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Branislav Mičušı́k1, Horst Wildenauer and Markus Vincze2

Abstract— In this paper, we describe the components of a
novel algorithm for the extraction of dominant orthogonal
planar structures from monocular images taken in indoor envi-
ronments. The basic building block of our approach is the use of
vanishing points and vanishing lines imposed by the frequently
observed dominance of three mutually orthogonal vanishing
directions in man-made world. Vanishing points are found by an
improved approach, taking no assumptions on known internal
or external camera parameters. The problem of detecting
planar patches is attacked using a probabilistic framework,
searching for the maximum a posteriori probability (MAP)
in a Markov Random Field (MRF). For this, we propose a
novel formulation fusing geometric information obtained from
vanishing points and features, such as rectangles and partial
rectangles, together with a color-homogeneity criteria imposed
by an image over-segmentation.

The method was evaluated on a set of images exhibiting
largely varying characteristics concerning image quality and
scene complexity. Experiments show that the method, despite
the variations, works in a stable manner and that its perfor-
mance compares favorably to the state-of-the-art.

I. INTRODUCTION

In the last years the interest in designing mobile robots for

domestic tasks has been rapidly growing within the robotics

community. Besides being an important field of its own

right, building scalable and affordable platforms in response

to the diverse application scenarios targeted at by industry

represents a tempting goal for robotics research.

In this context, solutions solely based on visual sensory

input are moving still more into the center of interest. On

one side there is the economical factor pushing down prices

of robots by avoiding expensive sensors, on the other hand,

images or video acquired by cameras already contain rich

information to harvest for tasks such as scene understanding,

localization, and navigation. Consequently, during the last

years the work on vision-based systems has emerged as a

very challenging area from practical and scientific point of

view. There is an enormous effort, partially propelled by the

cognitive vision research field, to perceive and understand a

scene just from visual information.

In this paper, we describe a novel approach devised to help

a robot to understand the content of a scene, given a single

image. To be more specific, we propose a method for decom-

posing a single monocular image, possibly stemming from
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Fig. 1. Proposed sequential chain leading to detection of orthogonal
planes in a monocular image. (a) The input image (844×1126 pixels)
with vanishing lines depicted. (b) Detected lines consistent with three
automatically estimated orthogonal vanishing points. (c) Detected partial
and complete quadrilaterals utilizing the vanishing points and lines pointing
to them. (d) Final segmentation of planes based on a Markov Random Field
formulation employing vanishing points, lines, and quadrilateral segments.

a non-calibrated camera, into orthogonal planes, see Fig. 1.

Finding these planes in the image can significantly aid a

robot in self localization, navigation and further recognition

of objects or landmarks dominating indoor environments,

such as windows, doors, tables, chairs, etc. A priori, we

design a method for non-calibrated acquisition settings to be

able to also handle cases for which either the internal camera

parameters are unknown, or are likely to be imprecise. In

experiments it is shown that the method is able to extract

a significant amount of structural information from a single

monocular image. However, a later merging of entire image

sequences will greatly contribute to a stabilization of the

whole process.

The general concept of the proposed chain is related to

previous approaches [1], [2], [3], [4]. However, we formulate

the problem in a probabilistic graph-based framework allow-

ing to solve it on a more global level than before. The paper

is in its spirit and goals most similar to the recent state-of-

the-art work of Hoiem et.al. [4]. They use learnt appearance

models based on various geometric, color, and texture cues to

partition an image into coarse 3D surface entities. We show

that even without learning and by applying less cues we can

still compete with their method.
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The novelty of the paper is two-fold. First, an adopted

RANSAC-based line clustering stage for detecting vanishing

points and lines consistent with them is described, improving

in stability over previous techniques. Second, we formulate

the problem of detecting planes in a monocular image using

the estimated vanishing points in a probabilistic framework

based on searching for maximum a posteriori probability

(MAP) of a Markov Random Field (MRF).

In our approach we partially exploit the so-called Man-

hattan world assumption. I.e., the frequently observed dom-

inance of three mutually orthogonal vanishing directions in

man-made environments [5]. Motivated by ideas presented

in [6], we adopted a RANSAC-based line clustering tech-

nique which is able to find dominant vanishing directions

in a robust manner. The suggested method takes constraints

imposed by a calibrated camera into account; however

internal camera parameters do not have to be known a

priori as they are estimated during the clustering process.

