
Computing Push Plans for Disk-Shaped Robots

Mark de Berg Dirk H.P. Gerrits
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, The Netherlands

E-mail: mdberg@win.tue.nl, dirk@dirkgerrits.com

Abstract— Suppose we want to move a passive object along a
given path, among obstacles in the plane, by pushing it with an
active robot. We present two algorithms to compute a push plan
for the case that the object and robot are disks and the obstacles
are non-intersecting line segments. The first algorithm assumes
that the robot must maintain contact with the object at all
times, and produces a shortest path. There are also situations,
however, where the robot has no choice but to let go of the
object occasionally. Our second algorithm handles such cases,
but no longer guarantees that the produced path is the shortest
possible.

I. INTRODUCTION

A fundamental problem in robotics is path planning [15],

in which a robot has to find ways to navigate through its

environment from its initial configuration to a certain desti-

nation configuration, without bumping into obstacles. Many

variants of this problem have been studied, involving widely

differing models for the environment, and for the robot

and its movement. In manipulation path planning [12] the

robot’s goal is to make a passive object, rather than the robot

itself, reach a certain destination. Several different kinds

of manipulation have been studied, including grasping [12],

squeezing [7], rolling [2], and even throwing [13].

The manipulation path-planning problem studied here in-

volves pushing [12]. In particular, we want a disk-shaped

robot to push a disk-shaped object to a given destination

in the plane among polygonal obstacles. Nieuwenhuisen

et al. [15]–[17] developed a probabilistically complete algo-

rithm for this based on the Rapidly-exploring Random Trees
path-planning algorithm [10]. This algorithm builds a tree

of reachable positions by repeatedly generating object paths

and trying whether the pusher can make the object follow

such a path. Thus a subroutine is needed to push the object

along a given path.
Problem statement: Let P be a disk-shaped pusher

robot of radius rp in the plane, let O be a disk-shaped object
of radius ro > rp, and let Γ = {γ1, . . . , γn} be a set of

non-intersecting line segments called the obstacles. We’re

given a collision-free path τ for O consisting of k constant-

complexity curves τ1, . . . , τk called the path sections. (By

“constant complexity” we mean that such a curve takes O(1)
space to represent, and for any two we can compute their

O(1) points of intersection in O(1) time.) We then want to

compute a collision-free path σ for P such that P pushes O
along τ when P moves along σ. We allow P and O to slide

along obstacles, which is called a compliant motion. The

computed path σ will be called a push plan. We distinguish

two kinds of push plans: contact-preserving push plans in

which the pusher maintains contact with the object at all

times, and unrestricted push plans in which the pusher can

occasionally let go of the object.

Related work: Along with the algorithm described

above, Nieuwenhuisen et al. [15], [18] also developed a

subroutine that solves the problem just described. They

assume the object path consists only of line segments and

circular arcs, and after preprocessing the n obstacles in

O(n2 log n) time into an O(n2)-space data structure, they

can compute a contact-preserving push plan in O(kn log n)
time. If one assumes low obstacle density [5], then the latter

bound can be improved to O((k+n) log(k+n)). In neither

case does their algorithm guarantee that the constructed push

plan is optimal in any way.

Agarwal et al. [1] considered the problem where only

the final destination of the object is given, and not its path

τ . For this they give an algorithm for finding a contact-

preserving push plan for a point-size pusher and a unit-

disk object. The algorithm discretizes the problem in two

ways: the angle at which the pusher can push is constrained

to 1/ε different values, and the combined boundary of

the obstacles is sampled at m locations to give potential

intermediate positions for the object. The algorithm then runs

in O((1/ε)m(m+ n) logn) time, but is only guaranteed to

find a solution if 1/ε and m are large enough. The algorithm

assumes the pusher can get to any position around the object

at all times, which is true for their point-size pusher but not

for our disk-shaped pusher: there may be obstacles in the

way.

Our results: We present a new approach to compute

push plans for disk-shaped robots, which improves on the

method of Nieuwenhuisen et al. in several ways. First, our

method can compute shortest contact-preserving push plans,

minimizing the distance traveled by the pusher. Second, it

can be generalized to computing unrestricted push plans.

Finally, our approach can deal with more general paths than

Nieuwenhuisen et al. Table I summarizes our results and

those of Nieuwenhuisen et al., both for high and low obstacle

density. Note that our algorithms are not only more powerful,

they also have better running times; in particular, we do not

need O(n2 log n) time (nor O(n2) space) for preprocessing.

