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Abstract— The need for efficient monitoring of spatio-
temporal dynamics in large environmental surveillance ap-
plications motivates the use of robotic sensors to achieve
sufficient spatial and temporal coverage. A common approach
in machine learning to model spatial dynamics is to use the non-
parametric Bayesian framework known as Gaussian Processes
(GPs) (c.f., [1]) which are fully specified by a mean and
a covariance function. However, defining suitable covariance
functions that are able to appropriately model complex space-
time dependencies in the environment is a challenging task.
In this paper, we develop a generic approach for constructing
several classes of covariance functions for spatio-temporal
GP modeling. The GP models are then extended to perform
efficient path planning in continuous space while maximizing
the information gain. Extensive empirical evaluation for the
different classes of covariance functions using real world sensing
datasets is discussed, including experiments on a tethered
robotic system - Networked Info Mechanical System (NIMS).

I. INTRODUCTION

A broad class of environmental monitoring applications,

including meteorology and climatology, epidemiology, ecol-

ogy, demography, forestry, fishery and others, require dis-

tributed sensing capabilities [2] due to the dynamics exhib-

ited in both space and time. Understanding and modeling

such complex space time dynamics with only static sensors

would require an impractically large number of sensors

to be distributed across the complete spatial extent of the

observed environment. Mobile robots equipped with sensors

offer an alternative to a network of static sensing elements

for high spatial coverage but at the cost of increased delay

(sampling latency). Several path planning approaches have

been proposed in the literature to adaptively sample the

environment to reduce the latency while still providing high

fidelity sampling [3]–[6].

At the core of each path planning approach is a model

representing the space-time dependencies. Learning such

complex and non-deterministic spatio-temporal dynamics,

for accurate predictions, is challenging. A typical modeling

procedure adopted in the field of environmental science is

to manually specify partial differential equations governing

the behavior of the observed phenomena [7]. This, however,

relies on experts and usually requires time consuming

validation experiments [8].

In this paper we consider a machine learning approach to

the problem where a spatio-temporal Gaussian process model

is learned through an optimization procedure. The model is

then used for autonomous path planning for mobile robots.

Gaussian processes (GPs) are a very popular non-parametric

Bayesian technique for modeling spatially correlated data.

Initially known as kriging, the technique has its roots in

geostatistics where it was mainly used for resource estima-

tion of mineral resources [9]. In a machine learning context,

GPs are specified by a mean and a covariance function,

and a set of (hyper) parameters which can be determined

from a training set. The learning procedure maximises

a Bayesian quantity (marginal likelihood) that naturally

handles overfitting by possessing the Occam Razor’s

principle (simpler models are always preferable) [10].

However, a major difficulty for modeling spatio-temporal

stochastic processes with GPs is the definition of a

valid covariance function that can accurately account

for space-time dependencies. In this paper, we study a

generic approach for creating several classes of valid

non-stationary, spatio-temporal GP models. After learning

the parameters associated with the corresponding covariance

model, we propose an efficient path planning strategy in

continuous domains that maximizes the information gain.

We present extensive empirical evaluation comparing several

classes of GP models using different real world sensing

datasets. Finally, we validate the proposed methodology of

model learning and path planning using a Networked Info

Mechanical System (NIMS, a tethered robotic system).

II. RELATED WORK

Using GP models for environmental surveillance has been

studied in a number of previous applications. In [3] a mutual

information criterion was used to perform efficient path

planning for multiple robots with strong approximation guar-

antees. Although, they used empirically learned covariance

model, their path planning algorithm is independent of the

covariance model. This work was extended in [11] to perform

non-myopic path planning for a finite time horizon account-

ing for temporal correlations. However, for each of these

algorithms, path planning is performed over a discrete set of

observation locations distributed throughout the search space.

The time complexity of these approaches will be intractable

for performing path planning in a continuous space (with

presumably infinite possible observation locations to select

from). However, learning a suitable covariance function, as

outlined in this work, is tangential to their work and can help

improve the empirical performance of such path planning

algorithms even in the discrete domain.

[12] proposed a decentralized approach for

simultaneously learning the GP model and performing

path planning. Their algorithm also constrains path planning

to discrete observation locations while studying only a
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specific class of covariance function (Matérn class). Our

approach for efficient computation of predicted distribution

(discussed in Section III-C) can be easily applied to

efficient decentralized model learning. The generic approach

for constructing diverse classes of covariance functions

discussed here will also help in selecting a suitable

covariance function for the observed environment.

