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Abstract— In this paper we present a novel approach to
robust visual servoing. This method removes the feature track-
ing step from a typical visual servoing algorithm. We do not
need correspondences of the features for deriving the control
signal. This is achieved by modeling the image features as
a Mixture of Gaussians in the current as well as desired
images. Using Lyapunov theory, a control signal is derived
to minimize a distance function between the two Gaussian
mixtures. The distance function is given in a closed form, and
its gradient can be efficiently computed and used to control the
system. For simplicity, we first consider the 2D motion case.
Then, the general case is presented by introducing the depth
distribution of the features to control the six degrees of freedom.
Experiments are conducted within a simulation framework to
validate our proposed method.

I. INTRODUCTION

Visual servo control or visual servoing is the process of

positioning a robot end effector with respect to an object

or a set of features extracted from the object of interest.

Visual information like image points, contours, and line

segments are typically used as features [1], [2].The most

commonly used features in the visual servoing algorithms are

image points. These features could be some interest points,

computed out of the gray-level invariance. In these situations,

feature tracking is generally necessary to provide the required

correspondences (across the images) to compute the control

signal. These correspondences could be either between the

current and desired camera frame or between two consecutive

frames of the video.

Feature tracking in an image sequence is an important

topic of research in visual servo control and general robot

vision applications [3]. Fig 1 shows the role of the track-

ing step in classical visual servo control process. Robust

extraction and real-time tracking of visual cues is vital

to the performance of a visual servo control system. For

practical applicability in most real-life environments, one

needs to derive the control signal by robustly tracking

without any fiducial markers. Many researchers have recently

been investigating the tracking stage of the visual servoing

process. A number of visual tracking methods, which are

robust to noisy measurements and changes in environmental

conditions, have been proposed. Kragic [4] presented a 2D

tracking algorithm based on integration techniques which

provides robust visual information to the control law. Hafez

et al. [5] presented a planar tracking algorithm based on the

probabilistic integration of edge and image point features. A
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Fig. 1. Tracking step within traditional visual servo control framework.
Features are tracked and compared with the desirved one to derive the
control signal
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Fig. 2. Tracking step in some of the recent algorithm is integrated with
the control law. (See Sec I)

similar algorithm [6] has been proposed by Pressigout and

Marchand within a deterministic optimization framework.

However, these algorithms still involve an expensive tracking

step to provide the correspondences and other required infor-

mation like pose vector or homography matrix to the control

law. This tracking step is usually derived in a recursive

framework. They may also require additional computations

to provide robustness.

Visual servoing methods have been proposed which inte-

grate the tracking phase into the control law (see Fig 2).

In [7] Tahri and Chaumette presented a moment-based

approach to visual servoing which computes the moments

of a planar contour without explicitly considering point cor-
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Fig. 3. Tracking step is avoided in our visual servo control algorithm. We
model the feature distribution as GMM and derive the control signal based
on GMMs
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respondences. The translation is controlled using zeroth and

first order moments while the rotation control needs higher

order moments which are more sensitive to noise. In a more

recent work, the same authors proposed to control rotation

using a homography decomposition based method [8]. How-

ever, the method still requires a contour tracker. Recently,

Kallem et al. [9] proposed a kernel-based visual servoing

method that does not separate the tracking stage from the

control stage. Instead, authors use a tracking-based kernel

function to generate the control signal. However, at present,

the method is limited to four degrees of freedom i.e. (3D

translation and roll). Another attempt to unify the tracking

stage with the servo control stage has been proposed by Malis

and Benhimane [10]. Their method uses an efficient second

order approach to homography tracking and estimation of

a planar object through a sequence of images. In this case

too, tracking stage is not completely avoided; but is merged

into the control stage. Figure 3 shows an outline of what is

presented in this paper, a visual servo control in which the

tracking step has been removed completely.

In this paper we propose a novel approach to visual

servoing. This method uses a set of image points extracted

from the target image to compute the required control signal

without the use of explicit point-to-point correspondences.

