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Abstract— Pose estimation of outdoor robots presents some
distinct challenges due to the various uncertainties in the robot
sensing and action. In particular, global positioning sensors of
outdoor robots do not always work perfectly, causing large drift
in the location estimate of the robot. To overcome this common
problem, we propose a new approach for global localization
using place recognition. First, we learn the location of some
arbitrary key places using odometry measurements and GPS
measurements only at the start and the end of the robot
trajectory. In subsequent runs, when the robot perceives a key
place, our fixed-lag smoother fuses odometry measurements
with the relative location to the key place to improve its pose
estimate. Outdoor mobile robot experiments show that place
recognition measurements significantly improve the estimate of
the smoother in the absence of GPS measurements.

I. INTRODUCTION

A popular approach for pose estimation of robots is place
recognition. For instance, GPS-equipped outdoor robots
which traverse rough terrain usually suffer from bad local-
ization. If a robot is asked to move on the same path and
repeat the task it previously did, it will not usually be able
to do so due to pose inaccuracies. One useful application of
place recognition is that the robot can determine its offset
from the correct path and adjust its position accordingly. A
similar scenario involves a robot sharing its own map with a
convoy of robots on the same terrain. Place recognition can
also help a robot in path planning. Consider a robot that plans
a path from a starting point to a goal. If the robot traverses
a loop while exploring the terrain and recognizes the closing
point of the loop, the next time it would not plan any path
through the loop, minimizing the time that is needed to reach
the goal.

There are some factors that make the task of place recog-
nition challenging. Finding an exact match for a previously
visited location using a robot is not trivial since the sensors
are noisy and the environment may also change. In addition,
changes in the robot’s plan or the uncertainties in the robot’s
motion often result in visiting a place from a different
angle, which makes the task of place recognition even more
difficult. In this paper, we propose a novel solution that
tackles some of these issues.

There is extensive literature on place and scene recognition
methods, some of which we briefly mention here. Torralba
et al. [1] present a place recognition method for a naviga-
tion system that uses Hidden Markov Models and a low-
dimensional global representation of an image to recognize a

scene and perform localization. They also consider the result
of place recognition as a good prior for object recognition
in an environment. Mozos et al. [2] describe a method that
uses semantic recognition of places in an office environment
and use that method to localize an indoor mobile robot.

Some authors have tackled the more challenging task of
outdoor place recognition for robots. Morita et al. [3] apply
a support vector machine to learn image features in key
images and perform localization using learning-based frame
matching. Bradley et al. [4] propose another example of
outdoor topological localization based on place recognition.
In [5], a database of panoramic images is built and a pose is
assigned to each image according to GPS. Unlike topological
methods, their work can approximate the orientation and
location of the robot with respect to the key place.

The major drawback of these methods is that their results
are either high-level and inaccurate or they assume perfect
localization during the learning phase of key images. For
example, the topological approaches can only recognize that
the robot is inside a particular room but they cannot give
accurate information about the exact location of the robot.

In this paper, we investigate a location estimation method
for an outdoor robot using place recognition. Our assumption
is that there will be no GPS signal available and the robot
should correct its belief about its location when it recognizes
a place whose position has been already learned by the robot.
In the rest of the paper, we describe the place recognition
phase, localization using a fixed-lag smoother, followed by
an example of a key place learning approach, and finally real
robot results.

Recently, Royer et al. [6] have presented a similar ap-
proach to ours to localize an outdoor robot using a sequence
of learned keyframes. Our method has a few advantages over
theirs: we only store a sparse set of key frames. Additionally,
our fixed-lag smoother uses the future information to correct
the trajectory of the robot while they have to enter the length
of the path manually to set their scale factor.

II. APPROACH

We focus on an application where we learn a set of
key frames beforehand. The robot should recognize the
key places when re-visiting that location by checking its
database of stored images. The robot then incorporates the
place recognition measurements into a fixed-lag smoother in
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order to localize itself. Our method of stereo matching for
recognizing the key places is described below.

A. Place Recognition

Assuming we already have a database of key places, as
obtained from the learning phase, the robot can correct its
location estimate by recognizing when it gets near such key
places. To recognize a key place, the current observations are
compared with the database of key frames, which contains
images and features for key places. The features that we
use are stereo Harris features. When we capture a new
image during place recognition, we find potentially matching
features (putatives) between the current observation and the
images that we have stored in the learning run, by using the
sum of the squared differences between the image patches
that we consider around each feature location. Then, we
use RANSAC on the putatives to prune the outliers. If the
proportion of the inliers is greater than some threshold, we
conclude that the robot’s current place matches the image in
the database. It should be noted that each key frame consists
of the left and right stereo images.