II. THE CONFIGURATION SPACE

A general-purpose technique for path planning is to trans-

late the problem from the work space into the configuration
space [4]. The work space is the environment in which the

robot has to find a path. A configuration is one specific

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4487

High obstacle density Low obstacle density
Nieuwenhuisen Our method Nieuwenhuisen Our method

Preprocessing n2 log n n log n (∗) n2 log n n log n (∗)

Any contact-preserving push plan kn log n kn log n (∗) (k+n) log(k+n) (k+n) log(k+n)
A shortest contact-preserving push plan — kn log(kn) — kn log(kn)

Any unrestricted push plan —
kn log(kn) +

—
(k+n) log(k+n) +

kn2 log n kn
(∗) These entries are expected times. For the worst-case times, replace log n by log2 n.

TABLE I

A COMPARISON OF THE ASYMPTOTIC RUNNING TIMES OF NIEUWENHUISEN’S APPROACH AND OURS FOR COMPUTING CONTACT-PRESERVING AND

UNRESTRICTED PUSH PLANS.

placement of the robot in this space, specified by f pa-

rameters, where f is the number of degrees of freedom of

the robot. Each point in the (f -dimensional) configuration

space corresponds to a configuration in the work space. Some

configurations are invalid because the robot would intersect

an obstacle and these form the forbidden (configuration)
space. The remainder is the free (configuration) space, and

a path through it represents a solution to the original path-

planning problem in the work space.

To apply this technique to our problem, we first clarify

a few things left out from the problem statement, and then

discuss what our configuration space looks like and how to

compute it. Finding paths through the configuration space,

and mapping these back to push plans, is discussed in

Sections III and IV.

Preliminaries: As mentioned before, compliant motions
are motions where the object slides along an obstacle.

Such motions are more robust in the presence of sensor

inaccuracies, because the obstacle will act as a guide for the

object. More importantly, this allows the pusher to achieve

the same motion for the object from a contiguous range

of different pushing positions, called the push range. The

pusher can then swerve around the object to avoid obstacles

while still pushing the object in the desired direction. (See

Fig. 1(a).) With a non-compliant motion, the push range

is a single pushing position depending only on the desired

direction of motion for the object. If any obstacles are in the

way, there simply exists no push plan for that object motion.

(See Fig. 1(b).)

P
O P O

(a) (b)

Fig. 1. The push range for (a) a compliant motion, and (b) a non-compliant
motion.

The exact size of the push range for compliant motions

depends on the friction characteristics of the two disks and

the obstacles. Nieuwenhuisen [15] describes how to compute

the push range, given the friction coefficients between the

disks and between the object and obstacles. Friction also

affects how pushing works for non-compliant motions. Agar-

wal et al. [1] studied the motion of the object resulting from

pushing in a straight line under simple friction assumptions.

We assume (as do Nieuwenhuisen and Agarwal et al.)

that pushing is quasi-static [19], i.e. when pushing stops,

the object also stops instantly. Other than that, we abstract

away from compliance and friction entirely. We assume that

τ : [0, 1] → R
2 does not take the object through any of the

obstacles, and that this path consists of k constant-complexity

path sections τ1, . . . , τk which are all well-behaved. A path

section τi is well-behaved if all of the following hold (see

Fig. 2 and 3):

(A1) We can compute the push range for any object position

τi(s) along τi in O(1) time. Furthermore, this push

range is such that the ray from O’s center in the

direction of τi always forms an angle of more than

90◦ with a ray from O’s center to a pushing position.

(This is natural, since otherwise the pusher would pull

the object rather than push it.)

(A2) The area swept out by the push range as the object

moves along τi does not intersect itself, and is bounded

by four convex, constant-complexity curves (the push

ranges at either end, and the paths traced out by the two

end points of the push range) which can be computed

in O(1) time.

(A3) There is a constant d = O(ro) such that, after the

object has moved a distance d along the section, the

push range becomes such that the pusher can remain

in the sweep area of the object for the rest of the

section. Furthermore, the smaller push range that keeps

the pusher in the object’s sweep area satisfies (A2).

>90◦

∇τi

τi

d

τi

(A1) (A2) (A3)

Fig. 2. The three properties satisfied by well-behaved path sections.