The vanishing point estimation is followed by a search for

perspectively distorted rectangles - basic landmarks in man-

made environments that are helping further to set the priors

for our MRF-based plane detection method. We propose

how the estimated vanishing points should be utilized for

a suitable setting of weights for edges and vertices of the

graph representing the MRF we are operating on.

The method is intent to be applied on mobile platforms

where real-time, or at least close to real-time performance,

is required. The proposed steps are designed with respect

to that, so they can be efficiently coded to fulfill such a

requirement.

The structure of the paper is as following. First, the

estimation of vanishing points and lines pointing to them

is explained in Sec. II followed by Sec. III with a short

description of the detection of quadrilateral structures. An

Explanation of our MRF-based approach for final localiza-

tion of planes in an image is given in Sec. IV. We summarize

the entire algorithm in Sec. V and report experimental results

in Sec. VI.

II. VANISHING POINT DETECTION

Man-made environments generally exhibit strong regular-

ity in structure and often many parallel lines are present. In

such settings, vanishing points provide useful visual cues for

deducing information about the 3D structure of an imaged

scene. Furthermore, if two or more vanishing points are

found of which the underlying structure’s orientations are

assumed to be orthogonal, then, taking mild assumptions,

internal camera parameters can be estimated.

In the following sections, a brief outline of the involved

processing stages and the line error model in use is given.

A. Line detection

Initially, connected edge segments are found utilizing a

Canny-edge detector with subpixel accurate non-maxima

suppression and adaptive hysteresis-thresholding. Following

directional edge linking, line candidates are extracted using

the iterative subdivision scheme from [7]. The resulting line

Fig. 2. Comparison of the method [8] and our proposed algorithm on
an image of a cluttered scene. Line sets corresponding to each of three
detected vanishing points, differentiate by color, are shown. Notice that the
orthogonal set of vanishing points, depicted by memberships of lines to
them, was estimated incorrectly by the method [8], but correctly by our
algorithm. White lines in the left image correspond to noisy lines, not
associated with any vanishing point.

segments are refined by a Total Least Squares fit to the edge

segments pixel coordinates and short lines or lines with low

fitting quality are rejected [8].

For images with low resolution a substantial increase in

the number and quality of detected line segments can be

achieved by up-sampling the image by factor two prior to

edge detection [9].

B. RANSAC-based line clustering

In this stage vanishing point hypotheses are repeatedly

generated through the intersection of lines. The intersection

points having a large enough set of lines pointing towards

them are likely to be true vanishing points and are reconsid-

ered in further processing stages.

1) Line segment error: To quantify the error of a line

segment meeting a vanishing point, an ideal line from the

segment’s midpoint to the vanishing point is constructed

and the normal distance of one segment endpoint to this

line is measured. Formally, this distance can be written as

d2(ai, āi), where ai is the measured line segment endpoint,

and āi is its root point on the ideal line. The described model

is based on the assumption that there is little variation in

the midpoint of the line segment, as it is the mean of the

involved pixel positions. Other error models can be found

in [10], [11].

2) Iterative RANSAC: Since the actual mixture fraction

of lines belonging to different vanishing points is unknown,

we adopt the adaptive variant proposed in [12]. Specifically,

we run the algorithm several times over the dataset and

successively remove the largest found inlier set from the data

before the next trial. After each trial, the vanishing point

position is refined by applying Kanatani’s renormalization

scheme [13] to the respective consensus set. We reject newly

detected vanishing points if they lie within the uncertainty of

previously detected ones utilizing the test statistics proposed

in [6]. Here, however, we adopted the vanishing point covari-

ance matrices obtained by renormalization. The iteration is

stopped, if no more consensus sets with a cardinality above

a predefined threshold are found.

3) Candidate selection & camera calibration: Depending

on the complexity of the scene the described clustering

typically results in numbers of three up to ten vanishing point
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candidates. From this set we exhaustively select vanishing

point triples and retain only those with approximately or-

thogonal projective rays. Finally, from the remaining triples

the one having the largest total consensus set is chosen as

the final estimate of the dominant orthogonal structure.

