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Abstract— The efficiency of distributed sensor networks de-
pends on an optimal trade-off between the usage of resources
and data quality. The work in this paper addresses the problem
of optimizing this trade-off in a self-configured distributed
robotic sensor network, with respect to a user-defined objective
function. We investigate a quadtree network topology and
implement a fully distributed threshold-based field estimation
algorithm. Simulations with field data as well as real robot
experiments are performed, validating our distributed control
strategy and evaluating the threshold-based formula for real
world scenarios. We propose a theoretical analysis that predicts

the system’s behavior in real world case studies. The exper-
iments and this prediction show very good correspondence,
enabling the accurate employment of the objective function,
optimizing the trade-off based on user needs.

I. INTRODUCTION

Since the beginnings of research on sensor networks in

the 1970s, the monitoring of environments and habitats has

become one of its major application fields [3]. Technological

advances in embedded systems, such as the development

of reliable wireless communication, and miniaturization and

improved efficiency of microcontrollers and sensors have

have answered key needs, and encouraged an increasing

deployment of wireless sensor networks as a main tool to

monitor spaces [7]. Still, one of the challenges presented with

the deployment of sensor networks is the accurate estimation

of fields with unpredictable environmental phenomena, while

simultaneously addressing the critical issues of resource

usage such as local memory, communication and processing

constraints.

With networks often consisting of a considerable number

of sensor nodes, the necessity of limiting energy consumption

as well as bandwidth requirements increases. Research in

the domain of ad hoc wireless routing has produced a range

of algorithms which propose solutions for these problems.

Improved routing algorithms have been developed which aim

to accomplish in-network load balancing and an increased

system lifetime, employing techniques that are mostly based

on system information such as remaining energy levels and

routing capacities. For instance, the GAF (Geographical

Adaptive Fidelity) scheme of Xu et al. [23] superposes a con-

stant grid onto the network area. Nodes use their geographic

location to determine grid membership and transit between

idle and active states, ensuring that one node per grid will

remain active to route packets. The approach described by
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Chen et al. in the Span scheme [2] is similar, with the

difference that nodes do not need localization. Decisions

on whether to power down radio communication are made

locally, on the basis of a coordinator-election rule which

preserves network routing capacities. In [12], Heinzelman

et al. describe LEACH (Low-Energy Adaptive Clustering

Hierarchy), a clustering-based routing protocol. It employs

randomized rotation of local base-stations (clusterheads),

with decisions to become a clusterhead depending on re-

maining node energies.

In wireless sensor networks, a reduction of resource

consumption due to routing and sensing tasks may also

be driven by field data. The density or activity of the

sensor nodes can be adapted to sensing application needs by

eliminating redundant nodes and thus reducing energy usage.

Intanagonwiwat et al. [13] describe directed diffusion, a data-

centric, application-specific approach which aims to mini-

mize the communication distance between sensor nodes and

data sinks. This approach is complemented by research done

by Zhao et al. [24], [15]. These works present collaborative

signal processing techniques for distributed sensor networks,

also aiming to minimize resource usage by activating nodes

only on a when-needed basis by considering a maximum

utility of predictions on sensor measurements. The methodol-

ogy is developed especially for tracking applications, where

communication within the network is based on a neighbor-

to-neighbor protocol.

In our work, we address the problem of designing dis-

tributed sensor networks for surveillance and monitoring.

It is clear from [14] that self-configuration is a necessary

element for effective as well as efficient performance of

such networks. The proposed design paradigm suggests

hierarchical topologies, following a top-down control and

bottom-up reconfiguration principle. Here, we build upon

this design rule, implementing a distributed, multi-layer tree-

based routing algorithm and combining it with a threshold-

based clustering strategy which is adaptive to the state of

the field being estimated. Our algorithm leans on established

field estimation methods described in [19] and [22]. The

approach is similar to the one described by Arici et al. in

[1], which describes an adaptive sensing method also based

on a tree-like, hierarchical network structure. Their method

exploits the fact that a manual deployment of sensors may

offer more information than necessary (over time and space)

to reconstruct an accurate field estimate. They propose a

self-configuration algorithm which will put nodes into pas-

sive mode when their measurements become ‘predictable’.