Finally, a rigid transformation is calculated between the
current camera pose and the pose of the camera when it
captured the image of the matched key place. By back-
projecting the inlier features to the world frame, we find
the relative location of each pair of matched features (inliers
only), but the relative location is not unique for all of the
inliers. By performing an optimization, we find a transfor-
mation that minimizes the error of the odometry for all pairs
of inliers [8]. Since the described method is computationally
demanding, we do not perform the matching procedure for
every single image in the database, but only for the key
places whose associated pose is close to the current location
estimate. Fig. 1 shows the inlier features between the left
image of one of the key frame images and the left image of
the current observation of the robot.

As the result of this phase, we obtain the mean of the
relative pose to a key place and a covariance matrix that
captures the uncertainty of the place matching.

B. Pose Estimation Using a Fixed-Lag Smoother

Knowledge about the relative pose to a key place is used
to improve the robot’s pose estimate. We treat the result of
place recognition as a new sensor that gives us a global
position measurement for the robot. Our assumption is that
the learning phase provides us with global information about
the location of key places. And together with the relative
location of the current position of the robot to the matched
key place, we therefore obtain a global measurement.

At time t, we use a fixed-lag smoother similar to [9] to find
the posterior for the last p robot poses (p is the length of the
lag) given all of the global and relative measurements. The
Bayes net in Fig. 2 represents the pose estimation problem
where the relative locations in the network are conditioned
both on the location of the robot and the location of key
places. Xp = xt−p+1:t represents the set of the last p states

Fig. 1. A snapshot from the image matching process. Putatives are shown
in yellow and the inliers are shown in green. There are 156 features in the
key image. 35 putatives were found, of which 23 were identified as inliers.

namely, the robot poses. The set of states from the start
location up to the lag is denoted by Xf = x0:t−p.

Fig. 2. A graphical model that represents our smoothing problem. xt is the
robot pose at time t, p is the length of the lag, ot is the odometry reading,
Kf and Kp are key places and Rf and Rp are the relative odometry to
the matched keyplaces.

As the location of key places is only known within some
uncertainty, we marginalize over the key place locations,
obtaining an estimate X∗p for the current lag states:

X∗p = arg max
Xp

∫
XfKfKp

P (Xf , Xp,Kf ,Kp|G0, Rf , Rp)

(1)

where Rf and Rp are the set of relative transformations
obtained in the recognition phase before and in the lag,
respectively. Kf and Kp are the set of key places visited
before the current lag and in the lag, respectively. For
simplicity, we assume that the keyplaces are independent
variables. As before, we have assumed that there is no global
position information available to the robot after leaving the
start location and we only have one global measurement at
the beginning (G0, eg. GPS measurements). Using Bayes
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Fig. 3. Calculating a new covariance matrix for marginalizing over key
place information. Kl is the matched key place, and Ω and Γ are covariance
matrices that show the uncertainty in the location of key places and stereo
matching, respectively.

rule, the integral of (1) is proportional to:∫
Kp

P (Rp|Xp,Kp)P (Kp)
∫
xt−p

P (xt−p+1:t|xt−p, ot−p:t−1)

P (xt−p|G0, Rf , o1:t−p−1).
(2)

Performing the optimization to find the estimates for the
lag states requires solving the integrals. The solution to the
integrals in (2) can be written as follows:

t∏
i=t−p+1

P (xi|xi−1, oi−1) ·
∏
k

P (Rjk |xk,Kl)P (Klk)

P (G0|x0) · P (xt−p|G0, Rf , o1:t−p−1) (3)

where Rj is a relative measurement to the lth keyplace
Kl. The first factor in (3) is the motion model, the second
factor is obtained as the result of place recognition, the third
factor P (G0|x0) is a global location measurement which is
conditioned on the initial pose, and the last factor is the prior
on the state immediately before the fixed lag.

