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Abstract— This paper describes a probabilistic bail-out con-
dition for multihypothesis testing based on Bennett’s inequality.
We investigate the use of the test for increasing the speed of an
appearance-only SLAM system where locations are recognised
on the basis of their sensory appearance. The bail-out condition
yields speed increases between 25x-50x on real data, with only
slight degradation in accuracy. We demonstrate the system
performing real-time loop closure detection on a mobile robot
over multiple-kilometre paths in initially unknown outdoor
environments.

I. INTRODUCTION

This paper is concerned with speed improvements to an

appearance-only SLAM system. We show that by employing

a probabilistic bail-out test in the core likelihood calculation,

speed improvements of between 25 and 50 times are possible,

with only slight accuracy penalty. Typical filter update times

are on the order of 150 ms for maps which contain several

thousand locations. This enables real-time loop closure de-

tection on a mobile robot for loops tens of kilometers in

length.

Our core appearance-only SLAM system has been previ-

ously described in [1], [2]. In appearance-only systems, the

robot’s map consists of a set of locations, each of which has

an associated appearance model. When the robot collects a

new observation, its location can be determined by deciding

which location in the map was most likely to have generated

the observation. This approach has recently shown success

in large scale global localization [3] and online loop closure

detection [1], both difficult problems in more typical metric

SLAM frameworks.

The limiting computational cost of appearance-only

SLAM is computing the observation likelihood for each

location in the map. Typically, only a small number of

these places will yield non-negligible probability of having

generated the current observation. The main idea of this

paper is that by evaluating the appearance likelihoods in

parallel, these unlikely hypotheses can be identified and

discarded while the likelihood calculation is only partially

complete, yielding large speed increases. Very similar ideas

have been described elsewhere in computer vision, notably

in the context of efficient RANSAC algorithms [4], [5].

Matas and Chum showed that for RANSAC, the sequential

probability ratio test (SPRT) yields the optimal solution.

The SPRT approach was originally designed for testing

two hypotheses under a sequence of identical and equally

informative observations [6]. Extensions exist for the mul-

tihypothesis case [7]. However, stopping boundaries for the

SPRT are not easy to derive when the observations are not

equally informative. We describe an alternative approach

based on concentration inequalities [8]. Unlike the SPRT,

this approach is straight-forward to apply even when there

are multiple hypotheses and the observations are not equally

informative. We have noted related ideas in other fields [9],

however we believe our approach is novel in this context.

II. APPEARANCE-ONLY SLAM

Our appearance-only SLAM system is described in detail

in [1], [2]. Briefly, at time t the robot’s map consists of nt

discrete locations, each location Li having an associated ap-

pearance model. Our representation of appearance is inspired

by the bag-of-words image retrieval systems developed in the

computer vision community [10]. Sensory data is converted

into a bag-of-words format; a place appearance model is

a distribution over appearance words. We extend the basic

bag-of-words approach by learning a generative model for

the sensory data, in the form of a Chow-Liu tree [11]. This

generative model captures the fact that certain combinations

of appearance words tend to co-occur, because they are

generated by common objects in the environment, and yields

a significant improvement in navigation performance.

When the robot collects a new observation Zt, we compute

p(L|Zt), the probability distribution over locations given the

observation. This can be cast as a recursive Bayes filtering

problem:

p(Li|Z
t) =

p(Zt|Li,Z
t−1)p(Li|Z

t−1)

p(Zt|Zt−1)
(1)

where Zt is the set of all observations up to time t,

p(Zt|Li,Z
t−1) is the likelihood of the observation given the

location Li and the previous observations Zt−1, p(Li|Z
t−1)

is our prior belief about our location, and p(Zt|Z
t−1)

normalizes the distribution. The normalization term can be

written as a summation

p(Zt|Z
t−1) =

∑

m∈M

p(Zt|Lm)p(Lm|Zt−1) (2)

+
∑

u∈M

p(Zt|Lu)p(Lu|Z
t−1)

over the set of mapped places M and the unmapped places

M . This summation can be approximated by sampling,

where the “unmapped places” are drawn from a set of

training data. This yields a probability that the observation

came from a place not in the map. Using the resulting

PDF over location, we can make a data association decision

and either add a new location to our map, or update the
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appearance model of an existing place. Essentially this is a

SLAM algorithm in the space of appearance.