Here, also motivated by previous research in the domain
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of distributed sensor node controllers as presented in [6],

we develop a fully distributed node controller that is easily

implemented on resource constrained and noisy hardware,

which aims to optimize system performance by finding

a trade-off between use of resources and data quality. In

contrast to the methods described in [2], [12], [23], we base

our clustering strategy on field data, rather than on system

information. Also, our resulting data aggregation method

follows a multi-layer bottom-up principle, which enables

global abstraction of the target field, different from the local

collaborative processing methods of [24], [15]. Lastly, in

contrast to [19] and [22] we focus on the whole system rather

than only on communication and routing activities, and we

verify our approach by demonstrating it on real hardware

and by comparing the performance to theoretical predictions

(see also III-A).

II. CASE STUDY: ESTIMATING AN ACOUSTIC FIELD WITH

A ROBOTIC SENSOR NETWORK

First developed with the Distributed Sensor Networks

(DSN) program in 1978, the demonstrative target problem

for distributed sensor networks was acoustic tracking [3],

with numerous studies published in this domain since then.

In this study, we attempt to estimate an acoustic field

generated by a static sound source in a closed environment

with evenly spaced robotic sensor nodes. Nevertheless, our

proposed methodology can be applied generally, to any type

of field estimation task. Ultimately, we wish to obtain a

unified estimation of the field values by extracting this

information from the network data sink. Throughout this

work, we discuss performance by means of i) mean-squared-

error (MSE) between the actual field values and the estimated

values, and ii) number of active nodes. Without any loss of

generality, we assume that the number of active nodes within

the network is proportional to the consumption of system

energy, since the power of transmission is the same on all

robotic nodes.

A. Distributed Network Organization

As suggested in the theoretical work of [22], we super-

pose a quadtree (shown in Fig. 1) on the robotic sensor

network. Especially when computing spatial problems typical

in computer aided design and geo-data applications [11], the

quadtree data structure has proven an efficient and powerful

tool [10] [20]. An early work in [9] shows how an active

quadtree network facilitates image representation and analy-

sis. Also, a recent study in [8] shows how a quadtree can be

utilized for in-network data querying in a fully distributed

wireless network. Yet, despite the quadtree being a widely

known structure, to the best of our knowledge, it has not yet

been exploited as a network topology.

Here, although our controllers and models are general

to any hierarchical topology, we showcase our study on a

quadtree based network with each robotic node within our

sensor field representing a leaf node in the tree structure. The

robots are distributed on a regular grid in a square arena. In

a network of a total n nodes, assuming that the robots are
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(a) Quadtree hierarchy

Fig. 1. A 16-node quadtree structure. The quadtree hierarchy is decom-
posed into 3 hierarchy levels. A node will participate in either of the 3
subsets: {L0}, {L0, L1} or {L0, L1, L2}.

aware of their location, each one allocates itself to one of

n sensing cells in the decomposed space. We thus obtain a

robotic sensor network ordered by the intrinsic hierarchy of

the quadtree. Adapted and implemented in a fully distributed

sensor network, this hierarchy can be explored in terms of

i) communication channels and ii) fine-tuning the spatial

resolution of the sensor network. Whereas exploring i) is

relatively straightforward as we can directly exploit the

quadtree hierarchy, there are many approaches to ii)—our

chosen approach will be discussed later in Section II-B.2.

On a global level, the quadtree structure depends only on

the number of nodes (implicitly a power of 4), and can be

constructed in a distributed manner, assuming that all nodes

know their location. As is evident in Fig. 1, a single node

may have multiple roles within the network, depending on

the status of the network. Thus, we create the notion of

layers Li. In a network of 4K nodes, we have K +1 layers

(L0, ..., LK), and a node’s current role in the network is

defined by its current processing layer Lcurrent. Every node

Ni has a maximum layer Lkmax
with Ni ∈ Lkmax

such that

there is no k > kmax with Ni ∈ Lk. Also, any node Ni in

Lk, k > 0 is a clusterhead, with four descending nodes in

Lk−1 as its cluster children (including itself). As we are here

not interested in node failures, we don’t go into the details

of an eventual clusterhead rotation or election strategy.

The group of robotic nodes uses wireless communication

as a means of inter-node organization. There are two classes

of messages being used within the network: control messages

and data messages (measurements). The messages typically

contain the following elements: measurement/control data,

i and k, with i the id of the sender node Ni and Lk its

current processing layer. Control messages are sent top-down

through the network structure, and measurement messages

bottom-up. Nodes throughout the network or within the com-

munication range of the transmitting node may receive mes-

sages at all times and asynchronously from various senders.