GPs were also used to model the gas distribution in

confined and open environments with a mobile robot

in [13], and WiFi signal strength in [14]. The methodology

presented here extends these approaches by explicitly

modeling the time domain (dynamics), comparing different

covariance functions (stationary, non-stationary, separable,

non-separable), and presenting a path planning algorithm

maximizing the information gain.

Kriged Kalman filters have been used in geostatistics

to model the spatio-temporal distribution of dynamic

environments [15], [16]. While being similar to modeling

stochastic processes with spatio-temporal covariance

functions, kriged kalman filter involves learning many more

parameters which might lead to overfitting.

III. GAUSSIAN PROCESS MODELING

In this section we introduce notation and review

Gaussian Processes models for regression. We consider the

supervised learning problem where a set of observations

S = {xi, yi}
N
i=1 consisting of N input locations xi ∈ R

D

and the corresponding outputs yi ∈ R is given. A Gaussian

process model places a multivariate Gaussian distribution

over the space of function variables f(x) mapping input to

output spaces i.e. f(x) ∼ GP (m(x), k(x,x′)), where m(x)
specifies a mean function and k(x,x′) specifies a covariance

function (also called kernel). Using the learned GP model

from the observations, the objective is to compute the pre-

dictive distribution f (x∗) at a new unobserved location x∗.

Typically, the observations in the real environment are

noisy observations of the underlying model. Observations

are assumed made to be made as per y = f(x) + ǫ,

where ǫ is the zero mean Gaussian noise with variance

σ2
n. The set of locations, model output and observations

at the observed locations is represented as (X, f ,y) =
({xi}, {fi}, {yi})

N
i=1, and at the unobserved locations as

(X∗, f∗,y∗) = ({x∗,i}, {f∗,i}, {y∗,i})
N
i=1. The zero mean

(m(x) = 0) joint Gaussian distribution can then be written as

[

y

f∗

]

∼ N

(

0,

[

K(X, X) + σ2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

])

, (1)

where N (µ,Σ) represents a multivariate Gaussian

distribution with mean µ and covariance Σ, and K represents

the covariance matrix computed between all input locations.

Conditioning on the observed locations, the predictive

distribution at the unobserved locations can be obtained as:

p (f∗ | X∗, X,y) = N (µ∗,Σ∗) , (2)

µ∗=K (X∗, X)
[

K (X,X) + σ2
nI
]−1

y,

Σ∗=K(X∗,X∗)−K(X∗,X)
[

K(X,X)+σ2
nI
]−1

K(X,X∗)

From Equation 2, it can be observed that the

predictive mean is a linear combination of N kernel

functions, each centered on an observed location, xi, i.e.

µ∗ =
∑N

i=1 αik (xi,x∗), with α =
(

K (X,X) + σ2
nI
)−1

y.

Therefore, a GP can also be viewed as a best unbiased

linear estimator [17], [18] in the mean squared error sense.

A. Covariance Function

For k to be a valid covariance function, it must satisfy the

condition of positive-definitiveness i.e., for any x1, . . . ,xm,

any real a1, . . . , am, and any positive integer m, k must

satisfy the condition:
m
∑

i=1

m
∑

j=1

aiajk(xi,xj) ≥ 0. (3)

Satisfying the necessary condition of positive definiteness

makes the specification of covariance functions non-trivial.

Often, for simplicity, the covariance functions are assumed

to be stationary i.e. only a function of x − x′. A common

choice for a stationary covariance function is the squared

exponential:

k(x,x′) = σ2
f exp

(

−
1

2
(x − x′)T M(x − x′)

)

(4)

with M = diag(l)−2 wherein l being a vector of positive

numbers representing the length-scales in each dimension.

In this paper, we also study a non-stationary neural network

covariance function [19] described as:

k(x,x′)=σ2
f sin−1

(

β+2xTMx′

√

(1+β+2xTMx)(1+β+2x′TMx′)

)

(5)

Additionally, for each covariance model, we assumed a

zero mean observation noise ǫ with variance σ2
n, thereby

writing the final covariance matrix as K(X, X) + σ2
nI .