For correctness of our algorithms, (A1) and (A2) suffice, but

(A3) allows us to derive better running times in case the

obstacles are not too densely packed. The line segments and

circular arcs used as path sections by Nieuwenhuisen et al.

satisfy all three criteria, and are thus well-behaved.

4488

τi

Fig. 3. A path section where well-behavedness property (A2) is not satisfied
(the area swept out by the push range self-intersects, and its boundary curves
are not convex). The path section can be broken up into three well-behaved
path sections.

Shape of the configuration space: A configuration in

our problem is a placement of both the pusher and the

object in the work space. Since the object is restricted to the

path τ and we assume that the pusher and object maintain

contact at all times—for now; we will lift this restriction

in Section IV—, the configuration space is 2-dimensional.

The point (s, θ) ∈ [0, 1] × S1 in the configuration space

will represent the configuration with the object’s center at

τ(s) and with θ being the pushing angle: the angle that the

ray from the pusher’s center to the object’s center makes

with the positive x-axis. (Note that the configuration space

is cylindrical, but for clarity we will depict it “flattened” as

a rectangle.)

We assume that path τ does not take the object through

any obstacles, so a configuration can be invalid for only

two reasons: either the pusher intersects an obstacle, or the

pusher is outside of the push range. We therefore consider

the forbidden space to be the union of two kinds of shapes.

A configuration-space obstacle Cγ consists of the configu-

rations where the pusher intersects obstacle γ. A forbidden
push range FPRi consists of the configurations where the

object is on the interior of path section τi and the pusher is

outside the push range. By Cγ,i we’ll mean the restriction

of Cγ to configurations with the object on path section τi.

The forbidden space is then the union of k(n + 1) shapes:

n obstacles and one forbidden push range for each of the k
path sections. An example is shown in Fig. 4(a)–(b).

τ 0

0 1

+π

−π

0

0 1

+π

−π

(a) (b) (c)

Fig. 4. (a) An example work space, (b) its configuration space, and (c) its
reduced configuration space (defined below). The s-axis is horizontal, the
θ-axis is vertical. Configuration-space obstacles are drawn dashed in light
gray, the forbidden push range is drawn in dark gray.

Theorem 1: The configuration space for each path section

has complexity O(n) (i.e. the boundary of the forbidden

space consists of O(n) vertices and constant-complexity

curves between them), and thus the total configuration space

has complexity O(kn).

Proof: Since a path section τi has constant complexity,

so do FPRi and Cγ,i for all γ ∈ Γ. We will prove that⋃
γ∈Γ Cγ,i has complexity O(n). It then follows that FPRi ∪⋃
γ∈Γ Cγ,i, the forbidden space for one path section, also has

complexity O(n), yielding O(kn) in total.
The boundary of Cγ corresponds to configurations where

the pusher is compliant with γ. Such pusher positions all

lie at distance rp from γ and thus form a “capsule.” A

point of intersection of Cγ1,i and Cγ2,i corresponds to a

configuration where the pusher is compliant with both γ1
and γ2, and that pusher position must thus be an intersec-

tion of the corresponding capsules. These capsules form a

collection of pseudodisks [4], and therefore have a union

complexity of O(n). Thus there can only be O(n) positions

where the pusher would be compliant with more than one

obstacle. Each of these pusher positions could show up in

the configuration space more than once, since path τi could

take the object past this point multiple times. However, this

cannot happen more than O(1) times, since τi is a constant-

complexity curve. Thus
⋃

γ∈Γ Cγ,i has complexity O(n).
Computing the configuration space: To compute the

configuration space in a form that allows us to easily compute

a push plan, we do the following:

1) Compute Cγ,i for all γ ∈ Γ, and all τi ∈ τ .

2) Compute FPRi for all τi ∈ τ .

3) Take the union of these shapes to get the forbidden

space.

4) Divide the free space into cells by a vertical decompo-

sition.

5) Create the cell graph of the decomposition. Nodes in

this graph correspond to cells and there is a directed

edge from cell c1 to c2 if and only if c1’s right boundary

touches c2’s left boundary.

