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Abstract— The problem of appearance-based mapping and
navigation in outdoor environments is far from trivial. In this
paper, an appearance-based topological map, covering a large,
mixed indoor and outdoor environment, is built incrementally
by using panoramic images. The map is based on image
similarity, so that the resulting segmentation of the world
corresponds closely to the human concept of a place. Using
high-resolution images and the epipolar constraint, the resulting
map is shown to be very suitable for localization, even when
the environment has undergone seasonal changes.

I. INTRODUCTION

Appearance-based approaches to topological mapping and
localization for mobile robots have been very successful
in indoor environments. Both localization and loop closing
detection can be handled by robust image matching methods.
Methods based on stable local features, such as the Scale-
Invariant Feature Transform (SIFT) by Lowe [11], have
gained popularity because of the discriminative nature of the
features and their invariance to illumination, scale, translation
and rotation. A high resistance to occlusions can also be
achieved [2].

For smaller environments, it might be sufficient to consider
every image as a topological node. Global localization within
the map, based on comparing images using local features, is
then clearly an O(n) operation. While perhaps acceptable
for small maps, as the map grows this quickly becomes
infeasible because of the computational cost associated with
image matching algorithms. Also, a map constructed in this
manner says nothing about the structure of the environment;
traversing an area multiple times will result in multiple
images representing the same place. Thus, it is necessary
to cluster the images together into larger nodes.

How should a node be defined? A commonly used no-
tion is that of “distinctive places” [10], i.e., the nodes are
positioned at locations that reaches a maximum of “distinc-
tiveness”. As an example of this, consider the method used
by Tapus and Siegwart [14]. They extract features (edges,
corners, colour patches) from omnidirectional images and
combine them together with laser scans into “fingerprints”,
which acts as nodes in a topological map. Another approach
is used by Booij et al. [5]; every image is viewed as a
node in a graph, and large clusters are generated by using a
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graph partitioning technique called spectral clustering. Spec-
tral clustering groups data points based on some similarity
measure; thus, the resulting segmentation is close to the idea
of distinctive places.

In previous work [16], we presented the incremental
spectral clustering (ISC) algorithm. It was shown that this
algorithm could be successfully applied to the problem
of appearance-based topological mapping, generating topo-
logical maps in a fraction of the time required by using
standard spectral clustering. The natural segmentation of the
environment from spectral clustering is mostly retained.

In other previous work [17], we showed that a new type of
local feature algorithm, Speeded-Up Robust Features (SURF)
by Bay et al. [3], outperforms SIFT for the localization
task in outdoor environments, both in terms of accuracy and
speed. Here, we exclusively use a variant of SURF that is
not rotational invariant, “upright” SURF (U-SURF).

We conclude this research arc by showing how to correctly
localize in large, mixed indoor and outdoor environments,
even over large seasonal variations. We also give an algo-
rithm that can construct a topological map of the environment
using incremental spectral clustering and show that it is
possible to localize efficiently within this map. For additional
details on the methods used here, and also for additional
results, see [15].

There are many works in relation to appearance-based
global localization using local features, for example by Se
et al. [13]. However, there are only a few other approaches
to topological localization (image matching) using outdoor
images from different seasons, perhaps because it is a
difficult process that involves data acquisition over time.
Zhang and Kosecka [20] concentrate on recognizing build-
ings in images, using a hierarchical matching scheme where
a “localized colour histogram” is used to limit the search in
an image database, with a final localization step based on
SIFT feature matching. He et al. [8] also use SIFT features,
but employ learning over time to find “feature prototypes”
that can be used for localization. Recently, Goedeme et
al. [7] used color-enhanced SIFT features and Dempster-
Shafer theory to avoid false links between different parts
of a topological map, built by using omnidirectional images.

II. SPEEDED-UP ROBUST FEATURES

A brief outline of the SURF algorithm is given here for
completeness, for details see Bay et al. [3].

The SURF algorithm consists of a detector and a descrip-
tor. The detector is a blob detector, which approximates
the determinant of the Hessian of the Gaussian second
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Fig. 1. Epipolar geometry for spherical images.

derivatives by using box filters; thus, SURF does not require
the explicit computation of scale-space images. Instead, the
approximation D(x, y, σ) is constructed directly by using an
integral image. Keypoints (local maxima) are found from the
scale space images D(x, y, σ) by non-maximum suppression
in a 3× 3× 3 neighbourhood around each sample point.