B. Learning Hyper-Parameters

Commonly, the covariance function k(x,x′) is defined

by a set of hyper-parameters θ, and written as k (x,x′ | θ),
once these hyper-parameters are known. For example, in

the case of the squared-exponential covariance function

(as given in Eq. (4)), θ ∈ {σf , M, σn} and in the

case of neural network covariance function (as given in

Eq. (5)), θ ∈ {σf , M, β, σn}. Thus, learning a GP model

is equivalent to determining the hyper-parameters of the

covariance function from some training dataset consisting

of observations available at a set of given locations. In a

Bayesian framework this can be performed by maximising

the log of the marginal likelihood

log p(y|X, θ) = −
1

2
yTK−1

y y −
1

2
log|Ky| −

N

2
log 2π, (6)

where Ky = K(X, X) + σ2I is the covariance matrix for

the observations y made at locations X and where θ(= θ)
represents a set of hyper-parameters specified according

to a given covariance function. The marginal likelihood

has three terms (from left to right), the first accounts

for the data fit; the second is a complexity penalty term
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(encoding the Occam’s Razor principle) and the last is

a normalisation constant. Maximization of the marginal

likelihood requires the computation of partial derivatives

w.r.t the hyper-parameters θi (see [1] for further details).

C. Online Covariance Matrix Update

Assume that Xi represents the set of observation locations

x1, . . . ,xi. After making a new observation at xi+1 the new

set can then be represented as Xi+1. If we were to update

the predicted distribution at unobserved locations X∗, as

in Eq. (2), after making each new observation, we would

have to compute the matrix inverse K(Xi, Xi)
−1∀i ∈ N .

This requires computation effort of O
(

N3
)

if implemented

naı̈vely. Instead, following a combination of the matrix

inversion lemma and submatrix inversion, the inverse can

be computed efficiently.

After making a new observation at xi+1, the covariance

matrix for the observation locations (Xi+1) can be written as

K(Xi+1, Xi+1) =

[

K(Xi, Xi) K(Xi,xi+1)
K(xi+1, Xi) K(xi+1,xi+1)

]

.

To compute the predicted covariance at unobserved locations

X∗, we now need to calculate the inverse covariance

matrix K(Xi+1, Xi+1)
−1. Instead of calculating the inverse

covariance matrix from scratch, we can calculate this inverse

using submatrix inversion and the matrix inversion lemma as:

K(Xi+1, Xi+1)
−1 =

[

K(Xi, Xi) K(Xi,xi+1)
K(xi+1, Xi) K(xi+1,xi+1)

]−1

=

[

F11 −F12

−FT
12 F−1

22

]

F22 =K(xi+1,xi+1)−K(xi+1, Xi)K(Xi, Xi)
−1K(Xi,xi+1)

F11 = K(Xi, Xi)
−1 + K(Xi, Xi)

−1K(Xi,xi+1)F
−1
22

K(xi+1, Xi)K(Xi, Xi)
−1

F12 = K(Xi, Xi)
−1K(Xi,xi+1)F

−1
22 .

This shows that the new inverse covariance matrix after mak-

ing a new observation, K(Xi+1,Xi+1)
−1, can be easily cal-

culated from the previous inverse, K(Xi,Xi)
−1, in O

(

N2
)

.

IV. CONSTRUCTING SPATIO-TEMPORAL COVARIANCE

FUNCTIONS

We now consider spatio-temporal stochastic processes,

y = f(x)+ ǫ, where the inputs consist of both space and

time coordinates, such that x = (s; t) where s∈R
D; t∈R

and ǫ is again assumed to be zero mean Gaussian noise

with variance σ2
n. Similar to the definition of GPs for spatial

process we define a mean for the spatio-temporal stochastic

process as m(s; t)≡E [y(s; t)] and the covariance function

as k((s; t), (s′; t′)) ≡ cov (y(s; t), y(s′; t′)) ; s, s′ ∈ D, t >

0, t′>0.

A covariance function is stationary in space if it is a

function of h = s−s′ and stationary in time if it is a function

of u = t − t′. In these cases we can simplify notation by

writing k((s; t), (s′; t′)) = k(h;u). Again, for k to be a valid

covariance function, it must satisfy the condition of positive-

definitiveness (c.f., Eq. (3)). Additionally, if k has a set of

parameters, we can write a covariance function stationary in

space and time as cov(y(s; t), y(s+h; t+u)) = k0(h;u | θ),
where k0 satisfies Eq. (3) for all θ ∈ Θ ⊂ R

p, where Θ
represents the superset of all possible parameter assignments

in the p dimension domain.