The running time of this approach is expressed by the

following theorem:
Theorem 2: The configuration space can be computed in

O(kn log2 n) time worst case, or O(kn log n) expected time,

both using O(kn) space.
Proof: For each of the k path sections, Steps 1 and 2

can be performed in O(n) time as each of these n + 1
shapes has O(1) complexity. Step 3 can be performed by

a deterministic algorithm by Kedem et al. [9] that uses

O(n log2 n) time, or a randomized incremental algorithm by

Miller and Sharir [14] that uses O(n log n) expected time,

both using O(n) space. For Step 4 and 5 we extend vertical

lines from each of the O(n) vertices of the forbidden space

to get a vertical decomposition of the free space into cells.

These can be computed and connected together with a sweep-

line algorithm in O(n log n) time and O(n) space.
Low obstacle density: The asymptotic upper bounds

derived for our algorithm so far assume nothing about how

densely packed the obstacles are. An environment Γ is said

to have an obstacle density of λ if λ is the smallest positive

number for which any disk D intersects at most λ obstacles

γ ∈ Γ with length(γ) ≥ diam(D). By property (A3) of

well-behaved path sections there is a constant d = O(ro)
such that, after the object has been pushed a distance d

4489

along a path section, the pusher can then remain in the

(obstacle-free) sweep area of the object for the rest of the

section. The combined sweep area of the object and pusher

for this length-d “prefix” of the path section fits in a disk of

diameter d + 2ro + 4rp = O(ro), and can thus intersect at

most O(λ · ro
2/δ2) obstacles, where δ is the length of the

shortest obstacle. Assuming constant λ and δ = Ω(ro), the

configuration space for this prefix has constant complexity.

The complexity of the remaining “suffix” of the path

section can be Ω(n), though, so the complexity of the

configuration space can still be Ω(kn). However, for this

suffix we can replace the O(n)-complexity shape
⋃

γ∈Γ Cγ,i

by the O(1)-complexity shape that forces the pusher to

remain in the object’s sweep area. This yields the reduced
configuration space (see Fig. 4(c)), which admits a push plan

if and only if the original configuration space does, but has

lower complexity and can be computed more quickly:

Theorem 3: Assuming constant λ and δ = Ω(ro), the

reduced configuration space has complexity O(1) per path

section (i.e. O(k) in total), and can be computed in

O((k + n) log(k + n)) time using O(k + n) space.

Proof: From the above discussion it follows that

the reduced configuration space for one path section has

O(1) complexity. Computing all Cγ,i and FPRi section-by-

section and obstacle-by-obstacle would still take Ω(kn) time,

though. Instead, we can compute them for all path sections

and obstacles at once, using an algorithm by Balaban [3] for

computing intersections. This takes O((k + n) log(k + n))
time and O(k + n) space. The remaining work takes O(1)
time per section.

III. PUSHING WHILE MAINTAINING CONTACT

Not every path through the free space actually yields a

push plan. The path through the configuration space needs to

be s-monotone, that is, any “vertical” line (having a constant

value for s) must intersect the path in at most one point. If a

path through the configuration space is not s-monotone, then

the object would be going backwards on occasion, for which

the pusher would have to pull. To prevent this, we remove

from the cell graph all cells that are not reachable from

the starting configuration by a valid contact-preserving push

plan. It’s then fairly simple to find an arbitrary s-monotone

path in linear time, by following cell boundaries (which are

s-monotone).

It is tempting to instead compute a Euclidean shortest

path through the reachable cells. This would yield an s-

monotone path, but not necessarily one that minimizes the

pusher’s movement in the work space. We can circumvent

this problem by performing our computations in the work

space, instead of in the configuration space.

Cells in the work space: Each cell of the free-space de-

composition corresponds to a contiguous subset of the valid

configurations. The pusher positions of these configurations

also form a contiguous region in the work space. We could

call this region the corresponding work-space cell. All work-

space cells glued together by their common boundaries form

the region that P may move in to accomplish O’s desired

motion. (That is, if we consider non-adjacent cells to be on

a different “layer”. We cannot just take the union of the cells

as P could then take a shortcut and lose O along the way.)

Lemma 1: All cells in the cell graph have an outdegree

of at most one.

Proof: Suppose cell c0 has outedges to cells c1 and c2.

From any (s0, θ0) ∈ c0 there must then be a push plan σ1 to

any (s12, θ1) ∈ c1 and a push plan σ2 to any (s12, θ2) ∈ c2,

as in Fig. 5(a). Property (A1) of well-behaved path sections

then implies that any obstacle that causes c1 and c2 to be

separate cells must be in the region between the areas swept

out by the pusher along σ1 and σ2, and the area occupied by

the object positioned at τ(s12), as in Fig. 5(b). But because

the pusher maintains contact with the object at all times,

this region must lie entirely within the area swept out by the

object, which we assumed was obstacle free.

