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Abstract— This paper deals with the efficient second or-
der minimization (ESM) and the image-based visual servoing
schemes. In other word, it deals with the minimization based on
the pseudo-inverses of the mean of the Jacobians or on the mean
of Jacobian Pseudo-inverses. Chronologically, it has been noted
in [16] that the (ESM) improves generally the system behavior
compared to the case where only the simple Jacobian Pseudo-
inverses is used. Subsequently, a mathematical explanation has
been given in [11]. In this paper, the proofs given in [11] are
considered to deal with their validity. It will be shown that
there is a limitation to the the validity of this method and
some precautions should be taken, for adequate application of
it. In other words, we will show that the use of ESM does not
necessary ensures a better system behavior, especially in the
cases where large rotational motions are considered.

I. INTRODUCTION

Visual servoing techniques are very effective since they

close the control loop over the vision sensor. This yields

a high robustness to disturbances as well as to calibration

errors. Several kinds of visual servoing can be distinguished,

according to the space where the visual features were

defined. In position-based visual servo (PBVS) [19], the

features are defined in the 3D space. The control scheme

using PBVS ensures a nice decoupling between the degrees

of freedom (dofs). For this reason, adequate 3D trajectories

can be obtained, such as a geodesic for the orientation and

a straight line for the translation. However, position-based

visual servoing may suffer from potential instabilities due to

image noise [4]. On the opposite, in image-based visual servo

(IBVS) [8], the visual servo is performed in the image. A

compromise can be obtained by combining features in image

and partial 3D data [12].

In 2D visual servoing, the behavior of the features in the

image is generally satisfactory. On the other hand, the robot

trajectory in 3D space is quite unpredictable and may be

really unsatisfactory for large rotational displacements [4].

In few words, we recall that the time variation s of the

visual features s can be expressed linearly with respect to

the relative camera-object kinematics screw v:

s = Lsv (1)

where Ls is the interaction matrix related to s [8]. The

control scheme is usually designed to reach an exponential

decoupled decrease of the visual features to their desired
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value s∗, from which we deduce if we consider an eye-in-

hand system observing a static object:

vc = −λL̂s

+

(s − s∗) (2)

where L̂s is a model or an approximation of Ls, L̂s

+

the

pseudo-inverse of L̂s, λ a positive gain tuning the time to

convergence, and vc the camera velocity sent to the low-level

robot controller. If the initial error is large, such control may

produce an erratic behavior: convergence to local minima,

inappropriate camera trajectory due to strong coupling. In

fact, the difference of behaviors in image space and 3D

space is due to the non linearities in the interaction matrix. In

principle, an exponential decoupled decrease will be obtained

simultaneously on the visual features and on the camera

velocity (that would give a perfect behavior) only if the

interaction matrix is constant.

To address this issue, a first approach consists of selecting

features sharing good properties. In this way, recently, the

analytical form of the interaction matrix related to any image

moments corresponding to planar objects has been computed.

This makes possible to consider planar objects of any shape

[5], [17]. If a collection of points is measured in the image,

moments can also be used [17]. In both cases, moments

allow the use of intuitive geometrical features, such as the

center of gravity or the orientation of an object. By selecting

an adequate combination of moments, it is then possible

to determine partitioned systems with good decoupling and

linearizing properties [5], [17]. For instance, using such

features, the control of the the three translational degrees of

freedom is completely partitioned. Furthermore, the block

of the interaction matrix corresponding to the translational

velocity is a constant block diagonal. This has improved

widely the 3D behavior of the system. Another solution is

to use a path planing step jointly with the servoing one [13],

[1], [14], [6]. In such approach, the basic idea is to sample

the initial errors in order to ensure that the error at each

iteration remains small.

Another way to improve IBVS behavior consists on taking

into account the strong non-linearities in the relation from

the image to the work space. Indeed, the function mapping

3D features to their projection in the image is neither linear

nor invertible. The control law (2) was developed using a

first-order Taylor expansion of the projection function to

estimate locally the variation of the camera 3D pose from the

features variations. Lapreste et al in [10] presents a method

for estimating the control matrix in visual servoing using ap-

proximation up to the second order of the projection function.
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The proposed method is based on Hessian approximation.