To convert the problem to a least square optimization we
need the covariances for all of the factors in Eq. 3. The
covariance matrices for the second product term are obtained
as follows: In the learning phase, we calculate the joint
covariance of all of the keyplaces. As mentioned before, we
assume the key places are independent and we approximate
the covariance matrix by a block diagonal matrix, where each
block contains information about one of the key places. We
also obtain a covariance matrix in a similar way from the
place recognition phase which is denoted by Γj for the jth

measurement.
To calculate the covariance for the second term of (3),

we add Γj to a block from Ω that is related to the matched
place and is denoted by Ωl for the lth place, as shown in
Fig. 3. The new covariance matrix is denoted by Clj and
is equal to (Ωl + Γj). The mean of the measurement is
equal to Kl +Rj . When we marginalize out the key places,
the mean of the measurement is obtained by simply adding
(considering rotations) the relative location of the robot to
the key place and the pose of the key place [11]. Hence, we
have introduced a new global location measurement with a
specified mean and covariance, assuming that both factors in
the second product term are normal distributions.

Now, the goal is to find an optimal estimate for states of
the robot in the lag (unknowns) based on the different mea-

surements that we have. As described in [10], the problem
can be formulated as a non-linear least-square optimization
problem. Since the terms in (3) are assumed to be normal
distributions, our optimization problem from (1) is converted
to the following error minimization problem:

X∗p = arg min
Xp

{
t∑

i=t−p+1

‖fi − xi‖Λi
+ ‖g0(x0)− z0‖Σ +∑

k

‖hk(Rjk ,Klk)− xk‖Clj
+ ‖xt−p − µt−p‖Pt−p

}

(4)

where we use ‖.‖Σ to denote the Mahalanobis distance and
fi = f(xi−1, oi−1) is the function that predicts the next
location of the robot based on the current location xi and the
odometry oi, augmented with Gaussian noise with covariance
Λ. Also, rk = hk(Rjk ,Klk)+vk is the term for the absolute
measurement which is calculated according to the location of
a key place and the relative location of the robot to that key
place. vk is the measurement noise for the place recognition
phase and its covariance Clj is calculated according to Fig. 3.
Finally, N (µt−p;Pt−p) is a Gaussian prior for the robot’s
state at time t− p, denoted by xt−p. The fixed-lag smoother
adds a new state for each new measurement and considers
the first state in the lag as the new prior state.

We linearize these functions by using the first terms of
their Taylor expansion [10] and the problem becomes a
linear least squares formulation, J∗δX − b = 0, where
J∗ is the measurement Jacobian matrix and is obtained by
assembling the Jacobians of individual measurements (shown
in Fig. 4), δX is our unknown (the p states in the lag)
and b is the difference between the predictions and the real
measurements.

We solve the estimation problem by QR-factorization of
J∗, followed by back-substitution to obtain δX . Since the
R factor is a sparse matrix, the state estimation for the lag
can be computed very efficiently. The details of the fixed-lag
smoother and handling out-of-sequence measurements can be
found in [9].

III. PLACE LEARNING

In this section, we describe an example method for
learning the key places and the joint covariance matrix.
We assume that either a human driver or a more capable
robot marks some arbitrary key places, or that they are
extracted automatically as mentioned in [6]. Fig. 5 represents
this idea when a robot traverses a path in a dense forest
environment where there is no GPS signal available except
at the beginning of the experiment and at the goal location.
The small circles represent the special places that have been
specified by the human driver.

Since the odometry measurements are subject to noise and
other sources of uncertainty, we apply learning to obtain
a better location estimate of the special places. Therefore,
we find the location of a set of places that maximize the
probability distribution:

P ({K1,K2, ...,KN} |O0:T , G0, GT ) (5)
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Fig. 4. The Jacobian matrix which is obtained by assembling the individual
measurement Jacobians. The xt−p block corresponds to the prior for the
state before the lag as remembered from previous factorizations.

Fig. 5. Some key places are marked in the areas where no GPS is available.
Larger circles represent the points at which GPS is available and the small
circles are key places.

where N is the number of special places, O0:T is a set of
odometry measurements, and G0 and GT are GPS measure-
ments at the beginning and at the goal location, respectively.

We use a least-squares optimization technique to find
a better estimate for the location of key places. A Gaus-
sian noise model is assumed for the places so our
distribution for each place is as follows: P (Ki) =
|2πΣ|−0.5

exp(− 1
2

∥∥Ki −Ki

∥∥2

Σ
), where Ki is the inaccurate

measurement of the robot. We formulate the problem as
minimizing an energy function E, which is the logarithm
of the joint distribution of the places. Since the logarithm is
a monotonic function, minimizing the log function is equiv-
alent to minimizing its argument. We do not have a sensor to
measure the location of a place and the only measurements
that we have are a set of odometry measurements which
represent the relative location of two consecutive places.
Therefore the energy function E is defined as:

E = ‖K1 −G0‖2
ΣG

+
N−1∑
i=1

‖odoi→i+1 − (Ki+1 	Ki)‖2
ΣO

+ ‖KN −GT ‖2
ΣG

(6)

where ΣO and ΣG are the covariances that we consider for
the odometry and GPS measurements, respectively and G0

and GT are our GPS readings at the beginning and at the
goal location. We also assume that K1 and KN are the
places for which we have a GPS measurement (both ends
of the trajectory). Each key place Ki is a six-dimensional
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Fig. 6. Result of LM optimization in the case that GPS readings and
odometry measurements do not coincide. Ten special places are shown by
cross signs.

variable that is defined as (xi, yi, zi, ψi, θi, φi), which are
the coordinates of a place in a global frame, with ψ, θ
and φ representing the yaw, pitch and roll angles. Since the
normalization constants do not have any effect on the mini-
mization, we have removed them from the energy function.
Also, odoi→i+1 is the odometry measurement between place
number i and i+ 1, and 	 is an operator that measures the
odometry between two places, as defined in (7) below. Note
that the odometry is not simply a vector subtraction but takes
into account the rotation of the robot as well. Therefore,
Ki+1 	Ki is defined as:

xd(cθ + cψ) + yd(cθ + sψ)− zdsθ
xd(sφsθcψ − cφsψ) + yd(sφsθsψ + cφcψ) + zd(sφcθ)
xd(cφsθcψ + sφsψ) + yd(cφsθsψ − sφcψ) + zd(cφcθ)

ψi+1 − ψi
θi+1 − θi
φi+1 − φi


(7)

where, for example, xd is the difference between the x
coordinate of place i + 1 and place i and sφ is equal to
sin(φ) for place i.

The next step is to find the variable values that mini-
mize the function. We use the Levenberg-Marquardt non-
linear optimization [7] algorithm which is a combination of
gradient descent and Gauss-Newton methods. We have 6N
variables in our problem since we have N six-dimensional
places. There are also 6(N − 1) + 2 · 6 = 6N + 6 residuals
for the optimization method since we have N − 1 odometry
measurements and two GPS measurements.

We need the covariance matrix of the keyplaces for the
calculations of the previous section. The covariance matrix
for the key places, Ω, is a 6N × 6N matrix, and is equal to
(J TJ )−1, where J is the Jacobian matrix that we obtain
from Eq. 6.

Fig. 6 shows the result of our place learning optimization
technique for a simulated run. The six-dimensional poses
have been projected onto the x-y plane. The straight line
shows the odometry of the robot between the ten key places
(each place is shown by an ‘x’ symbol in the graph). It is
assumed that odometry measurements are one meter each
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in the direction that the robot is facing. Note that the GPS
measurement at the goal does not coincide with the robot’s
odometry (GPS measurements are shown with star symbols).
The red curve is the result of the optimization, where
the odometry measurements are stretched and the robot
trajectory is directed toward the points of GPS readings.
The reason for stretching odometry measurements is that the
original belief of the robot was that it had traversed 9 meters
while the GPS readings show about 14 meters difference
between the source and the goal location.

IV. EXPERIMENTAL RESULTS

In this section, we investigate if place recognition provides
any significant improvement for the pose estimation in the
absence of any global positioning device. We performed out-
door mobile robot experiments on the LAGR robot platform,
which is equipped with IMU, wheel encoders, a GPS receiver
and two stereo camera pairs. For efficiency, we only use one
pair of the cameras for image matching. As discussed, we
discard GPS measurements after leaving the start location.
Our state vector is an 8-tuple which consists of x, y, z, yaw,
pitch, roll, linear velocity of the robot and angular velocity
in yaw. All results were obtained using a lag of length 25.

We first drove the robot on a rectangular path and cap-
tured key frames at the four corners of the rectangle, and
performed the learning described in Section III to get a better
estimate for the locations of the four key places. Then, we
reset the robot position and started the place matching and
pose estimation algorithm. To have a better comparison with
the ground truth, we drove the robot manually again and
recorded three sets of data for pose estimation: smoothed
pose with place recognition, smoothed pose with complete
GPS and odometry measurements and finally poses based
on wheel odometry and IMU. The length of the path is
roughly 80 meters, but the path is not a perfect rectangle.
In addition, it is almost impossible for a human operator to
drive the robot in a straight line. The result of one run is
shown in Fig. 7. The plotted trajectories are the projection
of the 6D trajectories onto the x−y plane. The origin of the
robot trajectory is the bottom left corner. The cyan trajectory
shows integrated wheel odometry and IMU measurements,
which naturally has a large drift. The blue trajectory is the
result of the smoother that incorporates place recognition
measurements and discards GPS measurements and the black
trajectory is our approximate ground truth. The ground truth
is obtained by a very well-tuned Kalman filter based pose
estimator that is provided with the robot. It incorporates all
of the measurements except place recognition including GPS
along the trajectory and for our experiments resulted in an
almost perfect estimate (its result is visually good and it
closes the loops). As shown in the figure, our smoothed pose
is almost identical to the ground truth.