θ2

θ1

s0

θ0

s12

c0
c1

σ2

σ1

c2 τ (s12)

τ (s0)

σ2

σ1

(a) (b)

Fig. 5. Hypothetical situation in which a configuration-space cell would
have an outdegree greater than one.

Computing a shortest contact-preserving push plan:
Guibas et al. [8] presented a linear-time algorithm to compute

the shortest-path tree of a triangulated simple polygon.

Because of Lemma 1, the ideas behind this algorithm can

also be used to find a shortest path through the work-space

cells of a given configuration space, as explained in the proof

below.

To not have to make a case distinction between high

and low obstacle density, we let q denote the maximal

complexity of the configuration space for a path section.

For high obstacle density q = O(n), and for the reduced

configuration space under low obstacle density q = O(1).
(Note, though, that a shortest push plan through the reduced

configuration space is not necessarily as short as one through

the unreduced configuration space. Hence q = O(n) if we

require a shortest push plan.)

Theorem 4: Given a configuration space with complexity

O(q) per path section, a shortest contact-preserving push

plan (of complexity O(kq)) through this space can be com-

puted in O(kq log(kq)) time using O(kq) space.

Proof: A work-space cell is the area swept out by the

push range over a piece of the object’s path, minus the areas

where the pusher would intersect an obstacle. Because of the

way configuration-space cells are constructed by a vertical

decomposition, at most two obstacles can be involved in

this. Thus, by property (A2) of well-behaved path sections,

a work-space cell is a region bounded by a constant number

of convex, constant-complexity curves. Fig. 6(a)–(b) shows

an example of a work space and its work-space cells.

4490

Now suppose c1, . . . , cm is the chain of work-space cells

from the starting configuration to a destination configuration,

and that we have computed the shortest-path tree for the

vertices and curves of work-space cells c1, . . . , ci. Let σi,1

and σi,2 be the shortest paths to the (at most) two vertices of

ci on the curve where it touches ci+1. For the shortest-path

tree for c1, . . . , ci+1 we just need to find the shortest paths

to the vertices and curves of ci+1. Each of these will follow

one of σi,1 or σi,2, and then end in a tangent line to this path,

or a bitangent of this path and one of ci+1’s bounding curves

(possibly followed by the rest of this curve). Fig. 6(c) shows

an example. The point until which σi,1 or σi,2 is followed

can be found by binary search. Since there are O(kq) cells,

we need to do O(kq) such searches, using O(log(kq)) time

each, to compute the shortest-path tree of the work-space

cells.

τ

(a) (b)

σi,1

σi,2

(c) (d)

Fig. 6. (a) An example work space, and (b) its corresponding work-space
cells. The pusher’s starting point is drawn black, and its destination curve is
drawn fat. (c) The final step in constructing (b)’s shortest-path tree. (d) The
resulting (optimal) push plan.

IV. PUSHING AND RELEASING

Until now we’ve assumed the pusher can maintain contact

with the object at all times. However, the situation depicted

in Fig. 7(a)–(b) does not admit such contact-preserving push

plans. (In fact, we’ve proven [6] that this is the case for any
object path with the same start and end point.) It does admit

an unrestricted push plan, as can be seen in Fig. 7(b)–(c).

0

0 1

+π

−π
r

τ (r)

(a) (b) (c)

Fig. 7. (a) An example work space for which no contact-preserving push
plan exists, (b) its configuration space, and (c) an unrestricted push plan for
it, doing one release at position τ(r).