To achieve rotation invariance, SURF finds the dominant
orientation of the keypoints by utilizing Haar wavelets. After
rotation of the keypoint neighbourhood, the neighbourhood
is divided into 4 × 4 subregions. The vertical and horizon-
tal Haar wavelet responses are utilized to compute each
subregion feature vector of length 4. Stacking the feature
vectors for all subregions gives a feature vector for the
keypoint of length 64. The final feature vector is obtained
by normalization to unit length.

SURF has several descriptor types of varying length. Of
interest to this work is in particular “upright” SURF, U-
SURF. U-SURF ignores the computation of the dominant
orientation and the subsequent rotation of the keypoint neigh-
bourhood. As U-SURF thus leaves out rotation invariance,
U-SURF is useful for detecting and describing features in
images where the viewpoints are differing by a translation
and rotation in the plane (i.e. planar motion).

III. FEATURE MATCHING

A. Matching Local Features

Comparing two images is done by comparing the keypoint
descriptors extracted from the images. Depending on the
application, there are different matching strategies. A com-
mon method, proposed by [11], is to compute the nearest
neighbour of a feature descriptor, and check if the second
closest neighbour is further away than a threshold value.
In this relative matching scheme, the nearest neighbour
computation is based on the Euclidean distance between the
descriptors. To reduce the number of false matches, one can
require reciprocal matches, i.e. the feature fi in image i is a
match to feature fj in image j iff fj is also a match to fi.

The resulting number of matches will be used later as a
measure of similarity between the images.

B. Epipolar Constraint

To further improve the matching result between two spher-
ical images, the epipolar constraint can be used to eliminate
false matches.

Assume that the positions of the cameras are C and C′

(see Figure 1). The first camera C is placed at the origin

and the second camera is translated by t and rotated by the
rotation matrix R. The points of correspondence x and x′

are both projections on unit spheres of the world point X.
A plane Π is formed with the following constraint [4]:

x′T Ex = 0 (1)

Planar motion can be described with three parameters; two
coordinates describing the translation in the ground plane
and the rotation θ around an axis perpendicular to the ground
plane. Thus, assuming the ground corresponds to the y-plane,
the essential matrix E will have the form

E =

 0 −tz 0
−txsinθ − tzcosθ 0 txcosθ − tzsinθ

0 tx 0

 (2)

Four correspondences are sufficient to obtain the coeffi-
cients of this essential matrix [9]. Note that there are in total
four solutions; however, only one of the solutions is correct.
Here, we choose the following criterion to determine whether
two unit vectors x and x′, separated by a unit vector t̂, are
pointing in the same, “general” direction.

(x× t̂) · (x′× t̂) > 0 and arccos(x · t̂) < arccos(x′ · t̂) (3)

This relation says that the vectors x and x′ along the
vector t̂ should point towards each other, while the angles
between the vectors across the vector t̂ should not differ by
more than 90◦.

Using the epipolar constraint as a model in a sampling
algorithm, such as RANSAC [6], it is possible to eliminate
false matches and improve matching performance.

C. Matching Images from Different Seasons

In [17], it was shown that it is not possible (with the
current method) to use low-resolution panoramic images
to perform single-image, global localization in cross-season
outdoor environments. However, using U-SURF features
extracted from high-resolution images, and also applying the
epipolar constraint, the outcome is different.

In Figure 2, top left, the U-SURF feature locations for
two low-resolution images are shown. It would be desirable
to increase the number of feature matches, so that a more
reliable localization can be achieved. However, the low
amount of matches between these two images is mainly
because the majority of the features are not corresponding
to the same objects. Lowering the relative threshold would
only lead to more false matches, and worse localization
performance.

Another way to increase the number of matches is to
utilize high-resolution panoramic images. Because of the
relative matching scheme, increasing resolution might not
necessarily lead to more matches; however, it is expected
that the number of correct matches should increase if the
relative threshold is increased. Unfortunately, this also gives
more incorrect matches. Many of these false matches can be
filtered by using the epipolar constraint, to achieve the final
matches shown in Figure 2, bottom left.
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This matching scheme is more expensive than using low-
resolution images without the epipolar constraint. Excluding
feature computation, comparing two low-resolution images
requires on average 0.2 s, while comparing two high-
resolution images requires on average 1.0 s.

