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Abstract— Visual tracking algorithms have important robotic
applications such as mobile robot guidance and servoed wide
area surveillance systems. These applications ideally require
vision algorithms which are robust to camera motion and scene
change but are cheap and fast enough to run on small, low
power embedded systems. Unfortunately most robust visual
tracking algorithms are either computationally expensive or
are restricted to a stationary camera.

This paper describes a new color based tracking algorithm,
the Adaptive Background CAMSHIFT (ABCshift) tracker and
an associated technique, mean shift servoing, for efficient
pan-tilt servoing of a motorized camera platform. ABCshift
achieves robustness against camera motion and other scene
changes by continuously relearning its background model at
every frame. This also enables robustness in difficult scenes
where the tracked object moves past backgrounds with which
it shares significant colors. Despite this continuous machine
learning, ABCshift needs minimal training and is remarkably
computationally cheap. We first demonstrate how ABCshift
tracks robustly in situations where related algorithms fail, and
then show how it can be used for real time tracking with pan-tilt
servo control using only a small embedded microcontroller.

Index Terms— ABCshift, CAMSHIFT, Meanshift, tracking,
servoing, adaptive background model.

I. INTRODUCTION

Robot vision has important applications to mobile robots

and wide area surveillance. For example, consider a robot

vehicle which is visually guided to follow a moving target,

or the use of a large number of cheap pan-tilt surveillance

cameras scattered over a region of interest to monitor pedes-

trians or vehicles. For military and other operations we can

envisage a combination of these tasks, (e.g., sending out

a large number of small, cheap mobile surveillance units

to penetrate and survey a hostile area). In these kinds of

applications, we need a visual tracking system that is robust

to scene change associated with motion of the camera as

well as the target. However, the vision algorithm must also

be fast and computationally inexpensive so that it can be

implemented at real time frame rates on cheap, lightweight,

low power embedded systems.

Popular methods of tracking moving targets include vari-

ations on the theme of background subtraction. Research in

this area has focussed on methods of adaptively updating the

background model to cope with gradual scene changes [1],

[2], [3] . Unfortunately these methods fail unless the camera
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is stationary. The background model is only relearned very

slowly over many frames, so that when the camera moves

and the scene changes instantly, large parts of the image will

be falsely detected as “moving target regions”. Thus, these

methods are unsuitable for robotic vision systems which

involve motorized camera motion.

Fundamental work in visual servoing [4], [5] detect mov-

ing targets from a moving camera system by segmenting

coherent regions of optical flow. This research demonstrated

impressive speed and robustness, but tended to rely on

expensive hardware, because the optical flow calculations

are computationally intensive and because accurate rotation

sensors are needed in order to accurately measure the camera

motion which is then subtracted from the motion field

observed by the camera. In contrast, our method is robust

to arbitrary, unknown camera motion. Other visual servoing

work, [6], is also robust to camera motion, but is limited to

tracking flat, non-deforming targets.

Other researchers have also attempted to control a moving

camera on robot arm arrangement with respect to a tracked

object. The method in [7] relies on best fitting a model of the

tracked object to segmented lines and edges. The method of

[8] avoids the need for high resolution edges by fitting the

object model directly to segmented image regions. However,

both of these methods depend on detailed 3D models of

the tracked object, so are not suited to applications where

new objects must be rapidly detected and learned without

human intervention. These methods are also unable to track

deformable objects. Other research ([9], [10]) approximates

deformable bodies (of known types) to kinematic chains of

rigid bodies, but at considerable additional computational

expense and the same need for prior knowledge of the

tracked object.

Other popular and effective approaches to tracking moving

targets include various approaches to tracking deformable

blobs. This type of tracking eliminates the need for a 3D

model of the object (which may be unavailable in practice)

and generally uses the features of the object read from the

image itself. To quote only some of the recent algorithmic

development we mention color blob tracking (CAMSHIFT

[11], [12], Mean Shift[13]), deformable boundary tracking

(active contour model [14], CONDENSATION algorithm

[15]) and many others. Of these, CAMSHIFT stands out as

the fastest and simplest. CAMSHIFT was designed for close

range face tracking from a stationary camera but has since

been modified for a variety of other tracking situations[16],

[17].