To simplify the computational effort, another assumption

regularly taken in modeling the spatio-temporal covariance

functions is to assume separability i.e. the dynamics across

space and time are assumed to be independent as:

k0(h;u | θ) = k1(h | θ1)k
2(u | θ2), (7)

where k1 is a positive definite function in R
D, k2 is

a positive definite function in R
1, and θ =< θ1, θ2 >.

Separable functions are often chosen for their convenience

but they fail to model interaction across space-time.

A. Non-Separable Spatio-Temporal Covariance Functions

To construct non-separable covariance functions we follow

the procedure proposed in [20]. Assume that the stationary

spatio-temporal covariance function k(h;u) is continuous

and integrable. Then, by Bochner’s Theorem [21], its spectral

density is a positive and finite measure, obtained through the

Fourier transform

g(ω; τ) = (2π)−D−1

∫ ∫

e−ih′
ω−iuτk(h;u)dhdu

= (2π)−1

∫

e−iuτh(ω;u)du, (8)

where
h(ω;u) = (2π)−D

∫

e−ih′
ωk(h;u)dh.

We can then construct k, or equivalently g by specifying

appropriate models for h(ω;u). If h(ω;u) is defined as

h(ω;u) = ρ(ω;u)ϕ(ω),

then for k(h;u) to be a valid (i.e. positive definite)

continuous spatiotemporal function on R
D × R, the

following two conditions need to be satisfied:

C1 For each ω ∈ R
D, ρ(ω; .) is a continuous autocor-

relation function,
∫

ρ(ω;u)du < ∞ and ϕ(ω) > 0.

C2
∫

ϕ(ω) < ∞.

Using this generic approach, the following stationary

spatio-temporal covariance functions can be constructed:

Example 1: Let ρ(ω;u) = exp{−‖ω‖u2} and ϕ =
exp{−c0‖ω‖}; c0 > 0. Then the stationary, non-separable

spatio-temporal covariance function (substituting c0 = 1,

without loss of generality) is given by

k(h;u | θ) =
σ2(a2u2 + 1)

[(a2u2 + 1)2 + b2‖h‖2](D+1)/2
, (9)

where θ = (a, b, σ2) are the hyper-parameters with a ≥ 0
and b ≥ 0. Removing the time correlation (substituting a =
c = 0), the covariance function reduces to a stationary spatial

covariance function with

k(x,x′) =
σ2

[1 + b2‖h‖2](D+1)/2
. (10)

Example 2: Let
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(a) Example 1 output with, σ = 1, a = 2 and b = 2
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(b) Example 2 output with, σ = 1, a = 0.01 and b = 0.01

Fig. 1: Covariance function output for variations in time and space. Note that in Example 1 (non-separable, non-stationary), the plot is
not symmetric, indicating space-time dependencies not possible to exist in Example 2 (separable, non-stationary).

ρ(ω;u) =
c
D/2
0

(u2 + c0)D/2
exp

{

−
‖ω‖2

4(u2 + c0)
+

‖ω‖2

4c0

}

and
ϕ(ω) = exp

{

−
‖ω‖2

4c0

}

; c0 > 0.

Then the four parameter, non-separable spatio-temporal co-

variance function is given as:

k(h;u | θ) = σ2 exp{−a2u2 − b2‖h‖2 − cu2‖h‖2} (11)

where θ = (a, b, c, σ2) are the hyper-parameters with a≥ 0,

b≥ 0 and c≥ 0. Substituting c = 0, we obtain a stationary,

separable spatio-temporal covariance function. It is important

to note that if we also remove the time correlation (substitut-

ing a=0), this expression reduces to the squared-exponential

covariance function (Eq. (4)).

B. Non-Stationary Spatio-Temporal Covariance Functions

The following corollary (Corollary 3.1 in [22]) provides a

mechanism for constructing non-stationary spatio-temporal

covariance functions from a spatio-temporal covariance

function stationary in both space and time:

Corollary 1: If k(s−s′; t−t′) is a spatio-temporal covari-

ance function in R
D × R which is stationary in both space

and time, then the function k(s+s′; t+t′)+k(s−s′; t−t′)−
2[k(s; t)+k(s′; t′)−k(0; 0)] represents a valid non-negative,

non-stationary covariance function in R
D × R.