IV. INCREMENTAL SPECTRAL CLUSTERING

A. Spectral Clustering

Spectral clustering does not require that the data can
be represented as coordinates in Euclidean n-space – it is
sufficient that a similarity measure between the points can
be computed. Common for all spectral clustering algorithms
is that they take as input an affinity matrix, which describes
the similarity between the data points. A popular spectral
clustering algorithm, used in this paper, is the algorithm
by Ng, Jordan and Weiss [12]. The modifications suggested
by [18] are also implemented in order to achieve greater
numerical stability. For this algorithm, the similarity is based
on the distances between the points in the data set influenced
by the scaling parameter σ:

Aij = exp
(
−

(
d(si, sj)2

2σ2

))
(4)

While spectral clustering can be very effective for small
data sets, there are issues with these methods:

• The affinity matrix grows with the number of points n
as n2.

• The number of clusters must be set in advance. This
is usually handled by performing the clustering over a
varying number of clusters and checking the result after
each iteration, or one can use the method described by
Zelnik-Manor and Perona [19].

• The entire affinity matrix must be available in order to
perform the clustering.

When the affinity matrix entries are costly to compute (for
example, if the content is based on the comparison of two
high-dimensional vectors), the growing size of the affinity
matrix is a serious problem.

B. Incremental Spectral Clustering

The incremental spectral clustering (ISC) algorithm avoids
the issues outlined above, while being able to produce results
similar to the spectral clustering algorithm. Because of its
properties, it is very well suited for the task of topological
mapping using vision.

The ISC algorithm starts with an empty data set A and
thus an empty affinity matrix A. The method is aptly
named; a spectral clustering method is applied to the affinity
matrix for every data point added. The algorithm iteratively
estimates a cluster representative for each cluster. The cluster
representative is the data point that is most similar to all other
points in the cluster1.

The cluster representative should not be too dissimilar to
any point in the cluster. If it is, the number of clusters must

1If the data points have a representation in Euclidean space, the cluster
representative would be the point closest to the cluster centroid.

Set Images Main characteristics
A 139 February. No foliage. Winter, snow-covered ground. Overcast.
B 167 May. Bright green foliage. Bright sun and distinct shadows.
C 944 July. Deep green foliage. Varying cloud cover.

D1 320 October. Early fall, some yellow foliage. Partly bright sun.
D2 234 October. Less leaves on trees, some on the ground. Bright sun.
D3 301 October. Mostly yellow foliage, many leaves on the ground.

Overcast.
D4 320 October. Many trees without foliage. Bright setting sun with

some high clouds.
Total 2425

TABLE I
REFERENCE TABLE FOR THE DATA SETS.

be increased and a new clustering is performed. The smallest
allowed similarity is called the similarity threshold.

Whenever the number of clusters is increased (and when
each cluster has a suitable cluster representative), the entries
in the affinity matrix that have been assigned to a cluster are
replaced by a single cluster representative. The original con-
tents of the cluster are stored for future use in computation
of a new cluster representative, if it becomes necessary. The
affinity matrix is thus shrunk to a smaller size. The process
then continues with the next data point.

ISC requires two external functions:
• A function that computes the affinity between data

points. Here, we use the number of matches M(i, j)
between two images i and j to compute the correspond-
ing entry in the affinity matrix. The following simple
formula for the distance measure2 d(i, j) is used in the
computation of the affinity (4):

d(i, j) =
1

M(i, j) + 1
(5)

• A spectral clustering algorithm that computes k clusters
from the current affinity matrix.

Note that ISC is not restricted to the modified NJW
algorithm. Any spectral clustering algorithm that takes an
affinity matrix and a number of clusters as input could be
used without major modifications to the method. For a good
overview of various spectral clustering algorithms, see [18].
For further details about ISC, see [16] or [15].

V. DATA SETS
Seven data sets were acquired over a period of nine

months, see Figure 2. The data sets span a part of the campus
at Örebro University, in both indoor and outdoor locations.
The data sets cover different parts of the campus, ranging
from 139 up to 944 images (for a total of 2425 images), see
Table I.

The images were acquired every few meters; the distance
between images varies between the data sets. The data sets
do not all cover the same areas. For example, data set D1
does not include the loop around the artificial lake in the
northwest corner of the map, see Figure 3.

Data set C, which is also the largest of the data sets, is
used as our reference data set (it covers nearly all places
visited in the other data sets, see Figure 3).