The core of the PDF calculation is computing the obser-

vation likelihood p(Zt|Li,Z
t−1) for each location in the

map and each sample in the training set. The following

section describes an approach to increasing the speed of

this likelihood calculation. By identifying locations that will

have insignificant likelihood before the calculation is fully

complete, many locations can be excluded quickly and large

speed increases can be realized.

III. PROBABILISTIC BAIL-OUT USING BENNETT’S

INEQUALITY

Let H =
{

H1, ...,HK
}

be a set of K hypotheses and

let Z = {z1, ..., zN} be an observation consisting of N

features. The likelihood of the observation under the the kth

hypothesis is given by

p(Z|Hk) = p(z1|z2, ..., zN ,Hk)...p(zN−1|zN ,Hk)p(zN |Hk)
(3)

Define the log-likelihood of the first i features under the kth

hypothesis as

Dk
i =

i
∑

j=1

dk
j (4)

where

dk
i = ln(p(zi|zi+1, ..., zN ,Hk)) (5)

is the log-likelihood of the ith feature under the kth hy-

pothesis. We would like to determine, as rapidly as possible,

the hypothesis H∗ for which the total log-likelihood D∗

N is

maximized. Finding H∗ with certainty requires a complete

evaluation of the likelihood of each hypothesis, which may

be too slow for applications of interest. Consequently, we

consider the problem of finding a hypothesis H#, subject

to the constraint that p(H# 6= H∗) < ǫ, where ǫ is some

user-specified probability.

In overview, our approach is to calculate the likelihoods

of all hypotheses in parallel, and terminate the likelihood

calculation for hypotheses that have fallen too far behind the

current leader. “Too far” can be quantified using concentra-

tion inequalities, which yield a bound on the probability that

a hypothesis will overtake the leader, given their current dif-

ference in likelihoods and some statistics about the properties

of the features which remain to be evaluated.

Consider two hypotheses Hx,Hy ∈ H and let

Xi = dx
i − d

y
i (6)

the difference in the log-likelihood of feature i under hypoth-

esis Hx and Hy . Xi can be considered as a random variable

before its value has been calculated. This is useful because

we can calculate some key statistics about Xi more cheaply

than we can determine its exact value. Now define

Sn =

N
∑

i=n+1

Xi (7)

Fig. 1. Conceptual illustration of the bail-out test. After considering the
first i features, the difference in log-likelihoods between two hypotheses
is ∆. Given some statistics about the remaining features, it is possible to
compute a bound on the probability that the evaluation of the remaining
features will cause one hypothesis to overtake the other. If this probability
is sufficiently small, the trailing hypothesis can be discarded.

If after evaluating n features, the log-likelihood of some

hypothesis is ∆ less than the current best hypothesis, then

the probability of failing to locate H∗ if we discard this

hypothesis is given by p(Sn > ∆). Thus, knowing the

distribution of Sn allows the creation of a probabilistic

bail-out test for discarding hypotheses subject to an error

constraint. Calculating an explicit distribution on Sn is infea-

sible, however concentration inequalities – which bound the

probability that a function of random variables will deviate

from its mean value – can be applied to yield bounds on

p(Sn > ∆).
A large variety of concentration inequalities exist, many

of which apply under very general conditions, including

cases where the component distributions are not identically

distributed, not independent, and are combined using arbi-

trary functions. For an overview see [8]. Typically, the more

information available about the component distributions Xi,

the tighter the bound. Our bail-out test applies the Bennett

inequality for sums of symmetric random variables [12]. This

inequality is specified in terms of two parameters — M , a

bound on the maximum value of any component Xi, and v,

a bound on the sum of the variances of the components Xi.