In the case of unknown internal camera parameters, the

camera calibration necessary for the orthogonality test can

be carried out individually for each triple of vanishing points.

For this we have chosen the composite calibration method

described in [13], assuming square pixels and the camera’s

principle point to be located in the center of the image.

Our experiments have shown that a further refinement of

its position often caused unstable calibration results, thus we

did not consider it further.

C. Comparison to other known methods

In preliminary experiments, we compared our method to

implementations of two state-of-the-art methods [8], [14]

provided by the authors. We found our algorithm to give

qualitatively comparable results to the latter, however usually

running five to ten times faster, see Fig. 2 for comparison.

III. QUADRILATERAL DETECTION

Human made environments contain many rectangular

structures. These, depending on occlusions and the camera’s

field of view, are projected as complete quadrilaterals or

incomplete parts (e.g., U- or L-shaped features) thereof. Such

features represent strong visual cues for the detection of

planar surfaces and consequently are of aid to the task of

scene reconstruction and understanding.

In our work we use a perspective rectangle detection

method related to the approach of [1], however, applying a

probabilistic graph-based method. Line segments compatible

with a vanishing line, i.e., the two vanishing points generat-

ing it, are grouped by principles of proximity and continuity

and a probabilistic inference is used to find hypotheses

for quadrilateral-shaped structures in the graph. On of the

major advantages of our approach is that it does not only

detect perspectively distorted rectangles, but also sub-parts

if they are compatible with the initial plane-hypothesis. For

an example of the features found, see Fig. 1.

As this method is currently under a reviewing process,

further technical details will be omitted here. However, it

can be easily replaced with other techniques, such as the

one presented in [2], [15].

IV. MRF BASED PLANE DETECTION

Having detected vanishing points and lines pointing to

them we want to assign to each pixel in an image its 3D

orientation w.r.t. to a camera coordinate system. As we

assume a Manhattan world structure, this is equivalent to

assign one of three labels, where each label corresponds to

one of three orthogonal planes.

To solve the problem on a global level, i.e. to allow

to take into account prior information about possible pixel

orientations and relations between neighboring pixels simul-

taneously, we formulate the problem in a fully probabilistic

object t with nodes xt

object t′

edges with g
tt′

(xt, x
t′

)

gt(xt =1)

gt(xt =2)

gt(xt =3)

Fig. 3. An example 3×4 grid graph G for |X | = 3 labels with symbols
explained in the text. A labeling L, i.e. solution, from Eq. (2) is shown by
a red thick subgraph. Image provided by courtesy of T. Werner [17].

framework; as searching for a maximum posterior (MAP)

configuration of the Markov Random Field (MRF) [16]. It

has been shown [17] that the solution can be found as a

Gibbs distribution with maximal probability, i.e., by solving

the so called labeling or Max-sum problem of second order -

maximizing a sum of bivariate functions of discrete variables.

We assume an MRF, i.e., a graph G = 〈T , E〉, consisting of

a discrete set T of objects (in the literature also called sites,

or locations) and a set E ⊆
(

|T |
2

)

of pairs of those objects.

Each object t ∈ T is assigned a label xt ∈ X where X is

a discrete set. A labeling is a mapping that assigns a single

label to each object, represented by a |T |-tuple x ∈ X |T |

with components xt.

An instance of the Max-sum problem is denoted by the

triplet (G,X ,g), where the elements gt(xt) and gtt′(xt, xt′)
of g are called qualities. The quality of a labeling x is defined

as

F (x |g) =
∑

t

gt(xt) +
∑

{t,t′}

gtt′(xt, xt′). (1)

Solving the Max-sum problem means finding the set of

optimal labellings

LG,X (g) = argmax
x∈X |T |

F (x |g). (2)

Fig. 3 depicts the symbols and the problem in a more intuitive

way on a simple grid graph. Recently, very efficient algo-

rithms for solving this problem through linear programming

relaxation and its Lagrangian dual, originally proposed by

Schlesinger in 1976 [18], has been reviewed [19], [17], [20].

