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Abstract—Force regulation is a challenging issue of robot 
end-effectors when interacting with unknown environments. It often 
requires sophisticated sensors with computerized control. This 
paper presents a constant-force mechanism (CFM) to regulate the 
contact force of a robot end-effector. The proposed CFM is a 
monolithic compliant mechanism that has no frictional wear and is 
capable of miniaturization. Due to the passive mechanism, additional 
sensors and control effort are minimized. We propose a design 
formulation to find the optimal CFM shape that produces the most 
constant force. The reaction force to input displacement curve is 
invariant of size and flexural rigidity. The curve can be manipulated 
depending on the desirable situations. The CFM is validated through 
an experiment. When equipped with the CFM, an illustrative 
end-effector can adapt to a surface of variable height, without 
additional motion programming. With the merits shown, we expect 
this type of elastic mechanism can be utilized in robot end-effectors 
to provide friendly contact with environment. 

Index Terms—Constant-force mechanism, zero stiffness, robot 
end-effector, force regulation, compliant mechanism, shape design. 

I. INTRODUCTION 

constant-force mechanism (CFM) provides a nearly constant 
output force over a range of input displacements. Unlike 

helical springs and other elastic structures, a CFM does not obey 
Hooke’s law. It is useful when an unknown deflection is applied 
to a system the reaction force of which must be a specified 
constant regardless of deflection. As the force is kept invariable 
without additional sensors and actuators, the use of a CFM 
reduces control effort, increases reliability, and is insensitive to 
mating/assembly imperfections. Ready examples are the 
constant-force and constant-torque springs that made of one or 
more rolled strips of spring steel [1]. They are widely used for 
wire retrieving, weight counterbalancing, and length adjusting.  

Although a constant force can be generated by using active (see 
Ref. [2] for a pneumatic example) devices, CFMs are usually 
made of passive elastic elements to reduce complexity introduced 
by extra power input. The simplest CFM makes use of the 
buckling of elastic structures. See Fig. 1(a) for an example. 
Sönmez [3] introduced a compliant force dwell mechanism using 
buckling beams and arcs. Besides buckling, most other CFMs 
take advantage of the integration of positive and negative stiffness 
mechanisms; see Fig. 1(b) for an example. Using this principle, 
standard linkages can be converted to CFMs by embedding 
torsional springs and/or linear springs [4−5]. Boyle et al. [6] 
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further proposed a constant-force compression mechanism by 
using leaf springs. Nahar and Sugar [7] implemented a 
constant-force double-slider mechanism. The force magnitude of 
the mechanism can be adjusted by changing its spring length. To 
be miniaturizable, CFM’s made of one piece of material are more 
favorable. Pedersen et al. [8] designed a monolithic compliant 
mechanism that delivers a constant output force.  

Since the derivative of a constant force is zero, CFMs are also 
termed zero-stiffness or quasi-zero stiffness mechanisms. They 
have been used in vibration protecting [9] and energy absorption 
[10] systems. To explore more applications, Meaders and Mattson 
[11] optimized the shape of a constant-force spring for robust 
electrical contact. Howell et al. [12] designed a constant-force 
exercise machine. A constant-force rail clamp is found in [13]. 
Despite the numerous applications, the merits of CFMs in robotics 
have not been fully explored. Force regulation is essential for 
robot end-effectors operating in an unknown environment. They 
include peg-in-the-hole operation, deburring, painting, grinding, 
polishing, and interacting with natural objects. To prevent 
damage caused by excessive contact force between end-effector 
and environment, it is necessary to maintain a constant contact 
force while following an unknown trajectory. A force sensor is 
usually inserted between the robot arm and end-effector to 
feedback force signal, in order to control the impedance of the 
end-effector. As illustrated in Fig. 1(c), an end-effector moves 
through a surface with variable heights. To prevent jam and bind, 
a controller with force sensor feedback is required to move the 
end-effector left and right to adapt to the surface and maintain a 
constant force. Advanced control algorithms [14−15] have been 
developed to precisely control the contact force under unknown 
environments. When the end-effector is attached to a CFM shown 
in Fig. 1(d), the end-effector tip can retreat to fit the surface height 
without yielding excessive contact force. Although the force 
cannot be made extremely constant due to the nature of CFMs, the 
elimination of force sensors and controllers makes CFMs a very 
reliable alternative when end-effectors face an unknown 
environment with limited surface variation. 