Combining the above corollary with the proposed ap-

proach for creating non-separable, stationary spatio-temporal

covariance functions (discussed in Section IV-A), we prove:

Theorem 2: Combining a continuous autocorrelation

function ρ(ω;u) satisfying C1 and a function ϕ(ω) satis-

fying C2, one can construct a spectral density h(ω;u) =
ρ(ω;u)ϕ(ω), representing a continuous and integrable func-

tion k(h;u) which can then be used to form a valid non-

stationary spatio-temporal covariance function in R
D ×R as

k(s+s′; t+t′)+k(s−s′; t−t′)−2[k(s; t)+k(s′; t′)−k(0;0)],
where s, s′ ∈ D ⊂ R

D and t, t′ ∈ [0,∞).

Proof of this theorem follows from the proof for creating

stationary, spatio-temporal covariance functions [20] and

the proof of Corollary 1 as given in [22]. The proof is

omitted here due to space constraints. This theorem allows

several classes of spatio-temporal covariance functions to

be constructed. Specifically, the following are examples of

separable, non-separable and non-stationary spatio-temporal

covariance functions extending the stationary spatio-temporal

covariance functions presented in Section IV-A:

Example 1: Non-separable, non-stationary model

k(s, s′; t, t′ | θ) =
σ2(a2(t + t′)2 + 1)

[(a2(t + t′)2 + 1)2 + b2‖s + s′‖2]
D+1

2

+
σ2(a2(t − t′)2 + 1)

[(a2(t − t′)2 + 1)2 + b2‖s − s′‖2]
D+1

2

(12)

−2

[

σ2(a2t2 + 1)

[(a2t2+1)2+b2‖s‖2]
D+1

2

+
σ2(a2t′2 + 1)

[(a2t′2+1)2+b2‖s′‖2]
D+1

2

−σ2

]

.

Example 2: Separable, non-stationary model

k(s, s′; t, t′ | θ) = σ2 exp{−b2‖s + s′‖2 − a2(t + t′)2}

+ σ2 exp{−b2‖s − s′‖2 − a2(t − t′)2} (13)

−2[σ2exp{−b2‖s‖2−a2(t)2}+σ2exp{−b2‖s′‖2−a2(t′)2}−σ2].

One of the reasons for using non-separable covariance

functions is to be able to model complex space and time

dependencies. An example of these dependencies occurs

when monitoring temperatures in indoor environments over

an extensive period of time. Regions closer to windows

will exhibit larger temperature variations during the day as

the sunlight will heat up the surfaces nearby. At night, a

more homogenous distribution is expected as the amount

of energy received in the environment is more equally

distributed. By modeling the space-time dependencies, it is

possible to predict when and where the temperature will be

higher over the period of the day.
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Non-stationarity can add another level of complexity to

the model. There is a vast number of non-stationary kernels

ranging from the simple linear kernel (k(x,x′) = x · x′)

to complex kernels obtained through process convolutions

as in [?]. In the later case, the kernel can have parameters

that vary locally according to the expected values of the

outputs, providing extreme flexibility to model complex phe-

nomenons. For computational reasons the examples above

employed a different (simpler) non-stationarity formulation.

The non-stationarity property is obtained by summing and

subtracting kernels, as motivated by the Brownian motion.

Fig.(1a) and Fig.(1b) show the output values for the two

covariance functions above for variations in time (x-axis) and

space (y-axis). Fig.(1a) depicts a non-uniform dependence

between space and time as a result of the non-separability in

Example 1. In Fig. (1b) variations in position are not depen-

dent on variations in time and the resulting plot is symmetric.

This demonstrates the separability behavior in Example 2.

Note that both cases exhibit non-stationary properties as their

behavior change depending on the particular position or time

coordinate.

V. PATH PLANNING

In this section we propose an example path planning

approach in continuous domain that can exploit the Gaussian

Process based modeling approach to guide informative sens-

ing. Our proposed greedy path planning algorithm uses infor-

mation gain as the objective function. We assume that Xt =
(s1; t1), . . . , (sN ; tN ) be the training set of N observation lo-

cations, available to learn the hyper-parameters of the covari-

ance function. With the learned hyper-parameters, the trained

model is used for testing on the spatio-temporal dataset. We

define a timestep to be an instance of the environment during

which the observed phenomena is assumed to be static.

