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Abstract— In implementing a vision localization system, a
crucial issue to consider is how to efficiently store and recall
the necessary information so that the robot is not only able to
accurately localize itself, but does so in a timely manner. In the
presented system, we discuss a strategy to minimize the amount
of stored data by analyzing the strengths and weaknesses of
several cooperating recognition modules, and by using them
through a prioritization scheme, which orders the data entries
from the most likely to match to the least. We validate the
system is a series of experiments at three large scale outdoor
environments: a building complex (126x180ft. area, 3583 testing
images), a vegetation-filled park (270x360ft. area, 6006 testing
images), and an open-field area (450x585ft. area, 8823 testing
images) - each with its own set of challenges. Not only is
the system able to localize in these environments (on average
3.46ft., 6.55ft. 12.96ft. of error, respectively), it does so while
searching through only 7.35%, 3.50%, and 6.12% of all the
stored information, respectively.

I. INTRODUCTION

Vision localization has been an active research branch for

the past few dacades [1]. In general, a localization system has

the following parts: image acquisition and pre-processing,

database matching, pose estimation, and localization. In

image acquisition and pre-processing, the system computes

the necessary discriminating visual cues from a raw image.

Database matching is a process of comparing those cues to

stored information, usually obtained during training. After a

match is found, the system still has to estimate the current

pose of the robot’s camera with respect to the database

(reference) entry before an actual attempt at localization

is performed. In recent years, probabilistic localization has

matured and its standard techniques (largely utilize other

sensors such are range sensors [2], [3], GPS [4], and odom-

etry) are now well understood. However, the use of vision

sensors (cameras) has not been as extensively developed. In

order to implement a successful vision localization system,

everything hinges on achieving a reliable database matching

process, one that leads to satisfactory pose estimation. And

because robots are real-time systems, it is not enough just

to have an accurate recognition system; it is also important

to consider the amount of time needed to find a match,

especially when exploring large environments.

A way to solve this problem is by storing as little as

possible while still able to cover all pertinent aspects of the
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environment. The decision of what to store is tightly coupled

with the capability of the system’s recognition module, the

part most responsible for its accuracy. If the module is

able to robustly match an object in any condition, then one

photograph would suffice. However, such capability is not

yet achievable, for example, in invariance with respect to

lighting (particularly outdoors) and viewpoint. What is the

alternative? We are forced to consider objects under different

conditions as different objects.

One may want to deduce that the better the recognition

system, the smaller the database size. However, sometimes,

the reason that a system is better than another is because

the number of descriptors associated is higher than its com-

petition. Consequently, even though we lower the number

of entries in the database, we also increase the number of

features per entry. And thus, when looking into the amount of

information stored by a system, we have to note the numbers

of features it extracts as well.

Broadly speaking, there are two types of visual features:

local features and global features. Local features are com-

puted over a limited area of the image, as opposed to global

features which may pool information over the entire image

into, e.g., histograms.

In recent years we have seen a number of systems utilizing

local features called the SIFT keypoints [5], which have been

proven to be quite accurate for this purpose [6], [7] because

they are invariant to scale, with some viewpoint and lighting

invariance. Other local-feature such as Kernel PCA features

[8] and Harris corners [9] are also used with varying degrees

of success. One disadvantage of using local features is the

number of features needed to be stored for each image. In

addition, in general, local features are less stable than global

features. For example, in a park where vegetation dominates

(observe second row of figure 5), the majority of the local

features is probably only be found in a single image.

Global features, on the other hand, never have to perform

matching to such level of detail as histograms average out

the local activities to form more robust values. However,

these holistic approaches, which utilize color [10], [11],

textures [12], or a combination of [13], [14], are limited,

for the most part, to classifying places. This is because the

end correspondences are not at the coordinate level, which

are needed for accurate pose estimation. Nevertheless, with

lower localization resolution, global features gain sizable

advantage in speed as classifiers usually output their results

almost instantaneously. And yet, in the end, it would be hard

to perform metric localization using just global features.