This paper aims to develop a compliant CFM that is suitable for 
end-effector force regulation. Compared with CFMs the 
manipulation of which relies on turning pairs and cam pairs, the 
proposed one-piece CFM is wear-free, scalable, and requires 
minimum assembly. This CFM is to be placed between an 
end-effector and robot arm for force regulation under unknown 
environments. In what follows, an optimization formulation is 
presented to design the shape of the CFM; the aim is to create a 
displacement range that has reaction force as constant as possible. 
A CFM prototype is fabricated and validated experimentally. 
Finally, the CFM is installed in an emulating end-effector to 
illustrate its force adaptivity. 
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II. DESIGN FORMULATION OF A CONSTANT-FORCE MECHANISM 

Fig. 2(a) shows the reaction force to displacement (F−Δ) curve 
of a spring and Fig. 2(b) of a CFM. A typical spring (and most 
other types of material) produces an output force the magnitude of 
which is proportional to the input displacement (Hooke’s law). A 
CFM, on the other hand, generates a nearly constant output force 
over a range of input displacements. Ideally, the constant-force 
range should be flat as indicated by the solid line. However, actual 
elastic mechanisms do not fully follow the ideal F−Δ curve. There 
will be maximal and minimal peaks that make the curve fluctuate. 
This is similar to the structural snap-through buckling behavior, 
except the goal here is to reduce to gap between the peaks. To 
define a reasonable constant-force (operational) range, we first 
characterize the F−Δ curve of a typical CFM in Fig. 2(c). Given an 
input displacement Δ=d, the maximal reaction force should occur 
at d and it is denoted as the nominal constant force Fd. Within the 
displacement range where the allowable stress of the beams is not 
violated, the lower limit of the operational range is defined at Δ=c, 
where F(c) = 0.95Fd. Hence the operational range is defined 
between c and d.  

As CFMs have a F−Δ curve that is drastically different from 
other elastic structures, their configuration requires a delicate 
design. Without loss of generality, we consider a CFM shown in 
Fig. 3. The concept of this CFM is derived from that in Fig. 1(b), 
except that coil springs are replaced by homogenous slender 
beams. The CFM consists of two symmetric parts separated by a 
distance δ. The input displacement is given on the top rigid block 
along the negative y direction and the CFM generates a reaction 
force F in the positive y direction. Taking advantage of symmetry, 
we only consider the right hand part of the CFM, which consists 

of four beams (with length L1 to L4) enclosed in a rectangular 
design boundary (f1−f4). The beams are mathematically separated 
by five nodes (n1 to n5), where beam angles at n3 and n4 are not 
necessarily continuous. Due to symmetry, node n5 can be 
considered as a slider which is located on boundary f4. To find a 
CFM shape that has a nearly constant F, we formulate an 
optimization problem with an objective function that depends on 
the reaction forces at two pre-specified displacements Δ=a and 
Δ=b (a > b).  

Objective: min [F(a)/F(b) − 1]  (1)

Eq. (1) aims to match the values of F(a) and F(b) such that the 
objective function is close to zero. To make the segment between 
c and d is as flat as possible, the values of a and b are evenly 
chosen between 0 and d. They may be smaller or larger than c 
depending on the mechanism configuration. Note that the F−Δ 
curve is generally increasing and hence F(a) > F(b). Apparently 
the beam shapes and node positions are the primarily design 
variables for the objective. 

2.1 Parameterization of CFM shape 
Each beam in Fig. 3 has a rectangular cross-section with 

in-plane thickness w and out-of-plane thickness t. The flexural 
rigidity of the beams is denoted as EI where E is the elastic 
modulus and I= tw3/12 is the second moment of area. Fig. 4 shows 
the beam model. The un-deflected beam is described by a shape 
(intrinsic) function η(u), where u [0 1] is a non-dimensional arc 
length along its neutral axis and η measures the angle of rotation 
(or slope, in radians) along u. Upon external load, the deflected 
beam is characterized by another function ψ(u). The beam 
reaction moment is denoted as M and reaction forces in the x and y 
directions as h and v, respectively. An arbitrary point [ ˆ( )x u ˆ( )y u ] 

on the neutral axis is expressed as 
ˆ

0
ˆ( ) (0) cos

u
x u x L du   ; 