A. Graph entities

Generally, the most difficult problem and art connected

to MRF based methods is to encode all possible priors

about objects being labeled (e.g., orientation, texture, color,

shape, appearance) into a graph, i.e., a MRF, while still

keeping the problem tractable. The priors we utilized lead to

partitioning an image into geometrically and color coherent

regions as Fig. 1 shows.

We build a graph on an over-segmented image, i.e., on

superpixels, see Fig. 4, to keep the running time in reasonable

bounds. The idea is to locally merge pixels with similar

color together. The use of superpixels significantly reduces
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the number of objects in the graph, still preserving texture

information. Simply reducing the image size and building

an MRF on pixels to avoid the large complexity as imple-

mented in many approaches leads to losing details and high

texture frequencies. In this paper, we use the fast Minimum

Spanning Tree based method by Felzenszwalb [21], giving

us, by appropriate setting of parameters, 500-800 regions on

average. However, any other over-segmentation can be used.

The graph entities are the following. The superpixels

represent objects, i.e. the set T , in the graph and edges,

i.e. the set E , are established between each two neighboring

superpixels. The number of nodes (labels) K is 4, that is,

we use one label for each orthogonal plane and one label

for “undecided” to allow the solver mark the places where

there is not enough information to decide which plane the

superpixel belongs to.

Each edge gtt′(xt, xt′) and each object node gt(xt) is set

accordingly to the smoothness and data term respectively,

described in the following sections. After building and setting

the graph, the Max-sum solver [17] is run to obtain a

particular label xt for each superpixel t.

B. Smoothness term

The smoothness term gtt′(xt, xt′) controls the mutual

bond of neighboring superpixels. In our case we take into

account the color difference between superpixels and the

straightness of the common boundary. This can be written

as follows

gtt′(xt, xt′) = exp
(

α‖ut − ut′‖
2
)

− β Sst
tt′ , (3)

where ut is a 3-element color vector of the t-th superpixel

(mean color of all pixels belonging to that superpixel) and

α < 0 is a parameter pre-set to −10. We represent ut in the

Lab color space because of the perceptual non-uniformity

of the standard RGB space. Sst
tt′ =

P

N
i

length linei

length boundary is a sum

of lengths of N lines fitted to the shared boundary between

two superpixels t and t′ (longer than 20 pixels), see Sec. II-

A, normalized by the length of the boundary. The parameter

β controlling the influence of the smoothness term, was set

to 0.5 in our experiments.

The proposed smoothness term in Eq. (3) tends to merge

superpixels with similar color and jagged boundaries. Such

jagged boundaries are usually produced accidentally due to

weak gradients [21] and therefore do not correspond to real

splits of two superpixel patches in the scene.

C. Data term

The data term gt(xt) encodes the quality of assigning

a label x from the set X to an object/superpixel t in the

graph. The quality measures how the superpixel itself suits

to particular class models, in our case, to lie on one of the

orthogonal planes.

For each superpixel 4 numbers are needed to be set,

i.e., how likely is that the superpixel is marked by one of

four labels. The first three labels stand for the belief that

a superpixel lies on one of the three orthogonal planes; the

forth label encodes the level of “undecidedness”.

Fig. 4. Left: Superpixels detected in the image from Fig. 1. Each
region corresponds to one object in the constructed graph. Right: The
smoothness term. Boundary-color encodes the penalty set in the graph
between the objects corresponding to two neighboring superpixels. Darker
coloring denotes less penalization. Note, that straight boundary segments
are penalized stronger.

The consistency of a superpixel to a plane is expressed

via a deviation of gradient orientations of the pixels along

the boundary of the superpixel to two vanishing points

corresponding to that plane. For computation of the gradient

orientations we use the 5-component gradient mixture model

described in [5]. For each image pixel, the model gives the

probability of the pixel lying on an edge, the membership

to one of the three vanishing points, and the probability of

being noise. We take into account only those pixels having

a probability of being on an edge above a certain threshold.

Then, a normalized histogram ht(y) with four bins y =
{1, 2, 3, 4} is computed from vanishing point memberships

of all pixels lying along the t-th superpixel boundary. The

fourth bin accumulates points classified to be on an edge,

however, not consistent with any vanishing point direction.