Canonical releasing positions: Whenever the push

range is split into multiple contiguous ranges by obstacles,

it may make sense for P to let go of O and try to reach

one of these other positions. In the configuration space this

situation corresponds to a vertical line intersecting multiple

cells. In general, there are infinitely many such potential
releasing positions, thus it’s infeasible to try them all. Instead

we consider only vertical lines that go through a vertex of

a cell or configuration-space obstacle. We call the resulting

set of O(kq) positions (where O(q), again, is the complexity

of the configuration space of a path section) the canonical
releasing positions. It suffices to check only these positions,

as expressed by the following lemma:
Lemma 2: If an unrestricted push plan exists for a given

input, then there is also an unrestricted push plan where all

releases happen at canonical releasing positions as defined

above.
Proof: Suppose we have an unrestricted push plan with

one or more releases that don’t happen at canonical releasing

positions. Let τ(r) be an object position at which such a

release happens, and σ the path that the pusher follows from

the position where it releases the object to the position where

it recontacts. Because r is not a canonical releasing position

there must be a canonical releasing position r′ < r with no

other canonical releasing positions in between r′ and r.
Suppose the release point for σ lies in cell c1 of the free

space and the recontact point in cell c2. Now imagine moving

the object backwards along τ from τ(r) to τ(r′). In doing

this we want to adjust our push plan so it remains valid,

making it move a little less through cell c1, a little more

through cell c2, and adjusting path σ accordingly for its new

endpoints.
There are two ways in which this could fail: either

the interval of valid pusher positions in which one of the

endpoints of path σ resides vanishes, as in Fig. 8(a), or path

σ gets cut off between the obstacles and the object, as in

Fig. 8(b). The former can only happen at a vertex of c1
or c2, and the latter can only happen at a vertex of some

configuration-space obstacle Cγ . But such points would then

be canonical releasing points between r and r′, contradicting

our assumption.

σ σ

σσ

(a) (b)

Fig. 8. The two situations in which moving the object backwards along τ
would make us unable to maintain the pusher path σ.

Computing an unrestricted push plan: Restricting our-

selves to canonical releasing positions, we cannot guarantee

a shortest push plan anymore, so we abandon the work-

space-cell approach and instead work with the cell graph

directly. The cell graph encodes which configurations are

reachable from which other configurations, assuming the

pusher and object maintain contact. By adding edges, we’ll

transform this into the extended cell graph, which encodes

this connectivity information assuming the pusher can let

go of the object when necessary. To determine whether an

4491

edge between two cells should be added we have to solve

a standard path-planning problem for the pusher, with the

stationary object being an additional obstacle. The algorithm

in more detail is as follows:

1) Compute a road map S for P among the obstacles [4].

2) At each canonical releasing point r:

a) Add O positioned at τ(r) as an extra obstacle in S
to get Sr.

b) Determine the set Cr of cells intersected by the

vertical line through r.

c) Determine for each cell in Cr to which component

of Sr its pusher positions belong.

d) Add edges in the cell graph between cells sharing a

component of Sr.

3) Compute a path through the extended cell graph.

4) Convert the path into a push plan. For edges of the

original cell graph this is straightforward, for every extra

edge use the respective Sr to find a path for P .

To construct the initial road map (Step 1) we take the union

of the capsules and then make a vertical decomposition of

their complement. The union can be done in O(n log2 n)
worst-case time (using an algorithm Kedem et al. [9]), or in

O(n log n) expected time (using an algorithm by Miller and

Sharir [14]). After this preprocessing, the time taken by the

remaining steps is expressed by the following theorem:

Theorem 5: Given a road map for P among the obstacles,

and a configuration space with complexity O(q) per path

section, an unrestricted push plan (of complexity O(kqn))
can be computed in O(kq log(kq) + kq2 log n + kqn) time

using O(kqn) space.

Proof: While computing the configuration space, all

O(kq) vertices defining canonical releasing positions were

already computed, so this takes no extra time. Steps 2

to 4 can then be done in the stated bounds using standard

techniques for point location (Steps 2(b) and 2(c)), and

depth-first search (Step 3).

V. CONCLUSION

We have studied the manipulation path-planning problem

of a disk-shaped pusher moving a disk-shaped object along

a given path, among non-intersecting line segments in the

plane. We looked at the case where the pusher and object

must maintain contact, as well as the case where there

is no such restriction. For the contact-preserving case, we

improved the running time of the only known algorithm, and

gave the first algorithm to compute a shortest push plan. For

the unrestricted case, we gave the first algorithm to compute a

push plan at all. (The running times of these algorithms were

summarized in Table I in the introduction.) Our algorithms

also handle a more general class of input paths than prior

work, and can be modified to handle a more general class

of obstacles as well (specifically, convex pseudodisks).

An obvious open question is how to compute a shortest

unrestricted push plan, or if the running times of our algo-

rithms can be further improved. Additionally, one may be

interested in other shapes of the pusher and/or object, but

a pushing motion may then rotate either or both of them.