During the testing phase, we assume that a maximum

of m observations can be obtained in a single timestep;

constrained by the rate at which the observed phenomena

is varying and constraints of the robotic system (such as

speed). For simplicity, we assume m = 1 in the following. A

similar analysis will hold true for m ≥ 1. At each timestep

i, we have a set of locations that are already observed in the

previous timesteps, given by Xi = x1, . . . ,xi. The predicted

covariance at some set of unobserved locations X∗ after mak-

ing these observations will be given by K(X∗, X∗|Xi) =
K(X∗, X∗) − K(X∗, Xi)K(Xi, Xi)

−1K(X∗, Xi)
T . The

locations X∗ can be chosen to be either uniformly spaced

or randomly distributed so as to be a representative set

for the corresponding dynamics in the environment. A

more sophisticated approach such as that of selecting

active set in [23] can also be used to chose X∗. The

entropy of the phenomena can now be calculated using

the log determinant of this predicted covariance matrix;

H(X∗|Xi) ∝ log |K(X∗, X∗|Xi)|.
Let xi+1 be the next observation location selected at

timestep i + 1. Since we have assumed m = 1, the time

component of xi+1 will be i + 1. The new set of observed

locations is Xi+1 = Xi ∪ xi+1. The new entropy after

making observation at xi+1 is given by H(X∗|Xi+1) ∝

log |K(X∗, X∗|Xi+1)|. The contribution to the entropy

from the new observation location can be computed as:

Ixi+1
= log |K(X∗, X∗|Xi+1)| − log |K(X∗, X∗|Xi)|

= log

(

|K(X∗, X∗|Xi+1)|

|K(X∗, X∗|Xi)|

)

.

To minimize the posterior entropy after making the new

observation, the next observation location is selected as:

xi+1 = argmin
xj∈RD×R\Xi

log

(

|K(X∗, X∗|(Xi∪xj)|

|K(X∗, X∗|Xi)|

)

. (14)

Since this is a non-convex optimization, we use gradient

ascent to find a local minimum which calculates the local

gradient of the objective function. The gradient of the above

function can be easily computed both analytically as well as

numerically. For our experiments in Section VI, we compute

the gradient numerically. If the next selected location is

farther than the maximum distance traversable by the robot

in a single timestep, the robot is moved in the direction of

maximum gradient by the maximum distance.

We note that such path planning is an open loop path

planning, wherein the next observation location is selected

only based on the locations of previously visited locations

while the actual observations made at the previously visited

locations are not taken into account. Hence such planning

can also be performed offline.

VI. EXPERIMENTS

Prediction using Gaussian Process depends on effective

modeling of the covariance structure for the phenomena

of interest. As discussed in the motivating applications, to

represent the spectrum of modeling approaches from simple

spatial models to complex non-stationary, non-separable

spatio-temporal models, following classes of covariance

functions were empirically compared :

1) Stationary spatial covariance functions as given in

Eq. (4) (Spatial-SqExp) and Eq. (10) (Spatial-S3).
2) Non-stationary spatial covariance function (Spatial-

NN), as given in Eq. (5).
3) Stationary, non-separable, spatio-temporal covariance

function (ST-NonSep) as given in Eq. (9).
4) Stationary, separable, spatio-temporal covariance func-

tion (ST-Sep) as given in Eq. (11) (with c = 0).
5) Non-stationary, non-separable, spatio-temporal covari-

ance function (ST-NS-NonSep) as given in Eq. (12).
6) Non-stationary, separable, spatio-temporal covariance

function (ST-NS-Sep) as given in Eq. (13).

Real world sensing datasets were used to compare these

different classes of covariance functions both in simulation

and using a real robotic system. For each of the dataset

and the class of covariance function, we first learned the

corresponding set of hyper-parameters from a subset of

collected dataset. A timestep is considered as instance of

the environment during which the observed phenomena

is assumed to be static. In the case of spatial covariance

functions, we used the mean temperature (from all the
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(a) Satellite view of the deployment site

0 10 20 30 40
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Distance (meters)

D
is

ta
n

c
e

 (
m

e
te

rs
)

 

 

10

12

14

16

18

20

(b) Temperature distribution during first scan
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(c) Temperature distribution during fifth scan
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(e) Selected path for Spatial-NN
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(f) Selected path for ST-NS-Sep

Fig. 2: Results from lake temperature measurement (data collected using NIMS [24] at Lake Fulmor, San Jacinto Mountain Reserve).

timesteps) at the selected subset of observation locations

while for learning the spatio-temporal covariance functions

we used the data across all the individual timesteos. Using

the learned parameters (trained model), we then perform

path planning in the continuous domain as discussed in

Section V. Root mean square error between the predicted

observations and the actual observations at a set of grid

locations, specific to each dataset, was then computed and

used as the parameter for performance comparison.