The extracted features are fed directly to the control law.

In our algorithm, we model the M image point features

extracted from the current image and the N image point

features extracted from the desired image as two separate

Gaussian Mixture Models (GMMs). We assume that in the

most general case, that N and M need not be equal. There

is as such no correspondence information between the point

sets extracted from the current and target images. Our method

is based on a closed form distance function between two

GMMs that was proposed in [11]. We use Lyapunov theory

to compute a control signal that minimizes this distance

function. First, we demonstrate the approach with a 2D

motion involving three degrees of freedom. We also show

that this method can be generalized to the six degree of

freedom motion by introducing the depth distribution of the

features.

Since we treat the feature points collectively and model

them as a distribution (rather than working with individual

feature points) our method is statistically robust. Hence it is

suitable for applications in real world environments where

features can not be detected perfectly.

II. MODELING AND PROBLEM FORMULATION

A. Notations

The pose P of the end effector of the robot arm can

be represented in terms of its rigid transformation [R, t]
with respect to a world coordinate system. Here, R is a

3 × 3 rotation matrix and t is the 3 × 1 translation vector

t = [tx ty tz]
T . This representation of the pose is used

when manipulating Gaussian mixtures. The rotation matrix

R can be parameterized in terms of 3 Euler angles (α, β
and γ) such that R = Rx(α)Ry(β)Rz(γ). When deriving

the control signal it is more convenient to use the Euler

angle parameterization. In this case, the camera pose P is

represented by 6 × 1 vector [tx ty tz α β γ]T .

B. Gaussian Mixture Model

The Gaussian density function N (X;µ,Σ) represents the

probability density with mean µ and variance Σ evaluated at

X . A Gaussian Mixture Model or GMM is a probability

distribution which is a convex combination of Gaussian

distributions f(x) =
∑i=n

i=1
αiN (X;µi,Σi) where α is a

sequence of n non negative weights that sum to one. Efficient

algorithms exist for fitting a GMM to a set of samples

using an Expectation Maximization formulation. We use

GMMs to model distributions of feature points in the image

space or Cartesian space. Each feature point contributes

one component Gaussian to the model with mean equal

to its observed position and a variance that represents the

uncertainty in its position.

C. Similarity between two Gaussian Mixture Model

Many distance measures such as the Kullback-Leibler di-

vergence and the L2 norm can be used as a distance measure

between two Gaussian mixtures. We use the L2 distance

to quantify the similarity between Gaussian mixtures. The

reason for that is the availability of a closed form expression

for the L2 distance between GMMs, which allows for

implementation with lower time and space complexity [11].

The GMM of the N feature points in the desired view

is denoted by g(X) =
∑N

j=1
βjN (X; νj ,Γj) and that

of the M feature points in the current view is denoted

by f(X, P ) =
∑M

i=1
αiN (X;Rµi + t, RΣiR

T ). Changing

manipulator pose applies a rigid transformation to the dis-

tribution f(X, P ) while g(X) remains fixed. As the current

pose approaches the target pose, the overlap between g(X)
and f(X, P ) will increase or equivalently the distance be-

tween them will decrease. Thus, the visual servoing process

can be viewed as one that minimizes a distance measure

d(f(X, P ), g(X)) between g(X) and f(X) by changing the

manipulator pose P . Since we are using the L2 norm the

distance d(f, g) =
∫

[f(X, P ) − g(X)]
2
dX . This can be

expanded and written as

d(f, g) =

∫

(f2(X, P )−2f(X, P )g(X)+ g2(X))dX. (1)

D. Uncertainty Propagation from Image to 3D Space

This subsection describes how a Gaussian distribution in

the 2D image space can be projected into 3D space as shown

in Fig 5. Consider the image point x = (u, v), which is

a projection of the 3D point X . The measurement x of

this image point can be corrupted by noise and errors. This

corruption can be represented by a Gaussian distribution with

zero mean and variance Σx. This results in a random variable

with probability distribution [12], [13] given by

p(x | X) =
1

2π|Σx|1/2
exp[(−

1

2
(x−KX)T Σ−1

x (x−KX))].