Fig. 7(a) shows the locations of key frames and the
locations of the robot when it visited key frames. The reason
that the green crosses sometimes deviate from the path is
that some of the features are not in the effective stereo
range, therefore, the rigid transformation between the current

Fig. 8. Four corners of the rectangle that were used as key frames in the
experiments. One of the stereo images is shown for each key place.

TABLE I
T-TEST RESULT FOR THE SQUARED ERROR DISTRIBUTION -

COMPARISON WITH COMPLETE SMOOTHING

p-value max error mean error reject
(m) (m) null hyp.?

Place recognition 0.95 5.11 1.6 no
Odometry + IMU 0.01 12.85 2.95 yes

location and the key frame location has a large covariance.
As shown in Fig. 8 the ground in front of the robot is
fairly featureless and some of the features are detected at
far buildings and trees.

To check if our place recognition provides a significant
improvement over odometry, we repeat the experiment on the
same path four times and run t-test on the error distribution
to see if the errors are from distributions of the same mean
or not. We recorded the output of the pose estimator for
local sensors only (wheel odometry + IMU), smoothing
using place recognition and odometry measurements (place
recognition smoothing), smoothing using complete GPS and
odometry data (complete smoothing) and the approximate
ground truth. The number of data points is roughly 5000. The
number is slightly different for each type of data since some
of the processes are faster and output more pose estimates in
a run. We assign a time stamp to each data point and define
the error as the distance between a data point and a point
on the ground truth that has the closest time stamp. Since
we are mainly interested in x− y plane pose estimates, the
distance is calculated on that plane.

To provide a statistical comparison between place recog-
nition and local sensors, we perform a t-test on the weighted
histograms of the error. Since both the frequency and the
magnitude of an error is important to us, we assign a weight
to each bin in the histogram and define the weight to be
the center of that bin. We used histograms of 40 equally
spaced bins. Table I shows the result of t-test for the squared
error. The hypothesis is that the error histograms arise from
a distribution of equal means and the result for accepting
or rejecting the null hypothesis at 5% significance level are
shown in the table. Place recognition smoothing and local

1866



Fig. 7. (a) The positions of key places are shown as blue stars. The green crosses are the positions of the robot when it sees a key place. (b) The cyan
trajectory is based on wheel odometry and IMU, the smoothed poses with place recognition are shown in blue and our approximate ground truth in black.

sensors have been compared against complete smoothing.
The results show the error for local sensors is significantly
different from the error of complete smoothing but there
is not a significant difference between place recognition
smoothing and complete smoothing on the rectangular path.

V. CONCLUSION AND FUTURE WORK

We proposed a new approach for place recognition by
relying only on noisy odometry and stereo matchings with
the assumption of non-reliable global positioning informa-
tion. First, some special places are marked manually and
their location estimates are improved using a least-squares
optimization technique. Then the robot starts the autonomous
run in which it searches for correspondences between the
current observation and the special places in its database. The
result of place recognition is treated as a new six dimensional
global measurement with a given mean and covariance. We
incorporated this new measurement in a fixed-lag smoother
to improve pose estimation in environments where no GPS
signal is available.

The current method has some shortcomings. The features
that we use are not affine invariant, so if a key place is visited
from a completely different view point, the robot is not able
to recognize the place. Finding a computationally efficient
method for 3D modeling is part of our ongoing research.

Dynamic environments are considered a challenging case
for this application. We prune the outlier features which
result from some moving objects in the environment, but
in general the recognition task is very dependent on the
structure of the scene and the size and motion of the dynamic
entities. In addition, we use a fixed-lag smoother, so the false
matches that are far from the current location estimation of
the robot do not have large impact on the pose estimate.

Currently, our smoother only estimates the robot poses. A
possible extension is to consider the location of key places
as unknowns and solve the optimization for both, key place
and robot poses, so that we calculate a better estimate for
the location of key places as well. It is also apparent that
if the robot does not see a key place on its path, the error

accumulates over time and there will be no improvement in
the pose estimation.
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