ˆ

0
ˆ( ) (0) sin

u
y u y L du   , (2)

where L is the beam length. For convenience, the un-deformed 
shapes of the four beams, when represented by the shape function 
η, is parameterized by using polynomials [17] as 

0 1( ) m
i i i imu c c u c u     ; i = 1−4 (3)

where coefficients ci0−cim decide the shape of the ith beam. The 
effect of the number of polynomial terms in Eq. (3) on the beam 
shape is depicted in Fig. 5. When only one term (c0) presents, it 
corresponds to a straight beam with slope tan(c0), as shown in Fig. 
5(a). When considering both c0 and c1u, it describes an arc with 

 

 
Fig. 1 (a) Buckle type CFM (b) A CFM with three springs   

(c) End-effector with an active force controller            
(d) End-effector with a passive CFM 

 
Fig. 2 (a) F−Δ curve of a spring (b) F−Δ curve of a CFM      

(c) Characterization of the F−Δ curve    

Fig. 3 Schematic of the CFM 
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radius of curvature L/c1, as shown in Fig. 5(b). When three terms 
present (m=2), it is a curve with at most one inflection point 
shown in Fig. 5(c). Similarly, a four-term polynomial has at most 
two inflection points shown in Fig. 5(d). Higher order 
polynomials can be further expected. The inflection points are the 
roots of dη/du=0. For an arbitrary combination of coefficients in 
Eq. (3), we have [ ]x y   [ cos sin ]L L  0  for all u [0 1] , 

where a prime denotes derivative with respective to u. Thus 
beams represented by the shape functions are naturally free of 
cusps. This is beneficial compared to parameterizations based on 
Bezier or Hermite curves [16], as the prevention of cusps and 
near-cusp regions avoids stress concentration and manufacturing 
difficulties. 

The governing equations of a deflected beam are extensively 
found in the literature (see Ref. [17] for an example). When a 
beam deflects, the bending moment and maximal bending stress 
are calculated as follows.  

( )d
M EI

du

 
 ; 

( )

2m

Ew d

L du

  
  (4, 5)

For slender beams, the axial and shear stresses are very small and 
are not considered, when compared to the bending stress. Since 
the beam shapes depend on the coefficients of the shape function 
in Eq. (3), they are formulated as design variables together with 
the three node positions (n2−n4). The number of design variables 
is 6+4(m+1) and it depends on the order of the shape functions. 
Aiming at making the force constant, formulation for the CFM 
shape design is detailed in Table 1. 

There are four constraints in Table 1 to ensure convergence and 
that the converged optimal shape is feasible. Constraint (i) 
confines the dimension of the CFM by fixing the node positions 
on the design boundary. Constraint (ii) ensures that all the four 
beams stay within the rectangular boundary. To further prevent 
each beam from intersecting itself and with others, constraint (iii) 
limits the overall length of each link from exceeding a prescribed 

length. For constraint (iv), the maximal stress σm is calculated by 
using Eq. (5). It cannot exceed the allowable stress σy/SF, where 
σy is the yield stress and SF is the safety factor. Except for 
constraint (i), the other three are inequalities. The deformation 
analysis required in the optimization process is carried out by 
using the generalized (multiple) shooting method (GMSM) [17, 
18]. This method is capable of accurate and efficient beam large 
deflection computation. The optimization is realized by using 
fmincon() in MATLAB®, where gradients are conveniently 
computed in a finite difference fashion. 

Table 1 Formulation of CFM shape optimization 

1. Objective: Given a Δ, minimize Eq. (1), which is a function 
of beam shapes and node positions. 

2. Design variables: ci0−cim (i = 1−4), nk = [nkx nky] (k = 2−4) 
3. Constraints: 
(i) n1 = [0.25 0] cm; n5 = [0.25 4] cm; n2 has to lie on f2.  
(ii) The four curved beams (including n3 and n4) have to lie 

within the rectangular design boundary formed by 
functions f1, f2, f3, and f4. 

(iii) The length of each beam cannot exceed a prescribed 
length. For convenience the prescribed length is 1.5 times 
the original straight beam (m=0) length. 

(iv) The maximal stress σm within the beams cannot exceed the 
allowable stress σy/SF. 