So where do we go from here? Up to this point we are

only working on the hypothesis that the smaller the database
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Fig. 1. Diagram of the Vision Localization System. The system extract various features from several domains (color, orientation, and intensity) and
computes gist features and salient regions. At the next stage the system estimate the segment using gist and tries to match the regions with the ones
previously seen in the environment. These matches are then used as an input to the localization stage to make a decision of where the robot might be.

or the lower the number of features per image, the faster the

matching procedure is. The problem is, it implicitly assumes

the need for a best match, which requires comparisons with

the whole database. However, for real-time systems such

as robot localization, a positive match is all that we need.

And once it is found, the search process can be stopped. To

increase the likelihood of this event to occur early, our system

utilizes a prioritization step to compare database entries in the

order of the most likely to the least. Thus, in practice, it never

has to look at all the entries because (through experiments)

it has a good idea when to stop given the unlikelihood

that a match will be found thereafter. In previous work

[15], we presented a biologically plausible vision localization

system. Here we improve it by prioritizing the search through

the stored information that is already minimized both in

the number of entries as well as the number of features

per entry. We then test the system in visually contrasting

and challenging large-scale environments, which validate the

accuracy and scalability of the approach.

II. DESIGN AND IMPLEMENTATIONS

At the core of the system [15] illustrated in figure 1, is

the utilization of saliency [16], [17] and gist [13], which

complement each other to form a multi-expert recognition

system that localizes at two levels. That is, gist, which is a

global feature, tries to recognize places called segments and

saliency combined with SIFT (both are local features) form

a salient region to further refine the result to the coordinate

location using a back-end Monte Carlo Localization.

A segment is an ordered list of edges to form a contin-

uous pathway in an environment. It can be a portion of a

hallway or a road interrupted by physical barriers (crossing,

intersection, etc.) at both ends for natural delineations. This

grouping is motivated by the fact that the views in a segment

are coarsely similar, which allows the segment estimator to

classify them using gist features. The selected three-edge

segment (highlighted in green) in the map of figure 1 is an

example. Because the segment classifier (a back-propagation

neural networks [13]) runs trivially fast, our effort to speed

up the system mostly focuses on the salient region matching.

A salient region, which can be viewed in figure 1 (there

are 5 of them in the frame), refers to a conspicuous area of

an input image that is easily detected in the environment,

making it a good candidate for a localization cue. An

ideal salient region is one that is persistently observed from

different points of view and at different times of the day. A

salient region does not have to depict an individual object

(many times it is a small part of an object or a set of

objects), it just has to be a snapshot of a point of interest

situated in the real world that, as time goes on, is proven

to be consistently detectable. To this end, a set of salient

regions that portrays the same point of interest is grouped

together and the set is called a landmark. And so, a salient

region can be considered as an evidence of a landmark.

One important consequence of using salient regions, which

has been demonstrated in previous works [18], [19], [9], is

that it relieves the system from matching whole scenes. By

extracting features within a small window, the number of

SIFT keypoints can be drastically reduced. This is substantial

because SIFT matching is the slowest part of the system.
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Fig. 2. The landmark database building procedure is done in two steps: create a current-episode landmark database for each training session, then
iteratively (not all at once) integrate them together to create one complete landmark database.

Therefore, in constructing an optimal sized landmark

database, we have to pay close attention to the shortcomings

of SIFT keypoints, which have less invariance to lighting

and out-of-plane viewpoint change. That is, multiple entries

of a landmark should directly increase the robustness of the

recognition step to those changes. For improving viewpoint

invariance, when building a landmark, we keep its snapshots

from all the viewing angles spaced as far as SIFT allow us

to. This strategy actually produces low salient region counts

because a lot of the regions isolate parts of images that are

physically far away from the robot (signs, buildings), which

means that angle changes induced by its movement do not

affect their viewing as much. As for lighting, as with other

textures, SIFT keypoints are usually very different in wider

disparity cases. Our solution is to survey and select training

sessions to include all distinct conditions but with enough

overlap for the same landmarks from each session to be

considered similar.

The landmark database building procedure is illustrated in

figure 2 and it goes as follows: create a landmark database

for each training session (section II-A), then combine them

to create one complete landmark database (section II-B). We

can then discuss the run-time prioritization step in section

II-C. In these sections, we describe procedures that need a

few decision thresholds, which may be viewed as making

the approach weaker. However, they are quite intuitive and

we try to characterize what overall impact each of them has.