A. Simulation experiments

Real world temperature measurements made in a cross-

section of Lake Fulmor, located in a sub alpine coniferous

forest within the San Jacinto mountains of Southern

California were used to perform simulation experiments.

Fig. (2a) displays satellite view of Lake Fulmor marked

with the observed cross-section. The motivation for studying

temperature distribution in a lake environment comes from

the dependency of phytoplankton growth on temperature.

Phytoplankton form the largest source of oxygen and the

foundation of the food web in most aquatic ecosystems.

Understanding the phytoplankton dynamics is dependent

on characterizing several related parameters of which

temperature is one of the most critical. Dense scans

were performed using Networked Info-Mechanical System

(NIMS), a tethered robotic system [24].

During the deployment, NIMS observed temperature at

197 locations across the lake cross-section (illustrated in

Fig. (2b)). Each dense scan of the cross-section took approx-

imately 1.5 hours and 10 such scans were taken sequentially

from midnight to 4 pm. Fig. (2b) and Fig. (2c) display the

temperature distribution during the first and the fifth scan.

Since measurements in this dataset are only available at

specific locations, the selected locations during path planning

(as per Eq. (14)) in continuous domain is approximated to the

nearest location for which a data sample was obtained. This

constraint does not come from the proposed path planning

method but is only due to the limited sensing dataset avail-

able. Such a constraint does not occur while performing path

planning using actual systems (as discussed in Section VI-B).

For learning the hyper-parameters, we selected a subset

of 50 uniformly spaced observation locations from the total

of 197 locations. These locations are illustrated as points

in Fig. (2e). For the path planning algorithm, we assumed

the starting location to be one end of the cross-section (for

practical purpose). We further assumed that the path planning

algorithm can observe at a maximum of 5 locations for each

timestep. Fig. (2d) compares all the classes of covariance

models in terms of their prediction accuracy. X-axis in the

plot represent the timestep and Y-axis represent the root mean

square error for the corresponding timestep. Since there is

little variation across the different timesteps, which is learnt

by the spatio-temporal models during the process of learning

the parameters, prediction accuracy for simple spatial models

and complex spatio-temporal models is comprable.

Fig. (2e) and Fig. (2f) display a path selected for Spatial-

NN and ST-NS-Sep covariance functions respectively during

the testing phase (after the parameters have been learned

from the subset of the data). It is interesting to note that

since the temperature distribution is much more uniform

across horizontal direction (c.f. Fig. (2b) and Fig. (2c),

path planning based on both the spatial and spatio-temporal

covariance functions select more locations along the vertical

direction, with path planning based on the spatio-temporal

covariance functions even preferring to remain on one side

of the lake and only making observations along the depth.

B. System experiments

In addition to using real world sensing dataset in

simulation, we also compared the performance of different
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(c) Intensity distribution during sixth scan
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Fig. 3: Results from system experiments - measuring light intensity using NIMSPL.

covariance functions on an actual robotic system for a

critical application of monitoring light intensity in the

forest understory. Networked InfoMechanical System for

Planar actuation (NIMS-PL), a four cable based robotic

system, was used for performing the system experiments

[25]. NIMS-PL consists of four tension controlled cables

capable of actuating a generic sensor to provide planar

spatial coverage. A schematic of NIMS-PL system actuating

a light sensor in a vertical plane is shown in Fig. (3a).

A critical issue of global climate change in the world

today is that of understanding and modeling carbon sources

and sinks. One of the most significant components of

carbon pools and fluxes is the role of tropical forests (and in

particular the small plants growing in the forest understory),

which hold large amounts of biomass [26]. A key challenge

in understanding the CO2 sink (or the photosynthetic rate) of

plants in the understory is to characterize the dynamic light

intensity patterns that exist in that environment. We used

our study of spatio-temporal covariance functions to analyze

the effectiveness of modeling light intensity as Gaussian

Processes with spatio-temporal covariance functions.

A series of 10 images were collected to capture the light

distribution under a tree canopy in San Jacinto mountains

reserve (Southern California) [27] using a downlooking

camera. These images were captured approximately every 10

minutes from circa 8:40 am to 10:10 am. Then, we projected

these images onto a screen to be sampled using a light sensor

attached to NIMS-PL. There is an ongoing work in corre-

lating light intensity data collected using such approaches

with photosynthetically active radiation that is important for

understanding the photosynthetic rate. We collected light

intensity data at a uniform grid of 15x15 for each projected

image. The data is transmitted over bluetooth to the motor

controller, to synchronize the sensor location and sensor data.