2Note that d(i, j) is not a true distance measure in the geometric
sense. However, it is difficult to construct a true distance metric for image
similarity, and the resulting affinity matrix will still be useful.
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Fig. 2. Left, top: Low-resolution panoramic images matched using U-SURF, relative threshold of 0.65. Left, center: High-resolution panoramic images
matched using U-SURF, relative threshold of 0.65. Left, bottom: High-resolution panoramic images matched using U-SURF, relative threshold of 0.80,
reciprocal matching. Epipolar constraint applied. Center: Images from northwest part of map. Right: Images from parking lot to the south.

The data sets were acquired by an ActivMedia P3-AT
robot equipped with a standard consumer-grade SLR digital
camera (Canon EOS350D, 8 megapixels) with a curved
mirror from 0-360.com. This camera-mirror combination
produces omnidirectional images that can be unwrapped
into high-resolution panoramic images by a simple polar-
to-Cartesian conversion. Each panoramic image is stored in
two resolutions, one in full resolution of about 2500 × 725,
and one in about one third resolution of 800 × 232 pixels.

To simplify evaluation (cluster visualization and also eval-
uation of localization result), each image should have a
corresponding position. The trajectories of the data sets A
and B were determined by hand, while odometry data were
available for datasets C, D1, D2, D3 and D4. The odometry
was manually corrected, using a Matlab tool specifically
designed for this purpose. The resulting trajectories are
shown in Figure 3.

VI. EXPERIMENT

In Experiment 1, 40 test images were chosen at random
from each data set. These images were then matched against
the reference data set C. The number of feature matches
between the images was simply taken as a measure of
similarity; the image with the highest similarity to the test
image was considered to be the winner. Note that this
corresponds to global topological localization.

In Experiment 2, the same 40 test images from each
data set (as in Experiment 1) were used to perform the
localization in a topological map built by the incremental
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Fig. 3. Ground truth trajectories of all data sets. Note that the parts of
data sets B and D4 that are not covered by data set C were excluded from
the localization experiments.

spectral clustering algorithm applied to data set C. Each test
image is compared to the cluster representatives; all images
in nodes with a cluster representative sufficiently similar to
the test image are then also compared to the test image.

In both experiments, the localization will be performed by
using the matching scheme proposed in Section III-C.

A. Building The Topological Map

When building the topological map, it is not necessary to
take seasonal changes within a data set into consideration,
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Fig. 4. Topological map produced from data set C. 943 images, 160 nodes.

Data set Number of Total number of ISC execution Time saved [s]
comparisons affinity matrix time [s]

performed entries
A 4610 9591 10.7 985.5
B 5891 13861 8.3 1585.7
C 100222 445096 1285.4 67689.4

D1 14440 51040 39.4 7280.6
D2 9061 27261 14.3 3625.7
D3 12575 45150 92.4 6442.6
D4 14144 51040 26.9 7352.3

TABLE II
COMPUTATION TIMES FOR THE TOPOLOGICAL MAPS, EXCLUDING

FEATURE EXTRACTION.

and low-resolution images and a simpler matching scheme
(U-SURF, relative threshold of 0.7, reciprocal matching) than
the one proposed in Section III-C can be used. Figure 4
shows the resulting topological map for reference data set C
(the rest of the maps are omitted for space reasons). Each
marker corresponds to one image; images belonging to the
same node are shown in the same colour (the colours are
recycled at regular intervals). All images in a node are also
connected by a black line.

Table II lists the total number of image comparisons
performed. (The values were obtained by using 100 pairs
of images to compute the average comparison time. The
mean of this value (0.2 s) was used to compute the total
execution time.) This, together with knowledge of the time
requirement to do a single comparison, gives an estimate on
how much time that was “saved” by doing ISC vs. doing
spectral clustering (given that the correct number of clusters
was already known).

There are a number of false links in the map from data set
C, most notably between two areas of the corridor that are
visually very similar. Most of the false links, if not all, could
be avoided by introducing corrected odometry (for example
from a SLAM scheme such as the one presented in [1]) into
the affinity matrix.

Note that the algorithm generates, as expected, more nodes
in narrow indoor areas than in larger outdoor areas. This is in
particularly clear if one compares the areas around the AASS
lab (at the origin) with the long outdoor path 40 meters to
the west of the lab. Also, the path nodes correspond roughly
to the layout of the building to the east of the path; a major

change in the scene structure (as seen from the moving robot)
triggers the creation of a new node. The same pattern can
also be seen at the small loop (around an artificial lake) seen
in the north-west part of the map.