The main drawbacks is that this method introduces a lot

of supplementary parameters. The work we are interested

in is that proposed by Malis in [11]. In the latter, a ”second

order method” based only on first derivative and thus without

Hessian estimation is proposed to enhance the IBVS. The

same idea was extended to image tracking of planar object

in [2], [3], for instance. In this paper, the validity of such

approaches is discussed. However, the discussion will only

focus on image-based visual servoing application rather than

tracking one. The tracking application is not concerned, since

a small displacement are considered in general. The methods

given in [2], [3] are still valid in general and ensure better

results in term of convergence rate and percentage. In the

following, it will be shown that the use of such method in

IBVS does not ensure necessary a better behavior, worse it

could be a cause of unstable system control. Furthermore,

corrected formulas of these control will be proposed and

validated.

II. MATHEMATICAL BACKGROUND OF THE ”EFFICIENT

SECOND ORDER MINIMIZATION”

In this section, the mathematical background of the ESM

given in [11] are recalled.

A. Starting point

Instead of the first order Taylor series, the ESM is based

on the second-order Taylor series of s(x):

∆s = −J(x1)∆x +
1

2
M(x1,∆x)∆x + 0s2(∆x3) (3)

∆s = −J(x2)∆x −
1

2
M(x2,∆x)∆x + 0s1(∆x3) (4)

where x1 and x2 define the camera frame positions, J(x1)
and J(x2) are the Jacobien matrices (n by 6 matrices), 0s1

and 0s2 are the reminders, M(x1,∆x) and M(x2,∆x) are
matrices containing all the n Hessian matrices of the (n×1)
vector function s(x):

M(x1,∆x) = (∆x
T
H1(x1), ∆x

T
H2(x1), . . . , ∆x

T
Hn(x1))

M(x2,∆x) = (∆x
T
H1(x2), ∆x

T
H2(x2), . . . , ∆x

T
Hn(x2))

Starting from this, [11] designed two control schemes called

respectively Mean of Jacobian Pseudo-inverses (MJP) and

Pseudo-inverse of the mean of the Jacobians (PMJ).

B. Mean of Jacobian Pseudo-inverses

Multiplying both sides of equation (3) by J+(x1) and both
sides of equation (4) by J+(x2) we obtain:

∆x = −J
+(x1)∆s +

1

2
J

+(x1)M(x1,∆x)∆x + 0
,

s2
(∆x

3) (5)

∆x = −J
+(x2)∆s −

1

2
J

+(x2)M(x2,∆x)∆x + 0
,

s1
(∆x

3) (6)

Let the matrix J+(y)M(y,∆x) be a function of y. Con-
sider its first-order Taylor series about x1, evaluated at x2:

J
+(x2)M(x2,∆x) = J

+(x1)M(x1,∆x) + (0J+)(∆x
2) (7)

where the reminder OJ+ is quadratic in ∆x. Computing

the mean of equations (5) and (6), and plugging equation

(7) into the mean, we obtain:

∆x ≈ −
1

2
(J+(x2) + J+(x1))∆s + 0MJP (∆x3) (8)

where:

OMJP(∆x3) = O,(s1)(∆x3)+O,(s2)(∆x3)+OJ+(∆x2)

is the total remainder which is cubic in ∆x. In conclusion,

the mean of first-order approximations of the displacement

is a second-order approximation of the displacement:

∆x ≈
1

2
(J+(x1) + J+(x2))∆s (9)

C. Pseudo-inverse of the mean of the Jacobians

Consider the second-order Taylor series of the Jacobian

J(x) about x2 and evaluated at x1:

J(x1) = J(x2) + M(x2,∆x) + OJ(∆x2) (10)

where OJ is the remainder. This formula provides an

estimation to the second-order of matrix M(x2,∆x):

M(x2,∆x) = J(x1) − J(x2) − OJ(∆x2)∆x) (11)

Plugging this equation into equation (4) we obtain:

∆s =
1

2
(J(x1) + J(x2))∆x + 0PMJ(∆x3) (12)

where (0PMJ∆x3) = Os2(∆x3))+OJ (∆x2)∆x is the

total remainder which is cubic in ∆x. As a consequence, a

second-order approximation of s(x) is again obtained using

only first derivatives:

∆s ≈
1

2
(J(x1) + J(x2))∆x (13)

The displacement can be obtained by computing the pseudo-

inverse of the mean of the Jacobians:

∆x ≈ 2(J(x1) + J(x2))+∆s (14)

The whole results recalled in the two above paragraphs

are valid from a mathematical point view. However, their

application in the context of visual servoing is not straight-

forward and some precautions should be taken. In fact, some

special properties of visual servoing have not been taken into

account. More details will be given in the next paragraph.