2.2 Optimal shape of the compliant constant-force mechanism 

Based on the formulation in Table 1, we seek for the optimal 
shape and the corresponding relationship among the input 
displacement, reaction force, and maximal stress of a CFM. The 
simulation parameters are listed in Table 2. We use 
Polyoxymethylene as the material. 

Table 2 Simulation parameters of the CFM 
Δ=1.36cm a = 0.88cm; b = 0.4cm  
E = 2GPa (Young’s modulus) SF = 1.58; σy = 76 MPa (Yield stress)  
w = 1mm (In-plane thickness) t = 10mm (Out-of-plane thickness) 

m = 2 (Order of shape function)
[Lx Ly] = [3.2 4]cm (Design domain 
size); δ = 0.5cm 

Fig. 6 shows the optimal original and deflected shapes of the 
CFM. Deformation primarily occurs in Beams 3 and 4 rather than 
Beams 1 and 2. A noticeable active inequality is constraint (ii) 
which limits the original shape of Beam 2 from exceeding 
boundary f2. Another active inequality is constraint (iv), where the 
maximal stress (indicated in a circle between n3 and n4 in Fig. 6) 
equals to σy/SF. Fig. 7 shows the F−Δ and maximal stress curve, 
where Fd=9.736 N and c=0.7 cm. Hence the CFM needs a 0.7 cm 
preload in order to operate in the 0.66 cm constant-force range. 
The operational range of the optimized CFM is 48.5% of the 
entire displacement. The maximal stress curve and σy/SF line 
intersect at Δ=1.36 cm. Detailed numerical results are listed in 
Table 3. 

In Eq. (1), only the flatness of the F−Δ curve is considered. 
Ideally it would be better to decrease the preload region in order to 
increase operational range. However, adding this mathematically 
into Eq. (1) would cause divergence. This is expectable since the 
F−Δ curve of typical elastic material is always continuous and 
cannot have a too sharp change of slope. 

u

Fig. 4 Deformation model of a compliant beam 

(a) m=0: straight

u
c0

(d) m=3: two inflection points

c0

u

(c) m=2: one inflection point

c0

u

(b) m=1: arc

u

radius=L/c1
c0

Inflection points
Inflection point

Fig. 5 Beam shapes using different number of polynomial terms
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Table 3 Optimal configuration of the CFM 

Position (cm) Shape function (rad) Length (cm) 
n1=[0.25,0] η1 =  0.4592 + 1.3092u − 1.5707u2  L1 = 3.404 
n2=[3.45, 0] η2 =  1.6382 − 0.7560u + 1.5707u2 L2 = 1.987 
n3=[3.05, 1.877] η3 = − 4.081 + 0.3013u + 1.5707u2  L3 = 2.199 
n4=[1.244, 2.40] η4 =  2.394 + 0.226u + 1.148u2 L4 = 1.959 

The reason for the constant output force may be explained by 
the interactions of beam reaction forces in the vertical direction. 
Fig. 8 shows the reaction forces of the three beams (denoted as 
v1−v3 for Beams 1−3) that connect at n3. In the operational range, 
the reaction force of Beam 3 remains nearly constant. On the other 
hand, both Beam 1 and Beam 2 exhibit an increase and decrease 
of reaction forces. Hence, Beams 1 and 2 take turns serving as the 
positive and negative stiffness mechanisms. The changes of the 

three forces roughly cancel with each other, resulting in a nearly 
constant force. Compared to CFMs where positive and negative 
stiffness mechanisms do not switch roles (see Fig. 1(b) for an 
example), the proposed CFM has a larger constant-force range.  

2.3 Invariance of the F−Δ curve  
When using the non-dimensional shape functions in Table 3 to 

describe the CFM, the form of the F−Δ curve is invariant provided 
the ratio Lx/Ly is unchanged. The CFM flexural rigidity and size 
can be adjusted to manipulate the magnitude (Fd) of the F−Δ curve 
without changing the constant-force proportion. This offers two 
advantages such that the optimized CFM is applicable to various 
situations without redoing another optimization. First, the 
nominal constant force Fd can be adjusted to a specified value by 
using the following formula: 

2 2
1 1 1 2 2 2d x d xF L EI F L EI  (6)

where subscripts 1 and 2 denote the original and adjusted 
parameters, respectively. To obtain a specified nominal constant 
force Fd2 from the original CFM, the values of EI2 and Lx2 must be 
changed to match with the specified Fd2. Among them, the size Lx2 
is adjusted by dimensionally scaling the CFM. The flexural 
rigidity EI2 is adjusted by varying the in-plane thickness w, 
out-of-plane thickness t, or material. Note that changing in-plane 
thickness would as well change the maximal stress curve; 
changing material would change the yield and allowable stress. 
These in return alter the allowable input displacement. 