Robust and flexible tracking algorithms, requiring minimal

training and computational resources, are highly desirable for
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applications such as robot vision and wide area surveillance,

both of which necessitate moving cameras. Unfortunately

CAMSHIFT often fails with camera motion, figure 3, since

it relies on a static background model which is unable to

adequately represent changing scenery. We address these dif-

ficulties by introducing a flexible background representation

which can be continuously relearned. The resulting algo-

rithm, which we call the Adaptive Background CAMSHIFT

(or ABCshift) algorithm, tracks robustly in two situations

where CAMSHIFT fails; firstly with scenery change due to

camera motion and secondly when the tracked object moves

across regions of background with which it shares significant

colors, figures 1–4. Other recent work, [18], also attempts

to track the target based on finding image regions that are

not only ”target-like” but are also different from the local

background. This approach appears to be significantly more

computationally expensive than our method. It is not clear

if the approach has been made to work at real time frame

rates or if this method would be appropriate for the very

large camera motion, and associated extreme scene changes,

which we attempt to tackle in this paper.

Despite its continuous machine learning and relatively

sophisticated tracking, ABCshift is surprisingly computation-

ally cheap. We have managed to implement the ABCshift

algorithm on a cheap camera endowed with a very simple

embedded Arm7 processor capable of only integer level

computations and with very small memory. We demonstrate

the utility of the algorithm by using it on such a rudimentary

platform and we view this work as a small contribution

towards creating viable vision guided robots.

II. BAYESIAN MEAN SHIFT TRACKING WITH COLOR

MODEL

For each frame of an image sequence, the meanshift type

trackers look at pixels which lie within a subset of the image

defined by a search window (represented by the green box

in figures 1–4. Each pixel in this window is assigned a

probability that it belongs to the tracked object, creating a 2D

distribution of object location over a local area of the image.

The tracking problem is solved by mean shifting [20], [13]

towards the centroid of this distribution to find an improved

estimate of the object location. The search window is now

repositioned at the new location and the process is iterated

until convergence.

The tracked object is modeled as a class conditional color

distribution, P(C|O). Depending on the application, 1D Hue,

3D normalized RGB, 2D normalized RGB, Luv or Lab

histograms may all be appropriate choices of color model, the

important point being that these are all distributions which

return a probability for any pixel color, given that the pixel

represents the tracked object. These object distributions can

be learned offline from training images, or during initializa-

tion, e.g. from an area which has been user designated as

object in the first image of the sequence. Alternatively, the

ABCShift algorithm can be initialized by using a stationary

camera with a background subtraction approach (e.g. [1],[2],

[3]) to detect and learn the color features of a new moving

target.

The object location probabilities can now be computed for

each pixel using Bayes’ law as:

P(O|C) =
P(C|O)P(O)

P(C)
(1)

where P(O|C) denotes the probability that the pixel repre-

sents the tracked object given its color, P(C|O) is the color

model learned for the tracked object and P(O) and P(C)
are the prior probabilities that the pixel represents object and

has the color C respectively.

The denominator of equation (1) can be expanded as:

P(C) = P(C|O)P(O) + P(C|B)P(B) (2)

where P(B) denotes the probability that the pixel represents

background.

Bradski[11], [12] recommends values of 0.5 for both P(O)
and P(B). We find this choice difficult to justify since we

take these terms to denote the expected fractions of the

total search window area containing object and background

pixels respectively. Hence we assign values to object priors

in proportion to their expected image areas. If the search

window is resized to be r times bigger than the estimated

tracked object area, then P(O) is assigned the value 1/r and

P(B) is assigned the value (r − 1)/r.

Bradski[11], [12] suggests learning the expression (2)

offline (presumably building a static P(C|B) histogram from

an initial image). While it is often reasonable to maintain a

static distribution for the tracked object (since objects are not

expected to change color), a static background model is un-

realistic when the camera moves. The CAMSHIFT algorithm

can rapidly fail when the background scenery changes since

colors may exist in the new scene which did not exist in

the original distribution, such that the expressions in Bayes

law will no longer hold true and calculated probabilities no

longer add up to unity.

Particular problems arise with CAMSHIFT if the tracked

object moves across a region of background with which it

shares a significant color. Now a large region of background

may easily become mistaken for the tracked object, figure 1.

