15

Featura Walue shitt Feature Yalue shift

Fig. 7. Shows how co-training adapts to shifts in the feature values of the
data. Supervised learning fails to capture this drift, however, with the help
of unlabeled data, the classification boundary is adaptively altered.

One row of Table III (Co-training (Adaptive)) shows
Detection and Discrimination Accuracy on the ‘Intelligent
Room’ sequence, when trained on 100 examples from an
outdoor sequence. This still shows comparable values to
other methods, showing adaptive behavior. Note that the
other methods have been fine-tuned to work well for the
particular sequence explicitly. This observation is extremely
significant, since it has important implications in vision
systems. As per our knowledge, none of the previous works
have reported this behavior.

In order to see if this behavior is exhibited for a broader
spectrum of data from different sources, we carried out more
comprehensive experiments. Figure 7 shows results for a
frame of video extracted from our vision system. In each
of the four plots, the following is done. The data is split into
two parts. We train classifiers on one part of the data. Then,
we modify one of the feature values for all examples in the
other part, keeping the same class labels. The classifiers are
then deployed on this part, and accuracy values are obtained.
On the X-axis, the amount of feature shifts are noted. This
feature shift is not absolute. The values mentioned are the
amount by which a feature value is shifted scaled by its
mean value. For example, 1.2 on the X-axis represents a
shift of 1.2 times the mean of feature value for all examples
(fi < fi £ 1.2 - mean(f;)). Hence, note that a value of 1.5
is a large shift in feature space. The four plots show one
feature shifted in each. The plots on the top left and bottom
right show that with increasing shift of feature values, the
classifier trained using SVM alone deteriorates in accuracy
smoothly. However, the plot at the top right of the figure

(b)

Fig. 8.
detection results using our technique

shows a drastic lowering in accuracy at one point, and it
stays at that low value since. We get some understanding
of the underlying feature distribution from the behavior of
these plots. In case there is a high population of examples
in feature space near the classification boundary, shifting
feature values will possibly impact the classifier performance
acutely. This could be the cause of the sudden drop of
accuracy when a particular value of shift is made. On the
other hand, if population of examples in feature space is
small near the classifier boundary, shifting feature values
might not affect the classifier accuracy values much. The
plots at the top left and bottom right in Figure 7 show such
a behavior.

In all cases, note that the classifier that uses co-training
maintains high accuracy values for the entire range of feature
shifts. In a sense, it adapts to the new classification boundary
with the help of unlabeled examples. Intuitively, this could
be attributed to the two distinct “views” of the example
obtained from the two separate classifiers. This aspect is
very important, especially for computer vision systems. In
many vision tasks, we know what features best represent the
knowledge based on which we wish to distinguish between
different classes. Even though these features are the same,
their values might change from one scene to another (based
on illumination conditions, scene geometry, sensor variation,
background etc.). This is countered by tuning the system
manually, usually by trial and error, or exhaustive search.
A semi-supervised framework like the one presented in this
paper holds tremendous potential for similar vision problems,
in which the system needs to adapt online to scene changes.

VI. RESULTS WITH POST-PROCESSING

So far, we have used only pixel-based cues for classifi-
cation. For better performance, it is important to use more
surrounding information for classification, to preserve homo-
geneity between pixels belonging to the same region. We use
the region post-processing technique from our previous work
[7]. This helps remove noise in the classification, and also
uses neighborhood information in case the pixel labels are
ambiguous. Results with region-based post-processing are
shown in Figure 8. These results show a drastic improvement
in performance over previous methods [1], [7]. See the last
2 rows of Table III for details.

In summary, our framework is general enough to ac-
commodate new features that might be found useful for
classification. Also, in most cases, our algorithm is com-
pletely parameter-free because of automatic tuning of the
learning technique. This contrasts with heavy dependence
on parameters as in recent approaches [7].