Second, there is a range beyond Δ=13.6 mm in Fig. 7 that is 
nearly constant. However, a displacement beyond Δ=13.6 mm 
would violate the allowable stress (σy/SF). Without changing the 
F−Δ curve, we may move the maximal stress curve downward so 
that under the same allowable stress, the CFM has a larger 
operational range. According to Eq. (5), the maximal stress σm 
may be reduced by reducing the in-plane thickness w. To keep the 
flexural rigidity and thus F−Δ curve unaffected, the out-of-plane 
thickness t must be increased. As an illustration, the in-plane 
thickness w is multiplied by 0.85. The out-of-plane thickness t 
must be multiplied by 1.628 to produce the same I (I=tw3/12). Fig. 
9 shows the CFM with w=0.85 mm and t=16.28 mm. The F−Δ 
curve is the same as that in Fig. 7, except that the stress curve 
drops 8.92 MPa vertically. To satisfy the allowable stress, the 
force Fd now occurs at Δ=1.68 cm with preload c=0.788cm. This 
adjustment widens the operational range from 0.66 cm to 0.896 
cm. This is more than 53% of the entire displacement.  
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III. EXPERIMENT VALIDATION 

The results in Sec. 2 are validated by performing an experiment 
to obtain the actual F−Δ curve. Fig. 10 shows the experimental 
setup and CFM prototype. The CFM is fabricated by using the 
parameters in Tables 2−3, except that the in-plane thickness is 
reduced to w = 0.85 mm. We use a motorized stage to provide the 
linear input displacement. The reaction force at n1 is measured by 
a load cell from FUTEK (LSB200, maximum 22.27N, 0.01 N 
resolution). The CFM is given a Δ=1.6 cm displacement. Fig. 11(a) 
shows the experiment curve compared with those obtained by 
ANSYS® and the generalized multiple shooting method 
(GMSM). Three remarks are made by observing Fig. 11(a): 

1. The GMSM curve agrees well with the ANSYS curve 
(BEAM3). This verifies our computation methods. However, 
neither curve matches with the experimental curve. The 
experimental reaction force is 0.9 N higher in the constant-force 
range than those predicted by simulations. The primary reason is 
that both the GMSM and BEAM3 element (in ANSYS) model 
beams as representative neutral axes. They fail to consider the 
effect of overlapping beam thicknesses at the connecting nodes. 
Fig. 11(b) illustrates the thickness effect at n3. The effective 
flexural rigidity of each beam near n3 becomes higher. Besides, 
there are unavoidable corner fillets (see Figs. 11(b−c)) due to the 
cutting tool diameter. This further increases the flexural rigidity. 
The corner fillets in Fig. 10(b) are created by using a cutting tool 
with 1 mm diameter. 

2. To take the true geometry at the nodes into account, we 
simulate again by using SOLID186 element in ANSYS®. The 
CFM geometry with and without corner fillets (at n1 and n3) are 
both analyzed, as shown in Fig. 11(a). Compared with the GMSM 
and BEAM3 curves, the two SOLID186 curves match better with 
the experiment curve, while the effect of corner fillets is less 
obvious. The negligible difference between SOLID186 curves 
and experiment may be caused by machining error, especially in 
the out-of-plane direction (cutting depth). 

3. Although the experimental F−Δ curve has a slightly larger 
constant force than that predicted by the four simulation curves in 
Fig. 11(a), the constant-force ranges show very much 
resemblance. This implies that the constant-force range of the 
CFM is insensitive to fabrication and modeling imperfections. In 
practice, the magnitude of constant force can be adjusted by the 
technique mentioned in Sec. 2.3. 