(2)

Given a probability distribution p(Z) = N (Z; Z̄, σZ) of the

depth of X with a mean Z̄ and variance σZ , the image
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Fig. 4. GMMs in image space and the distance between them.

Fig. 5. Uncertainty projection from image to the Cartesian space.

measurements can be back-projected to the Cartesian space

using the function F−1, the inverse of the back-projection

function of the camera. A probability density function of the

3D point X that corresponds to the image point measurement

x is obtained. This function is p(X | x) = N (X; X̄,ΣX)
and the parameters X̄ and ΣX are computed as follows [12]

X̄ = [Z̄ū, Z̄v̄, Z̄]T , Σ−1

X = JT
F

(

Σ−1

x 0
0 σ−1

Z

)

JF .

(3)

Here, the matrix JF is the Jacobian of the inverse of the

back-projection function [12] and defined as

JF =
∂F−1

∂X

∣

∣

∣

X̄
=

(

1/Z̄ 0 −ū/Z̄
0 1/Z̄ −v̄/Z̄
0 0 1

)

. (4)

The resulting distribution of the 3D points coordinates is

used in the GMM to perform the visual servo control.

III. GMM FOR VISUAL SERVOING

A. The Design of Locally Stable Control Law

In this section we adopt a set of assumptions without the

loss of generality. The visual servoing system is assumed to

be an eye-in-hand visual servoing system. In other words,

we have a moving camera and a stationary object. Further,

we assume that the control loop is an indirect visual servoing

control loop [14]. Consequently, the control input u to the

robot controller is given as the screw velocity of the camera

and define as

u =
∂P

∂t
. (5)

Here the camera pose P is represented as a 6×1 vector. The

control signal u is also a 6 × 1 vector.

Our cost function C is the L2 distance between the

Gaussian mixtures f(X, P ) and g(X)

C =

∫

[f(X, P ) − g(X)]
2
dX, (6)

C =

∫

[

f2(X, P ) − 2f(X, P )g(X) + g2(X)
]

dX, (7)

where f(X, P ) represents a mixture of Gaussians in the

current frame. It can be explicitly written as a function of

the relative pose between the current camera frame and the

desired one.

f(X, P ) =

M
∑

i=1

αiN (X;Rµi + t, RΣiR
T ). (8)

Here, R and t are the rotation and translation between the

current frame and the desired frame, and M is the number

of point features extracted from the current image. Similarly,

g(X) =

N
∑

j=1

βjN (X; νj ,Γj) (9)

represents a mixture of Gaussians in the desired image. The

number of image features extracted from the desired image

is N where N 6= M in the general case. In addition, in the

desired image the rotation is R = I and t = 0.

Consider the following Lyapunov candidate function

L =
1

2
(C − C0)

2, (10)

where C0 is the value of the cost function C evaluated at the

desired position. To produce a control signal that stabilizes

the servoing system write

∂L

∂t
= (C − C0)

∂C

∂P

∂P

∂t
, (11)

We select the control signal u such that

u = −(C − C0)∇P (C), (12)

where ∇P (C) = ∂C
∂P . Substituting (12) and (5) in (11), we

get the derivative of the candidate Lyapunov function as

∂L

∂t
= −(C − C0)

2 ‖ ∇P (C) ‖2 . (13)

One may note that the candidate Lyapunov function is

positive definite in the pose variable P and its derivative

function is negative semi-definite. This proves the local

stability and convergence of the control law.

In the following subsections we show the details of the

gradient computation ∂C
∂P = ∇P (C) and the derivative of

3227



the visual servoing control law in case of planar motion

where the rotation and translation form a 2D transformation,

then generalize it to the six degree of freedom case where

we assume a depth distribution is given. This is done by

propagating the distribution into 3D space as explained in

section II-D.