Fig. (3b) and Fig. (3c) illustrate the interpolated intensity

data, at each of the 225 locations, collected using NIMSPL

during first and sixth scan respectively. All the observed

locations are also marked in Fig. (3b). As illustrated

by the two intensity distribution plots (corresponding to

light intensity distribution as captured after a separation

of 50 minutes), the phenomena displays considerable

dynamics and hence it is of potential interest to quantify

the effectiveness of spatio-temporal covariance functions in

Gaussian Process regression.

We used a subset of 112 of these 225 locations to

learn the hyper-parameters of the covariance functions.

These 112 locations are marked in Fig. (3e). In this case,

observations were allowed to be obtained anywhere in

the continuous domain and were not constrained to grid

locations. Since the path planning algorithm is optimizing

a non-convex optimization problem, if it is not able to find

an appropriate next location to observe, we move it to the

nearest unobserved location from the 225 grid locations.

The path planning algorithm was allowed to observe a

maximum of 10 locations for each timestep (making a total

of 100 observations for 10 timesteps).

Fig. (3d) compares the root mean square error (Y-axis) for

each covariance function for the corresponding timestep (X-

axis). The spatio-temporal covariance functions - ST-Sep, ST-

NonSep, ST-NS-Sep, ST-NS-NonSep provide better prediction

accuracy compared to spatial covariance functions - Spatial-

S3, Spatial-SqExp, Spatial-NN. Within the spatio-temporal

covariance functions, the stationary non-separable covariance

function (ST-NonSep) provides the best performance.

Fig. (3e) and Fig. (3f) display the path selected for Spatial-

S3 and ST-NS-NonSep covariance functions respectively.

With ST-NonSep covariance function learning the time corre-

lations, more number of observations are made in the region

with high variance (light spots arriving for a short duration

during the complete time duration represented by the upper
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left corner as illustrated in Fig. (3c)). The simple spatial

covariance function, Spatial-S3, makes uniform observations

across the complete area. Further, both the paths tend to take

a significant number of observations along the edge. Since

we used the actual light sensor to measure the intensity

of the projected image, the locations along the edge had

significant noise from the ambient light. Large noise, increase

the entropy of such locations along the edge and hence the in-

crease in the corresponding reward achieved by visiting such

locations (by minimizing the overall entropy as per Eq. (14)).

VII. CONCLUSION

This paper presented a detailed study on modeling spatio-

temporal dynamics using Gaussian Process regression. In

particular, the following contributions were made:

1) A generic framework was developed to address one

of the most difficult problems in GP regression - creat-

ing valid covariance functions that exploit space and time

inter-dependencies. The proposed approach can be used to

create complex - non-stationary, non-separable, covariance

functions for accurately modeling the environments while

avoiding overfitting (learning the functions using marginal

likelihood naturally handles overfitting by possessing the

Occam Razor’s principle).

2) A greedy algorithm for path planning in continuous

domain was proposed. The algorithm selects observation

locations that increase information gain the most (i.e.

reducing the overall entropy by the maximum amount).

3) Extensive empirical evaluations were performed,

comparing several classes of covariance functions -

stationary spatial, non-stationary spatial, stationary separable

spatio-temporal, stationary non-separable spatio-temporal,

non-stationary separable spatio-temporal and non-stationary

non-separable spatio-temporal. Real world sensing dataset

(observing temperature distribution in a lake environment),

was used to compare the performance of the path planning

algorithm with these classes for modeling the observed

environment. Further, a real robotic system, NIMSPL

was used to run the path planning algorithm for the

critical application of monitoring light intensity in the forest

understory. The application of light monitoring demonstrates

complementary characteristics of high temporal variation

compared to our lake temperature dataset with low temporal

variation. High temporal variation results in a different

class of covariance functions performing well for this

application. This further necessitates the applicability of

such an approach that can provide covariance functions

suited for specific application characteristics.

We believe that the methods presented here have a broad

area of application in both robotics and sensor networks

and will contribute to the development and analysis of

efficient modeling and path planning algorithms for complex

problems in dynamic and continuous domains. The study

of spatial-temporal statistical models is of key importance

for environment monitoring and this paper is an initial step

towards unifying decision making and statistical modeling in

robotic systems.
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