D. From second order minimization to IBVS

The first problem to be considered in the ”proofs” given in

the above paragraphs is the definition of ∆x. In visual ser-

voing, naturally, ∆x is nothing but a displacement between

two camera configurations with respect to an object. In [11]

it has been defined as follows:

∆x ≈ v∆t (15)

Let vd be the velocity vector computed using (2) to move

the desired camera frame (referenced by x2) to the current

one (referenced by x1). Let also vc be the velocity vector
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to move the current camera frame (referenced by x2) to its

desired position (referenced by x1) using (2). In other words,

vd and vc are defined as follow:

vd = λLs∗
+(s − s∗) (16)

vc = −λLs
+(s − s∗) (17)

From the above definitions, it has been considered that Ls∗

and Ls are equal to J(x2) and J(x1) respectively. This leads

straightforwardly to the two following control laws:

vMJP = −
1

2
λ(Ls

+ + Ls∗
+)(s− s∗) (18)

vPJM = −2λ(Ls + Ls∗)
+(s− s∗) (19)

In fact the definition of ∆x used to develop the two above

control laws is not consistent with (3) and (4). Indeed, in

(3) and (4), it is assumed that the displacements from the

position x1 to the the position x2 and the displacement from

x1 to x2 have the same value ‖∆x‖, but a different sign,

which leads to (15):

vddt ≈ −vcdt (20)

If a rotational motion is considered, the orientation of the

desired and the current frames are different. Since vd and

vc are respectively expressed in the current and the desired

frames, (20) is in general not valid. Indeed, although vd and

vc represent the same displacement, they have not got the

same orientation. Thus the motion between the two camera

positions need to be taken into account. In other word, vd

and vc have to be expressed in the current frame and applied

to the latter. This means we have to use −Tvd instead of

vd. Where, T is the tensor transformation matrix from the

desired frame to the current one:

T =

(
cRd

cRd[t]×
03×3

cRd

)
(21)

cRd is the rotation matrix between the current and the de-

sired position, t is the translation vector, and []× is the skew-

symmetric matrix associated to the vector cross-product.

Finally the following appropriate second order minimization

can be obtained:

vMJP = −
1

2
λ(Ls

+ + TL+
s∗

)(s − s∗) (22)

vPJM = −2λ(Ls + Ls∗ T−1)+(s − s∗) (23)

Note that (18) and (19) are nothing else that a rough

approximation of (22) and (23). Where, T is approximated

by the identity matrix I6. This could be valid only if the

translational degrees of freedom are considered. The change

of frame presented here has already been taken into account

in [3] but for tracking purpose using Lie Algebra and for

small displacements.

III. VALIDATIONS

In this section, six features based on moment computed

from a set of points will be used for simulation purpose.

A. Features vector

As a example of features in image, the image moments

computed from a set of points are used. In this way, to control

the three rotational degrees of freedom the features proposed

in [17] are exploited. They are defined as follow:

s =




r1

r2

α



 (24)

where α = 1

2
arctan( 2µ11

µ20−µ02
) determines the orientation

of the principal axis of the ellipsoid defined by the central

moment computed from the set of point, ri, rj are two

invariants obtained by combining three kinds of moment

invariants: invariant to translation, to 2D rotation and to scale.

For instance, ri, rj can be chosen as:

r1 = In1
/In3

, r2 = In2
/In3

(25)

with:




In1
=(µ50+2µ32+µ14)

2 + (µ05+2µ23+µ41)
2

In2
=(µ50−2µ32−3µ14)

2 + (µ05−2µ23−3µ41)
2

In3
=(µ50−10µ32+5µ14)

2 + (µ05−10µ23+5µ41)
2

µij are the centered moments defined by:

µij =
N∑

k=1

(xk − xg)
i(yk − yg)

j

where (x, y) are the projection of 3D point onto the image

using a perspective projection, N is the number of points,

and (xg, yg) is the center of the set of points in the image.