IV. AN ILLUSTRATIVE APPLICATION 

Based on the previous design and analysis, a CFM is illustrated 
here for adaptive force regulation of robotic end-effectors. 
End-effectors may be subjected to external forces in the lateral 
and axial directions. For brevity, we consider an end-effector the 
axial force of which is of primary importance when interacting 
with the environment. To emulate a linearly moving end-effector 
along an unknown surface, we set up an experiment together with 
its CAD model in Fig. 12. The end-effector has an extruded 
triangular tip. The tip, when in practice, can be performing a 
cutting, welding, or deburring job. A CFM connects to the 
end-effector. To avoid unwanted bending deflections caused by 
tip lateral forces, two linear bearings are used to constrain the 
motion in the axial direction. One force sensor is connected 
serially to the CFM to measure the axial contact force introduced 
by the environment. The end-effector, CFM, and load cell are 
together carried by a motorized stage that moves linearly against a 
cam. The cam emulates an unknown environment. When the 
end-effector moves against the cam, it moves backward and 
squeezes the CFM due to increasing cam height. 

To increase the structural stability, the CFM in Fig. 12 consists 
of two identical sub-CFMs. The CAD model of the sub-CFM is 
shown in Fig. 13. The in-plane and out-of-plane thicknesses are w 
= 0.4 mm and t = 6 mm. Each leg of the sub-CFM is enclosed by a 
11cm design boundary. Its shape has been optimally designed 
by using a similar formulation as that in Table 1. Different from 
the CFM in Fig. 6, there is only one beam connecting to the 
ground, in order to extend the operational range. Table 4 shows 
the detailed CFM configuration.  
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Fig. 12 Experiment setup and its CAD model 

Fig. 13 CAD model of the sub-CFM 

Fig. 10 Experiment setup and CFM prototype 
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As the end-effector moves along the cam, its tip axial reaction 
force is recorded by a data acquisition card. Fig. 14 shows the 
reaction force curve when the end-effector tip moves along the 
cam profile with height gradually increasing up to 5 mm. The 
maximal reaction force is 8.59 N when the end-effector tip is at 
the top of the cam. The overall reaction force stays within 8 N to 
8.59 N for the 12.3 mm transverse displacement. The end-effector 
moves at speed 0.25 mm/sec. Note that without a CFM, an extra 
actuator is required to raise the tip to prevent jam. This may bring 
in a controller to regulate the contact force, not to mention the 
overshoot and stability problems introduced by active control. On 
the other hand, our proposed CFM only requires a passive 
mechanism to adapt to the environment. 

An important issue of a CFM is the constant-force range. For a 
single layer CFM shown in Fig. 12, the range of motion is 
primarily compromised by the maximal allowable stress. It can be 
increased by using two layers of the CFM shown in Fig. 15(a). 
The CFM can also be made circular to adapt to various geometry 
and application of the end-effector. One such prototype is shown 
in Fig. 15(b). 
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Fig. 15 Two-layer CFMs for increased range of motion 

V. CONCLUSIONS 

This paper presents the design and demonstration of a 
compliant constant-force mechanism (CFM). Compared to CFMs 
found in the literature, the proposed CFM composes of thin beams 
forming a monolithic piece. Hence it is free of wear and 
miniaturizable. Based on the developed optimization technique, 
the force to displacement curve exhibits a range that is as constant 
force as possible. The operational range is more than 50% of the 
entire displacement. The optimized CFM has been verified by 
simulation and experiment. Due to the invariance of the force to 
displacement curve, the CFM shape is generic and can be resized 

to fit with various situations. Under the same allowable stress, the 
operational range may be increased by adjusting the in-plane and 
out-of-plane thicknesses while its flexural rigidity is retained. 

Finally, we illustrate the CFM for regulating robot end-effector 
contact force. When moving along a surface, the end-effector can 
adapt to a height variance of 5 mm while maintaining a nearly 
constant axial contact force (from 8 to 8.59 N). Two or more 
layers of CFMs may be assembled to increase the adaptation 
capability. Our future work will carry out a CFM design that 
provides constant forces in both the axial and lateral directions. 
We expect the proposed CFM can serve as an alternative to 
regulate end-effector forces in unknown and changing 
environments. 
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Table 4 Optimal configuration of the CFM

Position (cm) Shape function (rad) Length (cm) 
n1=[1,0.2] η1 = 1.6401+ 0.9920u − 1.5706u2  L1 = 0.360 
n2=[0.99,0.55] η2 = 3.2380 − 0.8791u + 0.7358u2 L2 = 0.849 
n3=[0.15, 0.64] η3 = 2.4429 − 1.1268u + 0.2199u2  L3 = 0.407 
n4=[0, 1]   

(b) (a) 
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