The respective orientations of the pusher and object will

make the configuration space higher dimensional. Lynch and

Mason [11] discuss conditions under which their relative

orientation remains fixed, making the problem somewhat

more tractable, but our method based on a 2-dimensional

configuration space would still not suffice.

Applying the configuration-space approach to the problem

where only a destination for the object is given (rather than

a path), is also not so trivial. While there is a straightfor-

ward analogue to our configuration-space obstacles in this

3-dimensional configuration space, there is none for our

forbidden push ranges. It may be possible to use some form

of constrained path finding instead, but we have not explored

this possibility.

REFERENCES

[1] P. Agarwal, J. Latombe, R. Motwani, and P. Raghavan, “Nonholo-
nomic path planning for pushing a disk among obstacles,” in Proc.
IEEE Int. Conf. Robotics & Automation, vol. 4, 1997, pp. 3124–3129.

[2] H. Arai and O. Khatib, “Experiments with dynamic skills,” in Proc.
Japan-USA Symp. Flexible Automation, 1994, pp. 81–84.

[3] I. Balaban, “An optimal algorithm for finding segment intersections,”
in Proc. 11th ACM Symp. Comput. Geom., 1995, pp. 211–219.

[4] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Compu-
tational Geometry: Algorithms and Applications, 3rd ed. Springer-
Verlag, 2008, ch. Chapter 13: Robot Motion Planning.

[5] M. de Berg, M. Katz, A. van der Stappen, and J. Vleugels, “Realistic
input models for geometric algorithms,” in Proc. 13th ACM Symp.
Comput. Geom., 1997, pp. 294–303.

[6] D. Gerrits, “Designing push plans for disk-shaped robots,”
Master’s thesis, Technische Universiteit Eindhoven, The Netherlands,
2008. [Online]. Available: http://alexandria.tue.nl/extra1/afstversl/wsk-
i/gerrits2008.pdf

[7] K. Goldberg, “Orienting polygonal parts without sensors,” Algorith-
mica, vol. 10, no. 2–4, pp. 210–225, 1993.

[8] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, “Linear
time algorithms for visibility and shortest path problems inside simple
polygons,” in Proc. 2nd ACM Symp. Comput. Geom., 1986, pp. 1–13.

[9] K. Kedem, R. Livne, J. Pach, and M. Sharir, “On the union of Jor-
dan regions and collision-free translational motion amidst polygonal
obstacles,” Discrete & Computational Geometry, vol. 1, pp. 59–70,
1986.

[10] S. LaValle and J. Kuffner, “Rapidly-exploring random trees,” in
Algorithmic and Computational Robotics: New Directions, B. Donald,
K. Lynch, and D. Rus, Eds., 2001, pp. 293–308.

[11] K. Lynch and M. Mason, “Stable pushing: Mechanics, controllability,
and planning,” Int. Journal of Robotics Research, vol. 15, no. 6, pp.
533–556, 1996.

[12] M. Mason, Mechanics of Robotic Manipulation, ser. Intelligent Robots
& Autonomous Agents. MIT Press, 2001.

[13] M. Mason and K. Lynch, “Dynamic manipulation,” in Proc. IEEE/RSJ
Int. Conf. Intelligent Robots & Systems, 1993, pp. 152–159.

[14] N. Miller and M. Sharir, “Efficient randomized algorithm for construct-
ing the union of fat triangles and of pseudodiscs,” 1991, unpublished
manuscript.

[15] D. Nieuwenhuisen, “Path planning in changeable environments,” Ph.D.
dissertation, Universiteit Utrecht, The Netherlands, 2007.

[16] D. Nieuwenhuisen, A. van der Stappen, and M. Overmars, “Pushing
using compliance,” in Proc. IEEE Int. Conf. Robotics & Automation,
2006, pp. 2010–2016.

[17] ——, “Pushing a disk using compliance,” IEEE Transactions on
Robotics, vol. 23, no. 3, pp. 431–442, 2007.

[18] ——, “Path planning for pushing a disk using compliance,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots & Systems, 2005, pp. 4061–
4067.

[19] M. Peshkin and A. Sanderson, “Minimization of energy in quasi-static
manipulation,” IEEE Transactions on Robotics & Automation, vol. 5,
no. 1, pp. 53–60, 1989.

4492