Finally, the consistency of the superpixel with each label

is set as

gt(x) =

{
∑

3

i=1
i6=x

ht(i) if x = {1, 2, 3},

ht(x) if x = 4.
(4)

In the data term, two additional priors are utilized. One

stemming from the position of ideal lines and one from

detected quadrilateral segments. The ideal line is defined as a

line passing through two vanishing points and is a projection

of an intersection of a 3D plane with a plane at infinity [12].

It gives us the constraint that a superpixel detected in the

image cannot cross the ideal line of the plane it belongs to.

The data term of such superpixels is set to zero to decrease

the belief of them to lie on a particular plane. Fig. 1 shows

two ideal lines where one corresponds to a ground plane.

Notice that this line, called a horizon, is completely above

the ground plane and therefore superpixels on that plane are

not allowed cross the horizon.

The second prior comes from the fact that all superpixels

behind detected quadrilateral segments, see Sec. III, have to

lie on the plane where the segments are detected. The data

term of such superpixels is increased or set to a high value in

order to strengthen the belief of them to lie on that particular

plane.

V. ALGORITHM

We shortly summarize the main steps leading to the final

detection of orthogonal planes in a monocular image. The
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algorithm consists of sequential steps for the detection of

1) lines and vanishing points coming from their intersec-

tions as the largest total consensus sets corresponding

to orthogonal directions.

2) quadrilaterals or their parts corresponding to rectangles

or their parts in a scene.

3) orthogonal planes in a scene based on an MRF frame-

work formulated on over-segmented image; utilizing

vanishing points, ideal lines and quadrilaterals.

VI. RESULTS

We evaluate the proposed method on large variety of

indoor images downloaded from the Internet. Some of the

most representative are shown in Fig. 5. The images are

approximately 1 Mpixel large and their quality varies since

they were taken by different, to us unknown, cameras under

different illumination conditions. The results show feasible

and stable performance, although light reflections, shadows,

jpg-artifacts, and occlusions, are present in the images.

Fig. 5 shows each image segmented into 4 labels, three for

each orthogonal plane and one for “undecided”. We compare

our method to the state-of-the-art method [4] aiming at

exactly the same goal, i.e. at recovering surface layout from

a single image. To produce the results of [4] the publicly

available code1 was used in combination with a provided

indoor classifier. The presented results show comparable

performance of our method and often achieving better results.

Moreover, the run-time of our method was shorter, 1 min on

average, while the method of [4] took 3 min using the same

Pentium 4@2.8 GHz.

The proposed method is currently mostly implemented

in unoptimized MATLAB and many of the routines and

functions can be re-implemented in a much more efficient

way in C/C++. For finding the MAP of the MRF we use

a publicly available2 C++ implementation of the Max-sum

solver [17].

It can be seen in Fig. 5 that at some places, especially

at connections of planes, our result is not always correct.

This is caused by either superpixel missing the true boundary

and thus overlapping two planes. Or, there is an occlusion

present, i.e., one plane partially occludes the other. In the

second case, the incorrect behavior comes from the data term

formulation, Eq. (4), as the superpixel is expected to contain

two strong gradient directions only. In the case of the occlu-

sion, e.g. a table leg touching a floor, the superpixel covering

a part of the floor and touching the leg contains pixels at its

boundary which are pointing to a vertical vanishing point.

This may cause that the superpixel is incorrectly assigned

to one of the vertical planes. The resulting inconsistency,

depending on neighboring superpixels, cannot always be

solved by the smoothness term.

VII. CONCLUSIONS

We have presented a novel algorithm for the extraction

of dominant orthogonal planar structures from monocular

1http://www.cs.cmu.edu/˜dhoiem/projects/software.html
2http://cmp.felk.cvut.cz/cmp/software/maxsum/

images, taken in indoor environments. We have shown that

even without learning by using basic geometric cues we can

still compete with the state-of-the-art-method aiming at the

same goal. Although the algorithm is a priori designed to

handle occlusion-free environments, it still provides reason-

able results in cluttered scenes. The presented framework

is intend on being a part of a robot’s “decision unit” for

understanding a surrounding scene and to further support

navigation.
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