B. Gradient Computation

The distribution g(X) in (7) does not depend on the trans-

formation parameters R and t. Furthermore, the L2 norm

is an invariant under rigid transformation. Consequently,
∫

f2(X, [R, t]) = f2(X[I, 0]). This implies that the first

and last terms of the cost function can be dropped and only

the cross term needs to be considered. Therefore (7) can be

rewritten as

C =

∫

[f(X, P )g(X)] dX (14)

C(P ) =

M
∑

i=1

N
∑

j=1

αiβjN (0;Rµi+t−νj , RΣiR
T +Γj) (15)

The cost function C(P ) can be differentiated with respect

to the pose parameters to obtain the gradient function ∇P (C).

∇P (C) =

M
∑

i=1

N
∑

j=1

αiβj∇P

(

N (0;Rµi + t − νj , RΣiR
T + Γj)

)

(16)

We omit the development details of the vector ∇(C) as it is

fairly straightforward but lengthy.

We consider here two cases of eye-in-hand visual servoing.

First, the camera is mounted on a planar robot end-effector

that can move in x-y directions and rotate in the x-y plane,

about the z axis. In this case, the control signal u is the

3-vector Ṗ = [ṫx ṫy γ̇]T . The problem is reduced to 2D

image rigid transformation; The matrix R is a 2D rotation

matrix and t is a 2D translation. The Gaussian Mixtures are

defined in the 2D image space by directly using the image

measurements.

The second is the six degree of freedom case where we

control the robot end-effector in 3D space. In other words,

the robot is able to move in the three directions x,y, and z
as well as to rotate about the three angles α, β, and γ. The

control signal is the velocity screw Ṗ = [ṫx ṫy ṫz α̇ β̇ γ̇]T .

In this case the, R is a 3D rotation matrix while t is a

3D translation vector. To propagate the uncertainty given by

the image measurements from the image space to the 3D

space, we assume that a depth distribution is available. Then,

compute the 3D distribution as presented in Sec II-D.

IV. RESULTS

The proposed method for visual servoing using Gaussian

mixture models is evaluated using a simulation framework.

The validation process is done in two cases: (i) planar robot

i.e. 2D motion with two directional translation and rotation

about an axis that is perpendicular to the scene plane, and (ii)

six degree of freedom motion that contains 3D translation

as well as 3D rotation. The camera is modeled as a pin-

hole perspective camera with focal length and principle point

given by the following internal camera parameter matrix

K =





600 0 320
0 600 240
0 0 1





The target object is a set of 3D points that are randomly

drawn from the Cartesian space and projected onto the image

plane using the projection model.

Our results include image trajectories of feature points

which seems to imply that feature correspondences are

being made. However it should be noted that these tracks

are generated for visualization purposes only, the actual

servoing algorithm does not make use of correspondences

or a tracking step.

A. Planar Robot (2D Motion)

In the planar motion case, the task to be performed is 2D

translation along the axes x-y and rotation about the z axis

i.e. parallel to the camera optical axis. The control signal

u =





ṫx
ṫy
γ̇



 = −(C − C0)∇P (C)

is computed by employing the control law derived using

the Lyapunov theory for non-linear control systems. The

computation is summarized by computing the gradient vector

∇P (C) = ∂C
∂P from (16) and substituting it in the control law

given in (5). Then moving the camera based on the computed

control signal and repeating this process until convergence.

Results from this visual serving task are illustrated in

Figures 6-9. Fig. 6 and Fig. 7 show the control signals during

the servoing process with respect to time. Translational

velocity is given in Fig. 6 while the rotational velocity is

given in Fig. 7. The simulation framework considers a fixed

time interval and shows the result per iteration.

The image trajectory is shown in Fig. 8. The desired

image point positions are indicated by red colored × marks.