Formally, let {Xi}
N
i=n+1 be a collection of independent

mean-zero random variables with symmetric distributions

(corresponding to the log-likelihood changes due to those

features not yet considered), and satisfying the conditions

p (|Xi| < M) = 1, ∀i (8)

N
∑

i=n+1

E
[

X2
i

]

< v (9)

and let

S =

N
∑

i=n+1

Xi (10)

then the Bennett inequality states that
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p(S > ∆) < exp

(

v

M2
cosh(f(∆)) − 1 −

∆M

v
f(∆)

)

(11)

where

f(∆) = sinh−1

(

∆M

v

)

(12)

Note that as the calculation of the hypothesis likelihoods

progresses, the number of unconsidered features (and hence

the number of Xi variables) decreases, so M and v will

change. As a result the bail-out threshold changes throughout

the calculation.

IV. APPLICATION TO APPEARANCE-ONLY SLAM

Ranking Features

We now turn our attention to applying this bail-out condi-

tion to our appearance-only SLAM system. Firstly, we must

define an order in which to consider the features. While the

bail-out test applies to any ordering, it is natural to rank

the features by information gain. That way, the hypotheses

will converge most rapidly toward their final log-likelihood

values and poor hypotheses can most quickly be identified

(see Figure 2).

Each of our features zi is a binary variable indicating

whether or not the ith word of the vocabulary was present in

the current observation. The occurrence of these visual words

is not independent – certain combinations of words tend to

occur together because they are generated by some underly-

ing object in the environment. To capture this structure we

learn a Chow Liu tree model [11] which approximates the

true distribution over the observations. Under this model,

each feature zi is conditionally dependent on one other

feature zpi. If we observe zi = si and zpi = spi (with

s ∈ {0, 1}), then the information gain associated with this

observation under our model is

I = − ln p(zi = si|zpi = spi) (13)

Typically observations of rare words are the highest ranked

features, though, perhaps surprisingly, failure to observe a

word can sometimes also have high information gain – for

example, if two words are almost always observed together,

then failure to observe one while observing the other is an

informative observation.

Note that because the probabilities in Equation 13 come

from the training data on which we learnt the model of our

visual words, we are calculating the information gain with

respect to the places in the training data. Strictly we should

consider the the information gain with respect to the set

of places in our current map – for example, some feature

might be very rare in the training set but very common in

the map. In practice we observe that the difference between

the two values is usually small, so maintaining a separate set

of probabilities is unnecessary.

Application of Bennett’s Inequality

To apply Bennett’s inequality, we must calculate v and

M , the parameters in Equation 11 which depend on the

component random variables Xi. In our appearance-only

SLAM system

Xi = dx
i − d

y
i (14)

= ln(p(zi|zpi, Lx)) − ln(p(zi|zpi, Ly))

where, recalling our notation from Section II, L denotes

a location (hypothesis), and x and y are random variables

which specify which locations in the map are being consid-

ered. Now, given that the values of zi and zpi are known,

p(zi|zpi, Lx) depends only on the number of times feature

zi has previously been observed at location Lx (details in

[1], [2]). Thus Xi attains its maximum value when x and y

correspond to the locations where feature i has been observed

most and fewest times respectively. Keeping track of these

statistics allows us to easily calculate M .

Calculating v, which bounds the sum of the variances of

the Xi variables, requires some information about the distri-

bution of the index random variables x and y. We assume that

these have uniform distribution, which effectively amounts

to assuming that all of our hypotheses have equal a-priori

probability1. Given this assumption, the distribution of Xi is

fully specified and can be calculated directly by considering

dx
i − d

y
i for all index pairs x, y. We observe that Xi has

a multinomial distribution which must be mean-zero and

symmetric2.

To evaluate v we must calculate the variance of this

distribution. In practice, this calculation can be fast. For

example, in our appearance-only SLAM system, when the

robot is first exploring the environment almost all place

models have only one observation associated with them,

so dx
i can take on only a small number of distinct values.

Keeping track of the possible discrete values of dx
i and

their relative proportion allows for rapid calculation of the

variance of Xi. As exploration continues, the possible values

of dx
i become larger, and the calculation becomes more

expensive. At some point it may be beneficial to switch from

using Bennett’s inequality to Hoeffding’s inequality [13], a

similar concentration inequality that requires knowledge only

of the maximum value of each Xi. Hoeffding’s inequality

gives a weaker bound, but this is compensated for by the fact

that by the time the variance becomes expensive to compute,

the place models themselves are more differentiated, and so

their likelihoods will diverge faster.