A. Building a Database Within an Episode

Given a series of frames of robot traversal from a training

session, we create a database that stores all of its persistent

landmarks. Training is done with a person controlling the

robot’s movement, running straight through all the paths in

the map, noting which segment the current frame belongs to

(the landmarks are compartmentalized in segments of origin).

From the first frame we obtain a set of salient regions to

create initial landmarks. When the next set of regions arrives

(from the subsequent frame), the system tries to concurrently

match them with the ones in existing landmarks . We first

create a two-dimensional match score matrix between all

combinations of the incoming regions and current landmarks.

This is done through a matching process is illustrated in

figure 3. In the figure, location of the salient points are

drawn as yellow points. These points are where we obtain

a set of values called the salient feature vector [15], which

are normalized values from the six center-surround (feature)

maps [16], [17] of each of the sub-channels of the color,

intensity, and orientation channels. For each of the maps we

store values from a 5-by-5 window centered at the salient

point.

Fig. 3. Matching process of two salient regions using SIFT keypoints and
salient feature vector
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There are two matching steps: SIFT and saliency feature

vector matching. If either step turned up negative, the score

entry in the match matrix is set to zero. For SIFT matching,

the [5] procedure is directly applied, and we use a general-

ized Hough transform to estimate the affine motion. For the

latter step, we use equation 1, which factors in both salient

feature similarity sdiff (euclidian distance) and salient point

location proximity sdist (observe the fused image in figure

3 where the two regions are aligned together) normalized by

the image diagonal length lDiag . The second term is reversed

to allow for increase in value the closer the points are. The

threshold score is .75 out of the maximal 1.0. We find that,

in experimentation, any values above the threshold are most

likely a match (it is a conservative cut-off).

score = sdiff ∗ (1 −

sdist

lDiag

) (1)

Once all the comparisons are performed, we start the

insertion process by calculating the best/2nd best salient

feature similarity score ratio for each region-landmark pair.

The region with the highest remaining ratio at the current

iteration is inserted to the corresponding landmark. We keep

doing this until there are no more matches, in which we

can then create new landmarks for the remaining regions.

We only take the saliency score into account (and not the

SIFT score) because we want to cluster regions based on just

the salient landmark they depict, not on the overall region

similarity. Adding the SIFT score can allow overlapping

regions that depict different landmarks to be clustered.

After all the frames are processed, we prune out landmarks

using two criteria: number of salient regions and range of

frame numbers, both of which indicate persistance in the

environment. The first one is for landmarks that are very

salient but are viewed briefly (20 frames or less): their

total counts have to be larger than 7. The second one is

for landmarks that are less salient but are detected for a

long period (frame number range larger than 20): at least 5

regions. These set of thresholds control how many landmarks

we want to keep. We find that these values allow enough of

the smaller but useful landmarks (fewer number of regions

registered) to be kept by the database. Adding even smaller

ones would just increase the size of the database without

getting much in return.

In the region assigment step, for regions that are positively

matched with multiple landmarks, the situation becomes

complicated. First, we have to find the best landmark to

insert to; adding a salient region to multiple landmarks

would unnecessarily increase the size of the database. Here,

we select the one with the highest number of regions to

create a momentum towards the larger landmarks. Multiple

landmark matches occur because matches that were supposed

to happen in the previous frames did not go through, and we

are left with more than one landmark depicting the same

point of interest. The reason we use landmark size and not

the score is because it is not unusual to have two landmark

matches where one has a large number of salient regions

and the other has one that comes from the previous frame,

and thus have a higher score. It is obvious that the smaller

landmark is supposed to be part of the larger one, and the

new region makes the connection evident. With the policy,

we keep landmarks from spliting to smaller ones.

For this reason, the system also consolidates all the regions

involved in the multiple match to the largest landmark. It

does not combine the landmarks together because the other

regions in those landmarks may legitimately describe other

points of interest. For example, there is a possibility that

two landmarks somehow move closer together and create an

ambiguity. What is achieved by moving these regions is that

the landmarks become less similar, which is a reasonable

compromise.