III. ADAPTING THE BACKGROUND

We address these problems by using a background model

which can be continuously relearned. Rather than using an

explicit P(C|B) histogram, we build a P(C) histogram (of

all pixels within the search window) which is recomputed

every time the search window is moved. P(C) values, looked

up in this continuously relearned histogram, can now be

substituted as the denominator for the Bayes’ law expression,

equation (1), for any pixel. Since the object distribution,

P(C|O), remains static, this process becomes equivalent to

implicitly relearning the background distribution, P(C|B),
because P(C) is composed of a weighted combination of

both these distributions, equation (2). Relearning the whole

of P(C), rather than explicitly relearning P(C|B), helps
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Fig. 1. A simple blue and red checkered object, moving from a region of white background into a region of red background. CAMSHIFT fails as soon as
the object moves against a background with which it shares a common color. Frames 350, 360, 380, 400, and 450 shown. Green and red squares indicate
the search window and estimated object size respectively. This movie, RedWhite1CAMSHIFT.avi, can be viewed at our website[19].

Fig. 2. ABCshift tracks successfully. Frames 350, 360, 380, 400, and 450 shown. Green and red squares indicate the search window and estimated object
size respectively. This movie, RedWhite1ABCshift.avi, can be viewed at our website[19].

Fig. 3. Person tracking with CAMSHIFT from a moving camera in a cluttered, outdoors environment. Frames 1, 176, 735, 1631, and 1862 shown. Since
the tracked person wears a red shirt, CAMSHIFT fixates on red regions of background, including brick walls and doors, and repeatedly loses the tracked
person. Green and red squares indicate the search window and estimated object size respectively. This movie, PeopleTracking1CAMSHIFT.avi, can be
viewed at our website[19].

Fig. 4. ABCshift successfully tracks throughout the sequence and is not distracted by red regions of background, despite being initialised in image 1
which contains no red background. Frames 1, 176, 735, 1631, and 1862 shown. Green and red squares indicate the search window and estimated object
size respectively. This movie, PeopleTracking1ABCshift.avi, can be viewed at our website[19].

ensure that probabilities add up to unity (e.g. if there are

small errors in the static object model).

Adaptively relearning the background distribution helps

prevent tracking failure when the background scene changes,

particularly useful when tracking from a moving camera,

figure 4 on page 3. Additionally, it enables objects to be

tracked, even when they move across regions of background

which are the same color as a significant portion of the

object, figure 2 on page 3. This is because, once P(C) has

been relearned, the denominator of Bayes’ law, equation (1),

ensures that the importance of this color will be diminished.

In other words, the tracker will adaptively learn to ignore

object colors which are similar to the background and instead

tend to focus on those colors of the object which are most

dissimilar to whatever background is currently in view.

It is interesting to note that the continual relearning of the

P(C) histogram need not substantially increase computa-

tional expense. Once the histogram has been learned for the

first image it is only necessary to remove from the histogram

those pixels which have left the search window area, and add

in those pixels which have newly been encompassed by the

search window as it shifts with each iteration. Provided the

object motion is reasonably slow relative to the camera frame

rate, the search window motion will be small, so that at each

iteration only a few lines of pixels need be removed from

and added to the P(C) histogram.

If the P(C) histogram is relearned only once every

frame, the speed should be similar to that of CAMSHIFT.

However, if the histogram is relearned at every iteration,

some additional computational expense is incurred, since

to properly exploit the new information it is necessary to

recompute the P(O|C) values for every pixel, including

those already analyzed in previous iterations. Theoretically,

updating at each iteration should produce more reliable
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tracking, although we have observed good tracking results

with both options.

In practice, ABCshift often runs significantly faster than

CAMSHIFT. Firstly, the poor background model can cause

CAMSHIFT to need more iterations to converge. Secondly,

the less accurate tracking of CAMSHIFT causes it to au-

tomatically grow a larger search window area, so that far

greater numbers of pixels must be handled in each calcula-

tion.