The camera trajectory is almost a straight line as shown

in Fig. 9. However, the analytical study of the camera and

image trajectory needs to be done to discover the coupling

properties of the proposed control law between translation

and rotation. The starting pose is

[R, t] =

[

0.9239 0.3827 0.75
−0.3827 0.9239 0.50

]

,

while the destination pose is [R, t] = [I, 0]. The final

camera pose at termination was

[R, t] =

[

0.9999 0.0160 0.0043
−0.0160 0.9999 0.0049

]

.

This yields a convergence error as tx = −0.0043 meter,

ty = − 0.0049 meter, and γ = 0.0162 radians.
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Fig. 6. The translation velocity for the planar motion task performed using
the proposed algorithm.
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Fig. 7. The rotational velocity for the planar motion task performed using
the proposed algorithm.

B. Motion with Six Degrees of Freedom

Here we assume that the robot is able to move along six

degrees of freedom i.e. 3D rotation about the x, y and z axes

and 3D translation along the same three axes. The control

signal in this case is

u = V =
[

ṫx ṫy ṫz α̇ β̇ γ̇
]T

= −(C −C0)∇P (C).

The gradient ∇P (C) is computed as given in (16) but

with respect to 3D rotation matrix R and 3D translation

vector t. In addition the distance function ∇P (C) is the

similarity between two 3D GMMs obtained by projection of

the uncertainty from the image space to the Cartesian space

using the depth distribution as shown in Sec II-D.

Results from this visual servoing task are illustrated in

Figures 10-13. Fig. 10 and Fig. 11 show the control signals

during the servoing process with respect to time. Transla-

tional velocity is given in Fig. 10 while the rotational velocity

is given in Fig. 11. The simulation framework considers a

fixed time interval and shows the result per iteration. The

image trajectory is shown in Fig. 12. The desired image

point positions are indicated by the red colored × marks.

The camera trajectory is shown in Fig. 13.

The starting pose is

[R, t] =





1.0000 0 0 0.500
0 0.9239 −0.3827 0.750
0 0.3827 0.9239 1.000



 ,
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Fig. 8. Image trajectories for the planar motion task performed using the
proposed algorithm. The desired position of each feature is marked with a
red cross
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Fig. 9. Camera trajectory for the planar motion task performed using the
proposed algorithm.

while the destination pose is [R, t] = [I, 0]. The final camera

pose at termination was

[R, t] =





1.0000 −0.0034 −0.0047 0.0081
0.0034 1.0000 −0.0011 0.0001
0.0047 0.0011 1.0000 −0.0034



 .

This yields a translational convergence error as tx = 0.0081
meter, ty = 0.0001 meter, tz = −0.0034 meter and

rotational convergence error α = 0.0011 rad, β = −0.0047
rad, and γ = 0.0034 rad.

V. CONCLUSIONS AND FUTURE WORK

We presented a visual servoing controller that uses Gaus-

sian Mixture models to collectively represent the image point

features in the current and desired images. This modeling

has removed the need for a feature tracking and matching

step from the servoing process. Servoing is achieved by

minimizing a distance function between the current and

desired Gaussian mixture models instead of minimizing a

direct error function between the corresponding features.

This method is directly applicable to the case of 2D motion

of a planar robot with 3 degrees of freedom. In addition, it

can be extended to the six degrees of freedom by introducing

the depth distribution/map of the scene.

We are presently working on exploring the statistical

robustness of GMMs in the servoing process. The robustness
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Fig. 10. The translation velocity for the 3D motion task performed using
the proposed algorithm.
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Fig. 11. The rotational velocity for the 3D motion task performed using
the proposed algorithm.
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Fig. 12. Image trajectories for the 3D motion task performed using the
proposed algorithm. The desired position of each feature is marked with a
red cross

−0.5
0

0.5 −1
−0.5

0

−1

−0.5

0

0.5

1

y axis

Camera Trajectory

x axis

z 
ax

is

target pose

initial pose

Fig. 13. Camera trajectory for the 3D motion task performed using the
proposed algorithm.

of the algorithm with respect to the depth distribution is one

important issue to be considered in future work. This is in

addition to the issue of coupling/decoupling between rotation

and translation.
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