A clusterhead will only accept measurement data from nodes

belonging to its cluster, and following the top-down control

principle, a node will only accept control messages from its

clusterhead. Fig. 2 illustrates the communication protocol.
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Fig. 2. The node is currently processing data in layer Lk . Measurement
messages are sent bottom-up and control messages are sent top-down the
quadtree structure.

B. Control of the Robotic Node

We elaborate two control variants: first, a naive sensing

strategy (NS), and second, an improved threshold-based

sensing strategy (TBS). With NS, the nodes are in one of

three possible states, whereas with TBS, the nodes are in

one of four possible states. The controller is simple and

distributed, homogeneous on all nodes.

1) State Machine: The controller can be represented by

a simple state-machine, and is depicted in Fig. 3. Initially,

a node is in the sample state. Each time a node takes a

measurement, it will transition to the process state. If the

node is a leaf node (its processing layer is Lcurrent = Lkmax

at all times) it will transition directly to the broadcast state,

send its measurement and then return to the sample state. If

the node is a clusterhead, it will increment its processing

layer Lcurrent once it has received (and aggregated) the

data from all the nodes in its cluster, and will enter the

broadcast state if it has reached its maximal layer Lkmax
.

Otherwise, it will re-enter the sample state. Finally, upon

sending the (collected) measurement data in the broadcast

state, the clusterhead will return to the sample state.

In a further step, we develop the controller for TBS, with

the goal of optimizing the use of resources by reducing the

number of messages sent and measurements taken. The aim

is to prune certain node-clusters off the quadtree by putting

the nodes in those clusters to sleep. A clusterhead will then

replace measurement values of all its descendant nodes with

its own. A fourth state is added to the NS controller, and is

illustrated by the dashed line in Fig. 3. If a node has received

a relevant pruning control message, it will be absorbed by the

idle state. In this work, we do not consider the reactivation

of idle nodes through a tree-branching procedure.

2) Threshold-Based Pruning Algorithm: In TBS, a clus-

terhead makes the decision to prune or not prune its child

nodes. Thus, we implemented a threshold-based pruning

algorithm, which builds on the theoretical formula proposed

in [19]. Assuming that the field is anisotropic, the chosen

approach is to prune sensor-node clusters which are sampling

values in isotropic subparts of the field. The resulting field

estimator will display a higher sensing resolution along the

boundaries of the anisotropic field and lower resolution in

the isotropic subparts. This principle is illustrated by the

sample broadcast

process

idle
PRUNED

¬ PRUNED

L current = L kmax

L current ≠ L kmax

L current ≠ L kmax

L current = L kmax

Fig. 3. Schematic illustration of two variant state-machines implemented
for the quadtree structure. (a) NS (without dashed line): A node samples
acoustic events. Measurement data from cluster nodes is received and
processed. When the cluster data is complete, a node will broadcast the
collected data. (b) TBS (with dashed line): A node which is shut down is
absorbed by the idle state.
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Fig. 4. The graphs show the calculated power of an acoustic event at a
given moment. Each of the 16 cells is occupied by one robotic sensor node.
An acoustic source is located in the bottom left corner of the arena. (a) A
snapshot of the true field values (b) The data sent out of the network by
the top-level node after completion of the pruning algorithm

example in Fig. 4. Fig. 4 (a) and (c) show a fully active

(un-pruned) quadtree and the values transmitted by the full

network, whereas Fig. 4 (b) and (d) show a pruned quadtree

and the values transmitted by the remaining active nodes.

From [19] we have:

f̂n = argmin
f(θ),θ∈Θn

R(f(θ), x) + 2s2p(n)|θ| (1)

where s2 is the signal noise variance and p(n) a mono-

tonically increasing function of the total number of nodes.

The finite set Θn includes all possible pruning variations

(partitions) of a quadtree with n nodes, and θ is one particular

partition. Then, for the set of partitions Θn, the algorithm

will seek the optimal partition θ which minimizes the cost

of the resulting field estimator, f̂n. This cost is comprised

of two terms. The first term R(f(θ), x) is the approximation

error resulting from the pruned clusters in the partitions. The
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error is calculated as in

R(f(θ), x) =
n
∑

i=1

(fi(θ)− xi)
2

where fi(θ) is the estimated value for a node Ni in a

particular partition θ and xi is the true field value. The aim of

the second term in (1), 2s2p(n)|θ|, is to penalize increasing

complexity, where the factor |θ| is the number of not pruned

nodes in the partition. In [18], p(n) = 2/3 log n and s2 is

homogeneous on all sensor nodes.