IV. FINDING THE CENTROID POSITION

At the beginning of each iteration we calculate the proba-

bilities for each pixel in the search window, of representing

the tracked object, according to the formula (1). Then we

calculate:

M0 =
∑

i

P (O|C = ci), (3)

where i runs through all the pixels in the search window and

ci is the color of respective pixel i. Then we calculate the

position of the centroid at the current iteration according to:
{

xc = 1

M0

∑

i xiP (O|C = ci)

yc = 1

M0

∑

i yiP (O|C = ci),
(4)

where (xi, yi) is the position of pixel i in the search window.

At the end of the iteration the center of the search window

is shifted to the new position (xc, yc) and the procedure is

repeated until two consecutive center positions are within

ε of each other. This final position is the output center

position of the object in the current frame. This is in fact the

mathematical expectation of the object location, conditional

on the color information within the new image frame.

The ABCshift algorithm is summarised as:

1) Identify an object region in the first image and train

the object model, P(C|O).
2) Center the search window on the estimated object

centroid and resize it to have an area r times greater

than the estimated object size.

3) Learn the color distribution, P(C), by building a

histogram of the colors of all pixels within the search

window.

4) Use Bayes’ law, equation (1), to assign object proba-

bilities, P(O|C), to every pixel in the search window,

creating a 2D distribution of object location.

5) Estimate the new object position as the centroid of this

distribution and estimate the new object size (in pixels)

as the sum of all pixel probabilities within the search

window.

6) Repeat steps 2-6 until the object position estimate

converges.

7) Return to step 2 for the next image frame.

V. APPLICATION OF THE ABCSHIFT ALGORITHM TO

ROBOTICS

The algorithm we created adapts itself to the background

changes, therefore it would be particularly suitable to specific

applications where the camera is moving. Such applications

Fig. 5. Conventional pan tilt servoing using ABCshift. After several
iterations the algorithm converges on a new object centroid and the camera
is redirected to point in this direction.

might include robot vision tasks such as automatic servoing

of a motorized pan-tilt camera platform or vision based

guidance of a robotic vehicle where due to the construction

the camera is moving constantly. We describe next a con-

ventional approach and a different one where we make full

use of the previously described center positioning method.

A. Conventional servoing for pan/tilt tracking

Once a vision system is capable of tracking an object, it

is a relatively simple matter to servo a motorized pan/tilt

platform to keep the camera targeted on the object as it

moves. Conventional servoing with the ABCshift tracker

would involve multiple iterations of shifting the object win-

dow or template region across the image until convergence,

and then repositioning the camera so that its optical axis

is pointed directly towards the final estimate of the object

centroid (see figure 5).

If sophisticated hardware is available, with accurate rota-

tion sensors and either spare processing power or dedicated

control circuits, then a conventional approach such as PID

control should work well for controlling the motors. Instead,

we attempt to use extremely cheap and simple hardware,

such as $10 hobbyist servo motors, partly due to our lack of

budget and partly to demonstrate the robustness of the vision

algorithm. We have thus made use of a simple speed control

rule:

θ̇x ∝ arctan

(

xt − x0

f

)

θ̇y ∝ arctan

(

yt − y0

f

)

,

where (xt, yt) are the converged centroid position of the

moving target in image coordinates, (x0, y0) is the center

of the image and θx and θy are angles of rotation about

motor axes which are aligned with the optical center of the

camera. If the focal length of the camera is unknown, then

these equations can be reasonably approximated with:
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Fig. 6. Meanshift servoing. Now only one ABCshift iteration is performed
for each frame. The camera itself is meanshifted with a search window
which remains centered in the middle of each image.

θ̇x ∝ (xt − x0)

θ̇y ∝ (yt − y0) ,

since angles are typically small, and this avoids the need for

any camera calibration.

B. Meanshift servoing

Unfortunately, when attempting real time tracking on

a very small embedded system, especially with the kind

of continuous machine learning inherent in the ABCshift

tracker, the cpu may not be fast enough to process more

than one meanshift iteration per frame and still achieve useful

frame rates. Instead we need to find a way of minimizing the

image analysis for each frame. We solve this problem with

a simple technique which we call ”mean shift servoing”.