Complete details on how ri and rj have been determined

can be found in [15]. The interaction matrix Ls related to

the above three features with respect to rotational degrees of

freedom has the following form [17]:

Ls =




r1wx

r1wy
0

r2wx
r2wy

0
αwx αwy −1





In the other hand, as in [18], [15], the invariant to rotations
will be used to control the translational motions. For instance,
the following polynomials are invariant to rotational motions
[15]:

I1 = m200m020 −m200m002 +m
2
110 +m

2
101 −m020m002 +m

2
011

(26)

I2 = − m300m120 − m300m102 + m
2
210 − m210m030 − m210m012

+ m
2
201 − m201m021 − m201m003 + m

2
120 − m120m102

+ 3m
2
111 + m

2
102 − m030m012 + m

2
021 − m021m003 + m

2
012

(27)

I3 = m
2
300 + 3m300m120 + 3m300m102 + 3m210m030

+ 3m210m012 + 3m201m021 + 3m201m003 + 3m120m102

− 3m
2
111 + m

2
030 + 3m030m012 + 3m021m003 + m

2
003

(28)

where:

mi,j,k =

N∑

h=0

xi
sh

yj
sh

zk
sh

(29)

with (xs, ys, zs) are the coordinates of the projection of a

3D point onto the unit sphere [9], [15].
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B. Simulations where translational motion is considered

In a first simulation only translational motion is consid-

ered. It will be seen that the classical version presented

in [11] is still valid and improve the system behavior. For

this, we compare the convergence success percentage using

the MJP method or the classical one (i.e. using the current

value of the interaction matrix) in the case where only a

translational motion is considered. The convergence success

percentage is defined by the percentage of the case when

the system converge to the global minimum. In order to do

so, thousands of random translational motion with different

norms were generated. The percentage of the convergence

success was computed with respect to the translation vector

norm. Figure 1 shows the results using the MJP (continuous

plot) and using the classical method (dashed plot). From

this figure, it can be seen that the convergence percentage

is noticeably better using the MJP. This was expected, since

the MJP is valid if only a translational motion is considered.

Fig. 1. Convergence percentage if only a translational motion is considered:
dashed plot shows the result using the current value of the interaction matrix,
continuous plot shows the result using MJP

In the second simulation, the displacement combining the

translation and the rotation given respectively by (31) and

(30) is considered. The obtained results using the MJP or the

classical method are given on Figure 2. From the latter figure,

it can be noticed that the obtained results using MJP are

not better compared to the classical method results. Indeed,

oscillations of two components of the translational velocities

using MJP can be observed. The dashed plot corresponds

to the translational velocity with respect to the optical axis.

Note that this component did not suffer oscillation, since the

considered rotational motion did not change the orientation

of the optical axis. In fact the oscillation observed for the

two others components can be explained by the different

orientations of the current and the desired camera frames. In

the next subsection, results for rotation motion only will be

presented.

Fig. 2. Translational velocities (in m/s): result using the current value of
the interaction matrix (top), result MJP (bottom)

θu =
(

0 0 80
)o

(30)

t =
(
−0.4 −0.4 −0.15

)
cm (31)

C. The ESM behavior for large rotational motion

In this simulation, the rotational motion expressed as the

rotation vector given by (32) has been considered.

uθ =
(

21.82 0 87.00
)

(32)

Further, a random set of 10 coplanar points has been

generated for the desired position. The interaction matrices

computed for the the current and desired positions are given

respectively by (33) and (34). It can be noticed the large

difference between the interaction matrix values.

Ls =




67.80 17.01 −0.00
−12.00 −10.49 −0.00
−0.65 −0.16 −1.00



 (33)

Ls∗ =




9.0053 43.78 −0.00
−6.42 6.38 0.00
0.00 −0.04 −1.00



 (34)

This is the consequence of the large rotation around the

optical axis (nearly 90o). Figure 3 gives the plot of the

obtained results using respectively the MJP, the PMJ and the
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classical method based on the current value of the interaction

matrix. The features errors plots are given on Figures 3.a, 3.c

and 3.e. The velocities are plotted on 3.b, 3.d and 3.f. We

can note that the results using the classical method are very

satisfactory. On the other hand, it can also be seen that the use

of MJP and PMJ does not improve the result obtained using

the classical method. Contrary, from the corresponding plots,

the use of these methods disturbed the system and several

oscillations can be observed. For a larger rotational motion

around the optical axis, the control law using the MJP and

the PMJ becomes unstable and diverges.