One remaining issue is that our appearance-only SLAM

system requires a PDF over hypotheses, whereas our discus-

sion so far has concerned locating only the best hypothesis.

Computing a PDF requires a simple modification to the bail-

out scheme. Consider that instead of locating only the best

hypothesis H∗, we would like to locate all hypotheses whose

1If the assumption is far from the truth, then Hoeffding’s inequality can
be applied in place of Bennett’s. See below.

2If Xi = c for some choice of indices x, y, then Xi = −c for y, x.
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log-likelihood is at most C less than that of H∗. C is a user-

specified constant chosen so that hypotheses less likely than

this can be considered to have zero probability with minimal

error. Simply increasing our bail-out distance by C will retain

all those hypotheses whose final likelihood may be within

this likelihood range, thus giving us a close approximation

to the PDF over hypotheses.

A final note – Bennett’s inequality requires that the vari-

ables Xi are independent. Our Chow Liu model captures

much but not all of the conditional dependence between

features. Thus the variables Xi may have weak dependence.

Our experiments would appear to indicate that this is not a

problem in practice.

V. RESULTS

We tested the system on data collected by a mobile robot.

The robot collected images to the left and right of its

trajectory approximately every 1.5m. Each collected image

is processed by our algorithm and is used either to initialize

a new place, or, if loop closure is detected, to update an

existing place model. Results are presented for three datasets.

The first dataset – labeled City Centre – is 2km in length and

was chosen to test matching ability in the presence of scene

change. It was collected along public roads near the city

centre, and features many dynamic objects such as traffic and

pedestrians. The second dataset – New College – is 1.9km

in length and was chosen to test the system’s robustness to

perceptual aliasing. It features several large areas of strong

visual repetition, including a medieval cloister with identical

repeating archways and a garden area with a long stretch

of uniform stone wall and bushes. The third dataset – Parks

Road – features a typical suburban environment. The robot’s

appearance model was built from a fourth dataset collected

in a different region of the city, the area of which did not

overlap with the test sets.

Navigation results for these datasets were generated using

both the original SLAM system and the accelerated SLAM

system incorporating the bail-out test. All datasets were

processed using the same visual vocabulary and algorithm

parameters. The bail-out boundary was set so that the prob-

ability of incorrectly discarding the best hypothesis at any

step was < 10−6. This value can be varied to trade off speed

against accuracy.

Results are summarized in the figures below. Figure 2 il-

lustrates the bail-out calculation on some real data. Precision-

recall curves for the full and accelerated algorithms on the

City Centre dataset are shown in Figure 4. The curves were

generated by varying the probability at which a loop closure

was accepted. Recall rates are quoted in terms of image-to-

image matches. As a typical loop closure is composed of

multiple images, even a recall rate of 35% is sufficient to

detect almost all loop closures. The relative performance of

the two algorithms on the other datasets is summarized in Ta-

ble I. Figure 3 visualizes the performance of the accelerated

algorithm on the City Centre dataset. The system correctly

identifies a large proportion of possible loop closures with

high confidence. There are no false positives that meet the

Fig. 3. Appearance-only matching results (using the accelerated algorithm)
for the City Centre dataset overlaid on an aerial photograph. The robot
travels twice around a loop with total path length 2km, collecting 2,474
images. Each of these images is determined to be either a new place or
a loop closure. Positions (from hand-corrected GPS) at which the robot
collected an image are marked with a yellow dot. Two images that were
assigned a probability p ≥ 0.99 of having come from the same location are
marked in red and joined with a green line. There are no incorrect matches
that meet this probability threshold.

Fig. 4. Precision-Recall curves for the City Centre dataset, showing the
full likelihood calculation (red) and the accelerated calculation using the
bail-out test (green). Notice the scale.

probability threshold. Figures 6 and 7 show some examples

of place recognition performance, highlighting matching

ability in the presence of scene change and robustness to

perceptual aliasing. The robustness to perceptual aliasing is

particularly noteworthy. Of course, had the examples shown

in Figure 7 been genuine loop closures they might also have

received low probability of having come from the same place.