Before explaining the transfer of salient regions, we would

like to describe the actual inner working of a landmark. In

training, when a landmark is being built, it actually consists

of two lists: a main list and a temporary list. The main list

has regions that are saved at the end. For the purpose of

pruning, however, the total number of salient regions is taken

as the sum of the two lists. When an incoming salient region

is compared to a landmark, it is first compared with the

main list (actually, just the last 10 in reverse order) and, if

needed, the temp list as well (also the last 10 in reverse

order). If there is a match in the main list (and the landmark

is also selected through the ratio test), the new region goes

to the temporary list. If we find no match in the main list

but one is found in the temporary list (and also passes the

ratio test) the corresponding matched region in the temporary

list is put to the main list and the new one is put to the

temporary list. What is essentially accomplished is that one

region is a representative for as many regions as possible

until its appearance becomes so different compared to an

incoming region that we are forced to store an additional

one.

Fig. 4. An example of how a series of 8 frames affects the number of
salient regions that are stored in a landmark during training/building. The
number in the top left corner of each grid is the frame number. The label
next to it is the matching condition or command that comes the system.
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Figure 4 shows how the algorithm works in a series of 8

frames. In the first frame, an initial salient region is used to

create a landmark and it is automatically put to the main list.

In frames 1 and 2, the new regions are sufficiently similar

to region 0 that they are put to the temp list (this is what

happens the majority of the time). Frame 3 is an example

where the landmark is not salient enough in the frame and

thus is not detected. In frame 4, the new region is again still

similar to frame 0, so it goes to temp. Frame 5 is where

the algorithm provides a benefit, the incoming region is not

similar to region 0 but close enough to the one from frame

4 (obviously because they are from back-to-back frames).

And thus, region 4 is moved to the main list and region 5

is inserted to the temp list. After another uneventful frame

6, the end signal is received and the last entry in the temp

list is moved to the main list to produce a complete list that

will be saved. We find that the save:discard ratio obtained is

(on average) about 1:5.

In transfer of evidence for multiple landmark matches, we

have to be careful in how to re-link the lists in landmarks

that lose a salient region. There are two different cases, the

region to be moved is either in a main or a temp list. If the

latter is the case, it can simply be moved because there is

a similar region in the main list. If, on the other hand, the

region is in the main list we have to replace it with one most

similar in the temp list: the one from the closest but higher

frame number.

B. Building a Database Across Episodes

The procedure of combining databases from individual

training episodes to a complete database is done iteratively;

we match and add one episode at a time. The matches are

done at landmark-to-landmark level for all incoming-and-

stored landmark combinations. That is, when deciding if

two landmarks depict the same real-world point-of-interest,

the system counts how many regions from one landmark

matches the ones from the other. In addition, it also looks

at the percentage of regions matched in the landmark to be

added. For two landmarks to be combined, they have to pass

any of the following thresholds:

• 2 to 5 match count and >= 50% of matches

• 6 to 10 match count and >= 25% of matches

• above 10 match count

We find that these values to be fairly safe, that the

combined landmarks are almost always the same ones found

at different sessions. In the overall scheme, knowledge that

certain landmarks are found at multiple occasions would be

helpful in gauging its recall reliability, which we have not

fully exploit. For one, we can add a filtering step in the end

that prunes landmarks across sessions, only keeping the ones

that occur in more than one episodes.

When combining two landmarks, no salient regions are

deleted (even if there are identical ones taken from different

sessions). We simply append one list to the back of the other

to keep the episodic progression (for priming where to expect

to landmark at later frames) in tact. Also, if a landmark

from the currently processed database matches with more

than one landmark in the accumulated database, these stored

landmarks are first combined before appending the incoming

landmark. To keep the salient regions properly stored, they

are sorted based on the session names first (alpha-numeric

order), and frame numbers second.

C. Landmark Database Search Prioritization

The database search prioritization module is a fast run-

time procedure that puts the landmarks to be compared in

an order from the most likely to be positively matched to the

least. This procedure speeds up the database search because

once a match is found, the search is called off.

We formulate a priority value for comparison between

landmark lmki,j (from segment i of index j) and incoming

salient region sRegk denoted in equation 2 which weighs

the following factors: segment estimation using gist features,

salient feature similarity, and current location belief.

priority(lmki,j , sRegk) =

Wgist ∗ svali +

Wsal ∗ salDiff (lmki,j , sRegk) +

Wloc ∗ dist(lmki,j, loc(St)) (2)

The weights used are Wgist = .5, Wsal = .2, and Wloc =
.3, which we found through experimentation.