The obtained results for a large rotational motion around

the optical axis were expected. In fact, in visual servoing,

the computed velocity is expressed in the current frame

and applied to this frame. Further, the interaction matrix

determines the feature variations with respect to the camera

velocity. In other words, it determines the direction of the

motion to apply. Thus, combining Ls∗ and Ls in the control

laws MJP, and PMJ is not safe business, since this does

not take into account the difference between the camera

frame orientations in its initial and desired positions. To take

this into account, the tensor dvd = Ls∗(s − s∗) should be

expressed in the current frame. In next subsection, we will

see how the interaction matrix entries behave with respect to

rotational motion.

D. Interaction matrix entries variations with respect to ro-

tation

As a significant example, the variations of the interaction

matrix entries with respect to rotation around the optical axis

is presented. Figure 4 gives the variation of the interaction

matrix entries with respect to the rotation angle. In this

Figure, the curves with dashed lines correspond to the

component related to the optical axis. From the latter, it

can be noticed that they are constant. This was expected,

since a rotational motion around the optical axis does not

change the orientation of this axis. Thus, the variation of the

selected features with respect to rotational motion around

the optical axis is still constant. From, the same figure,

it can also be seen that the variation of the other entries

are sinusoidal functions. In fact, the interaction matrix after

rotational motion is the product of this matrix by the rotation

matrix for the considered features. Further, from the same

figure, it can be seen that the matrix entries change their signs

if the rotation angle is more than π
2

. This mean although if Ls

and Ls∗ are not singular their sum might be singular. Thus, a

control law using Ls + Ls∗ as proposed in [11] would make

unstable the system behavior if a large rotational motion is

performed.

E. The ESM behavior by taking into account the rotational

motion

In the case where only a rotational motion is considered,
dvd can be expressed in the current frame as follow:

cvd = −cRd
dvd

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Validations: a) feature errors using pseudo-inverses of the mean of
the Jacobians, b) velocities (degree/s) using pseudo-inverses of the mean of
the Jacobians, c) feature errors using the mean of pseudo-inverses of the
Jacobians, d) velocities (degree/s) errors using the mean of pseudo-inverses
of the Jacobians, e) feature errors using the pseudo-inverse of the current
Jacobian, f) velocities (degree/s) using the pseudo-inverse of the current
Jacobian

cRd is the rotation matrix between the two camera positions.

For instance, an estimation of cRd can be obtained using a

model-based pose estimation method [7] (if the object model

is available), or a model-free pose estimation [12](in the case

where no object model is available). This leads to two control

laws:

vMJP = −
1

2
λ(Ls

+ + cRdLs∗)
+)(s − s∗) (35)

vPJM = −2λ(Ls + Ls∗
dRc)

+(s− s∗) (36)

In a second simulation, the two above control laws was used.

The rotational motion given by (32) is considered. Figure 5

gives the plots of the obtained results. From this figure, it is

clearly noticeable that the oscillations observed in the case

where the classical ESM was used disappeared. Indeed, a

satisfactory exponential decrease for both features errors and

velocities were obtained.

IV. CONCLUSIONS AND DISCUSSIONS

This paper dealt with the validity of the ”Efficient second

order minimization” for visual servoing application proposed

in [11]. It has been shown that this method is not valid if a
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(a) (b)

(c)

Fig. 4. Interaction matrix entries variations: a) result for r1, b) result for r2

a) result for α

(a) (b)

(c) (d)

Fig. 5. Validations: a) feature errors using (35), b) velocities (degree/s) using
(35), c) feature errors using (36), d)velocities (degree/s) errors using (36)

large displacement has to be performed. More precisely, if

a large rotational motion is considered, the use of the ESM

does not necessary ensure a better behavior of the system

than the classical method based on the current value of the

interaction matrix. Contrary, the ESM can make unstable

the system control and produces oscillations of the features

errors and velocities. Worse, in some cases, it can cause

system control divergence.

An adequate application of the ESM has to take into

account the coordinates transformation T from the current

and the desired frame of the camera. In general, this means

that the object model is completely known. However, in the

case where the used features ensures a complete decoupling

between the rotational and the translational motions, the

knowledge of the object model can be avoided. Indeed, the

features used to perform the simulations in this paper ensure

a decoupled control of the translation and the rotations.

This means that only the rotation between the current and

the desired camera positions has to be known. This can

be computed using a model-free method for partial pose

computation.
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