We would argue that this is correct behaviour, modulo the

fact that the probabilities in (a) and (b) are too low. The very

low probabilities in (a) and (b) are due to the fact that the best

matches for the query images are found in the sampling set,

capturing almost all the probability mass. This is less likely

in the case of a true but ambiguous loop closure, particularly

because in the case of a true loop closure the ambiguity can

be resolved by temporal information via the prior term in

Equation 1.
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Full Calculation Fast Bail-Out

Dataset Recall Mean Time Recall Mean Time Speed-Up

City Centre 37% 5015 ms 35% 141 ms 35.5
New College 46% 4818 ms 42% 178 ms 27.0
Parks Road 44% 4267 ms 40% 79 ms 53.6

TABLE I

COMPARISON OF THE PERFORMANCE OF THE SLAM SYSTEM USING FULL AND ACCELERATED LIKELIHOOD CALCULATIONS. THE RECALL RATES

QUOTED ARE AT 100% PRECISION. TIMING RESULTS ARE FOR THE FILTER UPDATE, ON A 3GHZ PENTIUM IV. FEATURE GENERATION ADDS AN

EXTRA 330 MS ON AVERAGE. UPDATE TIME FOR THE ACCELERATED CALCULATION IS DATA DEPENDENT AND VARIES FROM OBSERVATION TO

OBSERVATION. TIME QUOTED IS THE AVERAGE OVER THE DATASET.

(a) Features Ordered by Information Gain (b) Random Feature Order

Fig. 2. Bail-out test on real data. Here the blue lines show the log-likelihoods of each place versus number of features considered. Typically there
are thousands of places - here only a few are shown for clarity. The black line is the bail-out threshold. Once the likelihood of a place hypothesis falls
below the bail-out threshold, its likelihood calculation can be terminated (the remainder of the likelihood calculation is shown above for illustration). In
(a), observations are ordered of information gain; in (b) they are ordered randomly. Note that ordering the features by information gain results in much
faster convergence toward final likelihood values, and hence a much more effective bail-out test. The bail-out threshold does not converge to the leading
hypothesis because of the offset constant C.

(a) p=0.996 (b) 0.999998 (c) 0.999992

Fig. 6. Some examples of images that were assigned high probability of having come from the same place, despite scene change. Results were generated
using the accelerated likelihood calculation. Words common to both images are shown in green, others in red. The probability that the two images come
from the same place is indicated between the pairs.
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(a) p=4.6x10−10 (b) p=3x10−9 (c) p=0.71

Fig. 7. Some examples of remarkably similar-looking images from different parts of the workspace that were correctly assigned low probability of having
come from the same place. Results were generated using the accelerated likelihood calculation. We emphasize that these examples are not outliers, but
represent typical system performance. This result is possible because most of the probability mass is captured by locations in the sampling set – effectively
the system has learned that images like these are common in the environment. Words present in both images are shown in green, others in red. (Common
words are shown in blue in (b) for better contrast). The probability that the two images come from the same place is indicated between the pairs.

Fig. 5. Filter update time versus the number of locations in the map, for
the Parks Road dataset. Update time with zero locations is non-zero due to
the fixed cost of evaluating the partition function. Calculation time with the
bail-out test grows linearly, however the slope is too small to be seen on
this graph.

VI. CONCLUSIONS

This paper has presented a new approach to rapid mul-

tihypothesis testing using a probabilistic bail-out condition

based on concentration inequalities. Concentration inequal-

ities exist that apply under very general conditions, even

for arbitrary functions of non-iid random variables, hence

our basic idea should be applicable to a wide variety of

problems. We have applied the bail-out test to accelerate an

appearance-only SLAM system. The speed increase is data-

dependent, but acceleration factors in the range 25x-50x are

typical in our tests. The location recognition performance of

the accelerated system is only marginally worse than the full

solution, and more than sufficient for reliable online loop

closure detection in mobile robotics applications. We have

presented results demonstrating online loop-closure detection

over 2km loops, however the system is fast enough to scale to

loops of tens of kilometres in length while maintaining sub-

second filter update times. Investigating system performance

on this scale will be a focus of future work.
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