VII. CONCLUSIONS

In this paper, we presented and evaluated a new framework
based on semi-supervised learning for detecting moving

it

N\
a SN

(d) (e) ®

Shadow detection results with semi-supervised learning and post-processing. (a), (c), and (e) show the original frames. (b), (d), and (f) show

shadows. This is especially applicable in demanding sce-
narios like vision systems mounted on mobile robots. In
applications like Intelligent Transportation systems as well,
such a scheme is highly effective because of its ability to
adapt to changing conditions.

ACKNOWLEDGMENTS

This work has been supported in part by MnDOT, the ITS
Institute at the University of Minnesota, and the National
Science Foundation through grants #IIS-0219863, #CNS-
0224363, #CNS-0324864, #CNS-0420836, #I1P-0443945,
#I1P-0726109, and #CNS-0708344.

REFERENCES

[1] A. Prati, I. Mikic, M. M. Trivedi, and R. Cucchiara, “Detecting Moving
Shadows: Algorithms and Evaluation”, In [EEE TPAMI, vol. 25, no. 7,
pp- 918-923, July 2003.

[2] J. Stauder, R. Mech, and J. Ostermann, “Detecting of Moving Cast
Shadows for Object Segmentation”, In IEEE Trans. Multimedia, vol. 1,
no. 1, pp. 65-76, March 1999.

[3] T. Horprasert, D. Harwood, and L. S. Davis, “A Statistical Approach
for Real-Time Robust Background Subtraction and Shadow Detec-
tion”, In Proc. ICCV Frame-Rate Workshop, 1999.

[4] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Objects,
Shadows, and Ghosts in Video Streams by Exploiting Color and
Motion Information ”, Proc. Eleventh Int’l. Conf. Image Analysis and
Processing, pp. 360-365, September 2001.

[5]1 1. Mikic, P. Cosman, G. Kogut, and M. M. Trivedi, “Moving Shadow
and Object Detection in Traffic Scenes”, Proc. ICPR, vol. 1, pp. 321—
324, September 2000.

[6] M. Kilger, “A Shadow-Handler in a Video-Based Real-Time Traffic
Monitoring System”, Proc. IEEE Workshop on Applications of Com-
puter Vision, pp. 11-18, 1992.

[71 A.J. Joshi, S. Atev, O. Masoud, and N. Papanikolopoulos, “Moving

Shadow Detection with Low- and Mid-Level Reasoning”, In Proc.

ICRA, 2007.

F. Porikli and J. Thornton, “Shadow Flow: A recursive method to learn

moving cast shadows”, In Proc. ICCV, 2005.

[9] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability
of co-training”, Proc. 9th Int’l Conf. Information and Knowledge
Management, pp. 86-93, 2000.

[10] C. Stauffer and W. E. L. Grimson, “Adaptive Background Mixture
Models for Real-Time Tracking”, In Proc. CVPR, vol. 2, 1999.

[11] S. Atev, O. Masoud, and N. Papanikolopoulos, “Practical Mixtures
of Gaussians with Brightness Monitoring”, Proc. IEEE Seventh Int’l
Conf. ITS, pp. 423428, October 2004.

[12] V. Vapnik, “Statistical Learning Theory”, Wiley, 1995.

[13] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with
co-training”, Proc. 11th annual Conf. Computational learning theory,
pp. 92-100, 1998.

[14] J. C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition”, Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, 1998.

[15] C. Chang and C. Lin, “LIBSVM: a
port vector machines”, 2001.
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[16] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, “Text classi-
fication from labeled and unlabeled documents using EM”, Machine
Learning, vol. 39, no. 2/3, pp. 103-134, 2000.

[17] S. A. Goldman and Y. Zhou, “Enhancing Supervised Learning with
Unlabeled Data”, Proc. ICML, pp. 327-334, 2000.

[18] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz,
“UCI Repository of machine learning databases”, University of
California, Department of Information and Computer Science.
[http://www.ics.uci.edu/ mlearn/MLRepository.html].

[8

[t}

library for sup-
Software available at

992