Now, the ABCshift search window remains permanently

fixed in the center of the image. Instead of iteratively shifting

the search window to be centered on the expected target

centroid, we simply use motors to move the entire camera

(see figure 6). In effect, we have saved cpu time by devolving

effort from the vision system to the motors. We need only

use the center part of each image and the remaining portion

can be discarded. Effectively, this reduced image has become

the ABCshift search window, and, in essence, we are now

meanshifting the entire camera over a motion space rather

than meanshifting a window inside an image. For added

robustness, while conserving efficiency, the size of this

centered search window area can be updated at each frame

to be proportional to the speed of the moving target.

Summary of mean shift servoing procedure:

1) Define a search region to be centered at the middle

of the image (i.e. the point of intersection of the optic

axis with the image plane).

2) Assign target probabilities to all pixels in the search

region according to the Bayes law of equation 1 on

page 2.

Fig. 7. CMUcam mounted on servo motor for automatic panning using
ABCshift tracking algorithm and meanshift servoing procedure. With ABC-
shift, robust tracking with a moving camera can be performed with very little
computational expense.

3) Find the centroid of this distribution according to

equation (4).

4) Move the camera to be centered at this centroid

position.

5) Capture new image and repeat.

Note that in this case also, a simple speed control rule,

similar to that described above can be used. Note also that

this servoing technique should work for other meanshift

based tracking techniques such as [12] or [13].

VI. PROOF OF CONCEPT

We have implemented the meanshift servoing technique

with the ABCshift tracking algorithm, on the tiny CMUcam3

embedded vision system [21], incorporating a small Arm7

processor which has very limited memory and can only run

integer arithmetic C programs (figure 7). At present, this

system is able to track objects of around 50 pixels by 50
pixels at 176×144 resolution, at around 6 frames per second,

while continuously relearning the background model, and

can control a servo motor to automatically pan the camera

to follow a moving target. We hope to improve this frame

rate substantially in the near future by finding more efficient

ways to access the frame buffer. Using the conventional

servoing approach, with multiple mean-shift iterations per

frame (section A), we have also tracked/servoed comfortably

at 30fps using a laptop computer and USB webcam (figure

8). For simplicity of coding, we currently relearn every pixel

of the P(C) histogram at every iteration, instead of only

relearning the small number of pixels that change with each

small shift of the search window. Since there are typically

four such shifts per frame, we hope to achieve better than

100fps once this is re-coded more efficiently.
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Fig. 8. USB webcam mounted on servo motors for automatic tilt-pan
using ABCshift tracking algorithm and conventional servoing procedure.
For servoing movie please see the video associated with this paper

VII. CONCLUSIONS AND EXTENSIONS.

In this article we presented a novel, simple yet robust

algorithm, the ABCshift which can track objects in the pres-

ence of background changes. We implement the algorithm

on a very rudimentary platform to demonstrate its capability

to work even with very small CPU designs. We present a

new method of steering the platform (meanshift servoing)

to continuously follow the object tracked which is a direct

result of the simplicity of the algorithm.

Future work will concentrate in both developing further

the algorithm as well as modifying the platform and the

mechanical issues involved.

In terms of algorithmic developments, we are currently

investigating a way to resize the search window to cope

with variations in size of the object, this in turn will provide

better performance (by processing only as many pixels as are

needed) as well as a better estimate of the object itself and the

changes that may subsequently occur. The CAMSHIFT algo-

rithm which is designed for situations when the background

does not change interprets the quantity M0 in (3) as the

expected number of pixels that contains the object and then

re-scales the search window accordingly. In our situation,

because of the innovation we introduced in order to adapt

to the changes in the background distribution as the camera

moves makes M0 lose its nice interpretation and introduce

numerical instabilities with time. The video associated with

figure 4 shows our partially successful attempts to employ

this kind of resizing while also correcting for some of the

sources of instability (see [22]). This work is ongoing and

will be the subject of future papers.

Related with this last part we are also investigating ways of

relearning the tracked object’s color distribution, in addition

to relearning the background distribution. This will allow us

to cope with situations when the object changes its color

distribution (due to changes in illumination, viewpoint, etc.)

thus improving the robustness of the algorithm. However, this

improvement will no doubt come at additional computational

expense.

In terms of future robotics applications of ABCshift, we

plan to mount a pan tilt unit on a mobile robot platform and

explore combinations of ABCshift with steering algorithms

to enable a robotic vehicle to follow a tracked object.
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