This observation is interesting for two reasons. First, it
shows that ISC successfully can produce clusters that cap-
tures structural changes in the environment. Second, there is
a certain level of repeatability in the results (which becomes
apparent when comparing maps created from different data
sets): approximately the same clusters appear even under
seasonal variations.

B. Experiment 1: Localization Without a Topological Map

The results from the localization using U-SURF with
epipolar constraint are summarized in Figure 5. The high
localization rates, even with the simplistic scheme use here,
show that it is possible to do localization using local features,
even under seasonal variations as in our data sets.

C. Experiment 2: Localization Within the Topological Map

Unfortunately, there is no guarantee that the images chosen
as cluster representatives in the map M will be similar to
the image I . However, the cluster representatives are the
images most similar to all images within the cluster, and
the clusters themselves are representations of an area with
common features, so there should be a good chance that some
similarity exists. If there is no similarity, the localization will
obviously fail. The localization procedure is as follows:

1) Compare image I with all cluster representatives.
2) Select nodes k with more than Nmin matches.

• If there is no node that has Nmin matches or more,
choose the node that has the highest match.

3) Compare the images in each node ki with the image
I .

4) Select the image from the previous step that has the
highest number of matches to image I . This is the final
localization result.

The localization results using the topological map built
from reference data set C is shown in Figure 5. Compared
with Experiment 1, the number of correctly localized images
is slightly lower. The main reason is that the representative
might not be a good match to the image being localized,
leading to an incorrect choice of nodes in the localization
strategy’s second step. A possible way of avoiding this is
to increase the number of nodes in the map, for example
by setting the similarity threshold to a higher value. There
is a connection between the similarity threshold and the
localization rate:

1) Setting the similarity threshold to zero will result in a
topological map containing only one, large node. The
localization rate will be according to Experiment 1.

2) Setting the similarity threshold to infinity, will result
in every image forming its own node. The localization
rate will again be according to Experiment 1!

All values of the similarity threshold between zero and infin-
ity will thus result in some localization rate that (most likely)
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Experiment 1: Without map

Experiment 2: Using ISC map

Fig. 5. 40 random images from each data set were localized with respect
to the reference data set C, using U-SURF with a relative threshold of 0.9.

will be lower than the values of Experiment 1. Nevertheless,
the gain in computation time might warrant the slightly lower
localization rate. Localization against data set C uses, on
average, about 220 image comparisons, compared to the full
943 required in both cases presented above. Of course, as the
environment is traversed multiple times, one would expect
that the cost for localization in the map would stay constant,
whereas it would increase linearly for localization without
the map.

The parameter Nmin is of course important. At a too low
value, the localization result will be according to Experiment
1 with the associated performance. At higher values, the
localization rate will drop. Choosing a value above the num-
ber of correspondences necessary for the epipolar constraint
is one way of ensuring that not too many images will be
compared; here, we have chosen a value of Nmin = 8 for
all data sets.

VII. CONCLUSION AND FURTHER WORK
In this paper, it has been demonstrated that by selecting an

appropriate local feature algorithm, using a suitable threshold
and the epipolar constraint, a very high rate of localization
using only panoramic images can be achieved — even when
the images were acquired in different seasons, under different
weather conditions. Specifically, the good choices are:

• High-resolution images — necessary to detect features
at a detail level that changes little over the seasons.

• U-SURF — very good performance in detecting and
matching features in high-resolution, panoramic images.

• Epipolar constraint and RANSAC — improves match-
ing performance at little extra cost.

Further, it has been shown that the incremental spectral
clustering algorithm can successfully create topological maps
that can be used to perform localization more efficiently
(albeit with a slightly smaller success rate).

In this paper, only the case of global localization has
been considered, using images from one of the data sets to
build the map. There might be advantages in incorporating
information from multiple data sets into a single map, to
obtain even higher localization rates. The map in itself is also
of interest, because it gives a way to divide even outdoor
environments into natural, distinctive sections. It might be

of interest to try to automatically label the nodes, based on
image content, or to perform path-planning tasks in the map.
To this end, it will most likely be necessary to make sure
that all false links are eliminated; incorporating odometry
information into the affinity matrix can surely help.
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