We can solve equation (1) in a distributed manner by using

the bottom-up messaging protocol mentioned in Section II-A.

The work in [18] confirms that both terms of the estimator

are additive functions, thus the error and the penalty cost

of a subsquare can be calculated by each corresponding

clusterhead independently. Then, following our messaging

protocol, a clusterhead in the quadtree hierarchy will receive

from its 4 child nodes (three child nodes and itself) the field

estimate which minimizes the estimation cost as given by

the formula.

In order to implement the field estimation technique in our

distributed network, we propose a threshold-based pruning

algorithm. At layer L0, there is no propagated error from

lower levels, the cost f̂i(θL1
) at a clusterhead Ni is thus

equal to

f̂i(θL1
) =

{

8s2p if not pruning

R(fi(θL1
), x) + 2s2p if pruning

The algorithm will seek the minimal cost min{f̂i(θL1
)},

therefore the threshold on the approximation error

R(fi(θL1
), x) for layer L1 is

T1(s, p) = 6s2p

In other words, if the approximation error

R(fi(θL1
), x) < T1(s, p), the cluster will be pruned.

For layers Lk with k > 1, the estimator takes into account

the propagated errors and complexity penalizers from lower

level layers, with

f̂i(θLk
) =

{ ∑

j∈Ck,i
f̂j(θLk−1

) if not pruning

R(fi(θLk
), x) + 2s2p if pruning

where Ck,i is the set of all children nodes of clusterhead

Ni at layer k. In this work, we are interested in studying

the performance of a fixed-size sensor network in function

of the threshold Tk. Thus, p is constant and the threshold

Tk(s) for level Lk, k > 1 is then

Tk(s) = 6s2p+
∑

j∈Ck,i

R(fj(θLk−1
), x) (2)

III. OPTIMIZING PERFORMANCE IN A REAL SENSOR

NETWORK

Although we do not take advantage of the self-locomotion

capabilities of our robotic platform, we are ultimately inter-

ested in robotic sensor networks. Whereas in this paper, we

consider as our energy costs the number of active (sensing)

nodes in the network, our formalism can be extended to also

take into account the additional cost of robot motion.

A. Problem Formulation

By implementing the threshold formula described above,

theory in [18] states that the total partition size |θ| is reduced

to an order of
√
n (in a network of a total n nodes). Under

this assumption, and assuming the field’s boundary type is

known, the estimation reaches almost optimal bounds on

MSE and network communication costs: The total energy

used for communication (in- and out-of-network) is in the

order of
√
n and the MSE decay rate is in the order of 1/nν ,

with 0 < ν ≤ 1, where ν is defined by the boundary type.

(For example, in the case where the boundary is described

by a line, ν = 1/2 and the MSE decay is in O(1/
√
n)).

Further, an optimal estimation of the field with (1) relies

on i) a uniform distribution of nodes within the network,

and ii) a measurement disturbance of zero-mean Gaussian

noise, homogeneous for all sensors. With a decreasing MSE,

the algorithm will balance the trade-off by systematically

increasing the penalty associated with communication costs.

The approach in [18] optimizes the partitioning of the

space, with a fixed number of active nodes by minimizing

communication distances. Here, the problematic is different,

because we try to optimize the number of active nodes by

turning off all but one node per partition cell. Thus, no lower

bounds (except the trivial bounds) on communication costs

and MSE exist.

We introduce the objective function

fobj(g(s), h(s)) (3)

This function allows us to arbitrarily define the trade-off,

with g(s) the number of active nodes (i.e. energy consumed

by the system) and h(s), the resulting MSE. Both functions

depend only on the threshold T (s). Whereas in [19], s2 is

a fixed sensor noise variance, we here use it as a design

parameter to modify the value of the threshold. The goal of

this study is to define a methodology which finds the optimal

value s that minimizes a user-defined cost function fobj .

B. Expected Theoretical Performance

In the following we develop a formalism for the behavior

of functions g(s) and h(s), which takes into account com-

munication failure and a unique sensor model for each node.