Because the landmarks are arranged by segment of origin,

the segment estimator values svali can be used to prioritize

search order by most likely segment first. For salient feature

similarity (second term), we pre-compute the average salient

feature values for each stored landmark lmki,j and, during

run time, we compute salDiff (lmki,j , sRegk) (the euclid-

ian distance between the salient features of the incoming

region sRegk and the landmark lmki,j average feature

vector). Because this priority computation is done on the

landmark level (a landmark, on average, have a little less

than 20 regions), the procedure is still fast. The third term,

dist(lmki,j , loc(St)), orders the landmarks by its proximity

to the current belief location St (formulation convention in

[15]) for the state of the robot at time t, which adds a

temporal aspect to the priority value.

The system then creates a job item for all incoming

salient-region-and-landmark combinations for multi-threaded

search. These job items are put to a priority queue accessible

by all the processors in the robot, so that each can start

the slow region recognition process. We noticed that most

regions that are found are discovered early in the search.

Equipped with this knowledge we employ a number of exit

conditions that calls off the searches if:

• 3 regions are matched.

• 2 regions matched and 10% of queue has been processed

since last match.

• 1 region is matched and 20% of queue has been

processed since last match.

• no regions are matched and 33% of queue has been

processed.
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1 2 3 4 5 6 7 8 9

Fig. 5. Examples of images in each of the nine segments (with corresponding label) of ACB (first row), AnFpark (second row), and FDFpark (third row)

These thresholds are very conservative, as shown in the

following testing section III.

III. TESTING AND RESULTS

We test the system at three sites on campus with example

scenes of each site occupying a row of figure 5. Each of

the sites has nine segments and each image is a sample

for a segment. The first site (first row of figure 5) is the

126x180ft. Ahmanson Center for Biological Research (ACB)

building complex. The second site (second row) is a region

comprised of two adjoining parks: Associate and Founders

park (AnF), which are dominated by vegetation and make up

270x360ft. area. The third site (third row) is an open area

in the 450x585ft. Frederick. D. Fagg park where a large

portion of the scenes is the sky. The same environments

are used to test the gist model in [13] (maps of individual

sites and the campus and available there) to perform segment

classification, and in [15] for localization. Here we test and

report not only the accuracy of the system, but also its

efficiency in the number of comparisons with the salient

regions in the landmark database.

To collect visual data we use an 8mm handheld camcorder

carried by a person walking while filming. Moreover, be-

cause data is taken at approximately constant speed, we use

interpolation to come up with the ground-truth location of

the person for both training and testing. The main issue

in collecting training samples is the selection of filming

times that include all lighting conditions. We perform trial-

and-error to come up with times of day (morning, noon,

afternoon, early evening) and other natural events (overcast,

after raining) that cover the whole lighting space. In each

site we have between 9 and 11 training runs.

For each site we run the system several times with

different prioritization strategies to show their impact. As

a baseline localization accuracy and efficiency, we assign

random priorities for each landmark in the first run. We then

run the system using individual context cues (segment esti-

mation, salient feature vector proximity, and current location

belief) exclusively by zeroing out the weight of each but

one (the desired) of the terms in equation 2. And lastly,

we report the results using weights that we find optimum

using trial and error, both with and without the early exit

policy. We compare speeds of the different runs by using the

total percentage of regions searched (a platform independent

measure) and because the salient region recognition process

is, by far, the slowest part of the system.

In our platform (a 16-core 2.6GHz machine, operating

on input image size of 160x120), the Visual Cortex, gist,

and saliency computations, which are also implemented in

parallel (each sub-channel has its own thread), takes about

50ms/frame, while the segment estimation takes less than

1 ms. The search process, on the other hand, usually takes

a few seconds to finish (note the stored number of salient

regions for the large environments are between 29710 and

90660), even with the parallel implementation (we dispatch

16 threads to compare input with different parts of the

landmark database). Therefore, system at its current state is

not yet real time. However, we are developing a framework

where the system can use just the segment estimation to

provides a coarse localization hypothesis on every frame,

while salient region recognition, which takes multiple time-

steps, can refine the location belief whenever it is available.

Tables I, II, and III report the results. The first part of each

table reports the statistics of the testing condition and the

size of the database. The second part shows the performance

of each run (with different prioritization parameters), which

consists of the percentage of the searched salient regions in

the database and number of input regions per frame for the

ones that are found, not found, and the total. The numbers of

input salient regions are capped at 5 per frame [15] and the

totals differ slightly because of the small amount of noise

added in the saliency model.