The idea of our formalism is fairly simple: at each level

of the quadtree hierarchy, we predict the expected number

of active nodes and the expected MSE, and propagate this

value upwards to the next level. Thus, at the highest level

in the hierarchy, we obtain the values which predict the

performance of the whole network.

For all sensor nodes Ni in the network, we assume that

the measured acoustic power xi is sampled from a normal

distribution with mean µi and variance σ2
i (xi ∼ N (µi, σ

2
i )).

We also assume that the network undergoes a communication

failure rate of tx. For reasons of simplicity, tx is constant,

but our approach is easily extended with arbitrary values ti,j
for communication between a pair of nodes Ni and Nj . We

are able to recursively calculate g(s) = E(A), the expected

number of active nodes, and h(s) = E(MSE), the expected
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Fig. 5. Expected performance. (a) Total active nodes for varying transmis-
sion failure rates (b) MSE.

MSE. For any given layer k, for a clusterhead Ni we have

Ek,i(A) = (1− P (Uk,i)) · Ek,i(A|Uk,i)

+ P (Uk,i) · Ek,i(A|Uk,i) (4)

Ek,i(MSE) = (1− P (Uk,i)) · Ek,i(MSE|Uk,i)

+ P (Uk,i) · Ek,i(MSE|Uk,i) (5)

where Uk,i represents the event that node Ni decides to prune

its cluster. The probability P (Uk,i) that Ni prunes at layer

k is

P (Uk,i) = P (uk,i) ·
∏

j∈Ck,i

P (Uk−1,j)

because a clusterhead cannot prune its cluster if all its lower

level clusters are not already pruned themselves, with

P (uk,i) = P
(

(Rk,i −
∑

j∈Ck,i

Rk−1,j) < 6s2p
)

where uk,i is the event that node Ni decides to prune,

knowing that its subclusters are already pruned. Ck,i is the

set of all children nodes of clusterhead Ni at layer k and

P0,i = 1 for all i, and

Rk,i =
∑

j∈Ck,i

(fj(θ) − xj)
2

where fj(θ) = xi, and with R0,i = 0 for all i. We note

that our estimator fj(θ) of node Nj , as described in section

II-B.2, is the value xi taken by its parent node Ni.

(a) (b)

Fig. 6. The figure shows (a) the e-puck robot with the communication
module stacked between the basic module and the jumper board (b) the
real setup. 16 robots are evenly spaces out in a 1.5× 1.5m2 large space.
A 17th e-puck plays the role of a sound source

When we prune, we must take into consideration the

failure of pruning messages. Thus, the expected number of

nodes that can be deactivated upon pruning by node i at layer

k is

Ek,i(D) =

|Ck,i|−1
∑

m=1

m (1− tx)
m t

|Ck,i|−m−1
x (6)

The rate tx does not affect the MSE because a clusterhead

will not change its processing layer until it has received all

measurement messages from its children. At layer L0 we

expect the values E0,i(A) = 1 and E0,i(MSE) = 0 for all

i and thus we recursively obtain

Ek,i(A|Uk,i) =
∑

j∈Ck,i

Ek−1,i(A)

Ek,i(A|Uk,i) =
∑

j∈Ck,i

Ek−1,i(A)− Ek,i(D)

Ek,i(MSE|Uk,i) =

√

√

√

√

1

|Ck,i|
∑

j∈Ck,i

Ek−1,i(MSE)2

Ek,i(MSE|Uk,i) =

√

√

√

√

1

|Fk,i|
∑

j∈Fk,i

(xi − xj)2

where Fk,i is the set of all nodes which descend from node

Ni.

Figure 5 shows the predicted curves g(s) and h(s) for

varying communication failure rates of 5%, 10%, 30% and

50%. Parameters µi and σi are extracted from field data of

the experimental setup elaborated in the next section. We see

that for an increasing threshold, the number of active nodes

decreases, whereas the MSE increases.

C. Experimental Results

We perform our experiments on the e-puck robotic plat-

form [5], [17]. The e-puck robot runs on a microcontroller

of the dsPIC30 family. It has a trinaural microphone array

which can sample sound (in parallel) at a maximal frequency

of approximately 28.8 kHz. Also, it is equipped with a

custom extension turret for short range communication which

uses the subset of the 802.15.4 and ZigBee protocols present

in TinyOS [4], [6]. The transmission power of the commu-

nication module is software controllable, and passes through
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a custom attenuation circuit yielding effective maximum

ranges between approximately 10cm and 5m—Figure 3.7 in

[6] shows this behavior. Here, we set a maximal transmission

power. Fig. 6 (b) shows the setup with 16 robotic nodes in

a 1.5 × 1.5 m2 arena. An additional robot plays the role

of a stationary sound source. The source robot generates

a continuous acoustic field by emitting white noise at a

constant intensity, and is randomly placed in the arena

at the beginning of each experimental run. Each sound

measurement (acoustic power) is computed from the raw

sound intensities collected by the microphone array.

1) Simulation Results: First, we validate our network

topology and robot controller. We perform a preliminary

experiment where we feed real field data into the robotic

simulation platform Webots [16], simulating only radio

communication. The radio communication is realistically

modeled within the simulation software using a plugin based

on OMNeT++ [21], which accurately simulates the physical

layer (i.e., with channel fading) and data link layer (i.e.

modulation properties, channel coding, MAC protocol).

Figure 7 summarizes the behavior of the two control

variants NS and TBS as elaborated above, with respect to (a)

the number of active nodes and (b) the MSE. We performed

500 runs per threshold, for 24 different thresholds with s in

[0..12000]. For NS, the total number of active nodes as well

as the resulting MSE will remain constant. As expected for
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Fig. 7. Performance with i) NS and ii) TBS. 500 runs were performed per
threshold, for 24 different thresholds with s in [0..12000]. (a) Total active
nodes (b) MSE. The errorbars show a 95% confidence interval.
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Fig. 8. Real robot results as well as analytic results for tx = 0.3. 10
runs were performed per threshold, for 12 different thresholds with σ in
[0..12000]. (a) Total active nodes (b) MSE. The errorbars show a 95%
confidence interval.

TBS, we observe a decreasing number of active nodes and

an increasing MSE as the threshold increases.

2) Real Robot Results: Figure 8 shows results obtained

on the real setup. We performed 10 runs per threshold,

for 12 different thresholds with s in [0..12000]. The values

show good correspondence with the results obtained through

simulation (in Fig. 7). Further, we superimpose the analytical

curves E(A) and E(MSE) for a transmission failure rate

of tx = 0.3. This value corresponds to the failure rate

measured in this experiment. The analytical curves show

good correspondence to the results obtained with the physical

testbed.

D. Optimization of fobj

We have seen above that the theoretical analysis provides a

good approximation of the system’s behavior. After an initial

observation phase performed by the sensor network (where

all nodes are active), sensor models σi, µi are extracted

and disseminated. Thus, the network can use the prediction

formalism to estimate optimal thresholds, according to a

specific setup and user needs. Here, we demonstrate a

potential user case-study by applying our methodology on

an arbitrary objective function. We define

fobj = αg(s) + βh(s)
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Fig. 9. fobj for α, β = 1 and tx = 0.3. The predicted optimal value is
s = argmins∈R+ fobj(s) ≈ 1600

with α, β = 1. For a communication failure rate of

tx = 0.3, and using the sensor models σi, µi extracted from

our experimental field data, we have an optimal value for

s = argmins∈R+ fobj(s) ≈ 1600. This result is shown in

Fig. 9.

IV. CONCLUSION & FURTHER WORK

In this work we first develop a layer-based fully asyn-

chronous distributed node controller, specific to hierarchical

network topologies, where it performs self-configuration

based on an estimation technique. Whereas the theory for

the estimation technique optimizes communication costs, we

decouple our performance metric by considering a sensor-

node as either fully active or shut-down. Because a real

sensor network violates the uniform Gaussian noise assump-

tion, its performance is not easy to predict. By varying the

pruning threshold as an algorithmic parameter, we analyzed

the system’s performance in realistic simulation as well as

on hardware, and developed a formalism that accurately

captures the behavior of a real sensor network. Finally, we

develop a framework which ultimately allows for a specific,

user-defined trade-off between the cost and accuracy of a

sensor network.

There are a number of possible extensions to this work.

First, an augmented node control should envision the reacti-

vation of nodes absorbed by the idle state. This is especially

interesting for sensor networks deployed in non-static, dy-

namic environments. Also, the introduction of clusterhead

rotation cycles and distributed node responsibilities lead to

increased robustness, which is a key factor for large-scale

networks, composed of potentially unreliable and heteroge-

neous nodes.
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