Within each environment, the errors are approximately the

same, with the combination priority with the early exit policy

being barely better, although not statistically significant given

the standard deviation. The position disparities are mostly

along the path where the ground truth is (the belief is either

a bit behind or ahead), but not completely off. In FDF site

in particular, a substantial number of the salient regions

are far away from the robot which makes deducing very

accurate (within a foot) localization visually difficult. Here,

localization using regions that are closer to the robot is

actually essential for convergence to the correct location.

We attribute the small difference of errors between the
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TABLE I

AHMANSON CENTER FOR BIOLOGY EXPERIMENTAL RESULTS

Number of Segments: 9 Number of Landmarks in Database: 1501

Number of Training Sessions: 9 Number of Salient Regions/landmark: 19.79

Number of testing frames: 3583 Number of Salient Regions: 29710

Search Order Policy
found not found total error

% search # of sreg./fr. % search # of sreg./fr. % search # of sreg./fr. (ft.)

random priority 27.64% 2.77± 1.14 100.00% 2.13± 1.14 59.06% 4.89 ± 0.40 3.46 ± 4.84

segment priority 6.17% 2.77± 1.14 100.00% 2.13± 1.14 46.91% 4.89 ± 0.40 3.57 ± 3.61

saliency priority 6.24% 2.77± 1.14 100.00% 2.13± 1.14 46.95% 4.89 ± 0.40 3.62 ± 4.98

location priority 3.38% 2.77± 1.14 100.00% 2.13± 1.14 45.34% 4.89 ± 0.40 3.67 ± 3.58

combination 1.03% 2.77± 1.14 100.00% 2.13± 1.13 44.00% 4.89 ± 0.40 3.63 ± 3.83

combination + early exit 0.85% 2.50± 0.85 14.16% 2.39± 0.88 7.35% 4.89 ± 0.40 3.46 ± 3.08

NOTE (applies to all 3 tables): The first part of the table reports the environment parameters and training results.

The second part shows the performance of each run (with different prioritization parameters), which consists of the percentage

of the compared salient regions in the database and the average number of regions/frame for input regions that are

found, not found, and the total.

TABLE II

ASSOCIATE AND FOUNDERS PARK EXPERIMENTAL RESULTS

Number of Segments: 9 Number of Landmarks in Database: 4664

Number of Training Sessions: 10 Number of Salient Regions/landmark: 17.69

Number of testing frames: 6006 Number of Salient Regions: 82502

Search Order Policy
found not found total error

% search # of sreg./fr. % search # of sreg./fr. % search # of sreg./fr. (ft.)

random priority 24.87% 3.52 ± 1.14 100.00% 1.47± 1.14 46.96% 4.98± 0.14 7.48± 10.33

segment priority 5.77% 3.52 ± 1.14 100.00% 1.47± 1.14 33.47% 4.98± 0.14 7.60± 10.00

saliency priority 5.24% 3.52 ± 1.14 100.00% 1.47± 1.14 33.09% 4.98± 0.14 7.25 ± 9.92

location priority 2.36% 3.52 ± 1.14 100.00% 1.47± 1.14 31.06% 4.98± 0.14 7.35 ± 9.45

combination 0.86% 3.52 ± 1.14 100.00% 1.47± 1.14 30.00% 4.98± 0.14 7.07 ± 9.29

combination + early exit 0.54% 2.84 ± 0.68 7.41% 2.14± 0.68 3.50% 4.98± 0.14 6.55 ± 5.20

TABLE III

FREDERICK D. FAGG PARK EXPERIMENTAL RESULTS

Number of Segments: 9 Number of Landmarks in Database: 4808

Number of Training Sessions: 11 Number of Salient Regions/landmark: 18.86

Number of testing frames: 8823 Number of Salient Regions: 90660

Search Order Policy
found not found total error

% search # of sreg./fr. % search # of sreg./fr. % search # of sreg./fr. (ft.)

random priority 29.33% 3.02 ± 1.24 100.00% 1.75 ± 1.25 55.30% 4.77± 0.72 15.21 ± 19.37

segment priority 8.85% 3.05 ± 1.24 100.00% 1.73 ± 1.25 41.85% 4.78± 0.71 14.56 ± 17.44

saliency priority 8.18% 3.05 ± 1.24 100.00% 1.73 ± 1.25 41.41% 4.78± 0.71 14.00 ± 15.89

location priority 3.50% 3.05 ± 1.24 100.00% 1.73 ± 1.25 38.45% 4.78± 0.71 14.44 ± 15.23

combination 1.28% 3.05 ± 1.24 100.00% 1.73 ± 1.25 37.02% 4.78± 0.71 13.95 ± 16.14

combination + early exit 0.82% 2.57 ± 0.81 12.31% 2.21 ± 0.92 6.12% 4.78± 0.71 12.96 ± 11.40

optimum priority and the rest to the fact that prioritization

indirectly influences the salient region recognition step, given

that the database search ends after the first match is found.

This is especially true because the number of SIFT keypoints

in salient region windows is lower than if we were to use

the whole scene (as low as single digits). Although this

speeds up the process by having to compare less data, it

may have a downside of turning up incorrect matches (false

positives). However, this is where additional context cues

that can be matched at a faster rate (for example, gist vector,

which encode the coarse layout of the image) can minimize

the errors. If there is a coincidental match, a number of

independent factors would also have to be in agreement. And,

in order to significantly perturb the system, because of the

use of Monte Carlo localization, that match would have to

persist for some time.

It should be noted, however, that from the random pri-

oritization (or context information being taken out) results,

it appears that salient features plus the neighborhood SIFT

keypoints are enough to find correct region matching. Most
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of the times, in our testing, when the system returns a positive

region match, it is a correct assessment. The problem with

the matching method is that it has its fair number of false

negatives.

On each site, using the optimum priority with early exit

strategy, the system only needs to make a small number of

comparisons (0.85%, 0.54%, and 0.82% of the database, re-

spectively) to obtain salient regions matches, which is better

than just using individual priority terms (segment, saliency,

or location) because it has both the instantaneous appearance

and temporal factor. In addition, it is encouraging to see

that a high percentage of the regions is found early when

compared to the eventual total found (2.50/2.77, 2.84/3.52

and 2.57/3.05 per image, respectively). This indicates that the

early exit policy works, here only performing 7.35%, 3.50%,

and 6.12% of the total possible comparisons; a significant

speed up, when compared with the random (no context)

priority: 8.04 (59.06%/7.35%), 13.42 (46.96%/3.50%), and

9.04 (55.30%/6.12%) times, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

At the start we set out to optimize the speed-accuracy

tradeoffs in the recognition process for vision localization.

In this work, we achieved a workable compromise and done

so with minimization in three different levels: the number

of features associated for each entry in the database, the

number of entries in the database, and the number of run-

time comparisons needed to determine if there is a match.

With the use of the saliency model we can automatically

identify a visually distinct part of an input image which

allows the system to crop out a small window called the

salient region. The effect of this operation is that we only

have to compare a small subset of the SIFT keypoints

for faster matching time. And because the system provides

context from gist and saliency features, possible increase

in false positives are minimized, as reflected in the end

localization result.

To lower the number of salient regions stored in the

database while still keeping all the necessary information, we

play to the strength of individual entries (scale and in-plane

rotation invariance) and only add new instances when they

reduce the weaknesses (out-of-plane view-point and lighting

changes). During individual database construction, viewpoint

invariance is the main reason why we add a salient region

to a landmark. Lighting invariance, on the other hand, is

achieved by training the system on multiple lighting condi-

tions. However, because there is enough lighting overlap, we

are able to make connections between landmarks that depict

the same point of interest and but are created in different

training sessions.

The on-line landmark database search prioritization is the

culmination of the benefit of using a multi-expert, multi-

level approach. By prioritizing the order of salient region

matching, we are able to cut the comparison percentage

down to single digits. The saved computation time can be

used to perform more robust and sophisticated recognition.

For example, if there is an improvement needed, it would

be to add visual cues that work across wider range of

lightings. Also, in addition to the presented prioritization

factors it would be easy to add temporal shortcuts such as

always compare the previous 10 matched landmarks first. In

the same spirit, we can also add recently matched session

priority, which, in effect, provide lighting condition priming.
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