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Abstract— As an integral part of real-time vision system,
there are two most important requirements for feature match-
ing mechanisms: high computational efficiency for meeting the
real-time demands, and high correct matching rate for ensuring
the convergence and consistency of state estimation. Both of
these are addressed and solved as an integrated whole by the
efficient minimum-error active matching scheme proposed in
this paper. Image processing is performed in a dynamically
guided fashion by checking only parts of the image where
positive matches are most probable. For achieving the global
consensus matchings, rigorous analysis on how to minimize the
matching errors in active matching by choosing an optimal
search order is made. After that, practical feature matching
algorithms are given, which have naturally absorbed the ideas
of nearest neighbor (NN) and joint compatibility branch and
bound (JCBB) approaches. Both statistical simulations and real-
world experimental results have verified the proposed methods
can perform better than the state-of-the-art algorithms, i.e.
being able to obtain the best global consensus matchings with
much lower computational cost.

I. INTRODUCTION

Feature matching, which is also often referred to as

data association problem in target-tracking and robotics

communities, is most critical for ensuring the convergence

and consistency of all kinds of filtering or other estima-

tion algorithms used in a variety of tracking [1], structure

from motion [2], visual odometry [3] and visual SLAM

[4], [5] applications. Usually, there are two most important

requirements for any feature matching mechanism to be

implemented in real-time vision systems: high computational

efficiency and high correct matching rate.

The existing works on feature matching can be roughly

divided into two classes: passive methods [2]–[4] and active

methods [5]–[8]. In passive methods, image processing is

treated as a separable step — a bottom-up operation applied

uniformly to incoming images, detecting or re-finding vari-

ous features. On the contrary, active methods usually do not

scan the whole image exhaustively, but rather in a guided

and dynamically planned way. So, generally, higher compu-

tational efficiency can be expected from active methods.

In [5], Davison presented a feature-by-feature search algo-

rithm which can be viewed as the embryo of active matching,

and it has been widely used in a lot of state-of-the-art

works on visual SLAM [9]–[12]. Then, in [7], more rigorous

algorithms for active search have been proposed, which

makes explicit decisions on the problem about which feature
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should be searched first, by examining a kind of mutual

information scores. Recently, Chli et al. [8] has proposed

an extension of this method which uses multiple hypothesis

tracking to deal with the cases where matching ambiguity

arises. However, there are still some limitations: 1) as the

number of spurious candidate matchings for the features gets

large, the number of hypotheses will increase and the multi-

hypothesis tracking will be less efficient; 2) there are risks

that correct hypothesis may be assigned with low weight and

falsely pruned, especially when the number of features and

spurious candidate matchings gets large; 3) its performance

is sensitive to some parameters which have to be finely tuned.

In this paper, an efficient minimum-error active matching

scheme is proposed. It not only performs image processing

in a dynamically guided fashion, but also directly aims for

the best global consensus matchings. So, the two problems,

i.e. enhancing computational efficiency and seeking for the

best all-consistent matchings, are solved simultaneously. The

rest of this paper is organized as follows: Section II presents

rigorous analysis on how to minimize the matching errors

in active matching by choosing an optimal search order.

Theoretical lower bound for the objective function as well as

the necessary and sufficient condition for achieving the lower

bound have been derived. Then, in Section III, two practical

minimum-error active matching algorithms are presented.

The statistical simulations and real-world experiments results

are presented and discussed in Section IV. Finally, conclu-

sions are drawn in Section V.

II. OPTIMAL SEARCH ORDER FOR

MINIMUM-ERROR ACTIVE MATCHING

In either model-based tracking or visual-SLAM, the cur-

rent state of knowledge of an object or scene is usually

modeled by a multi-dimensional probability distribution over

a finite vector of parameters x, representing the position,

dynamics and other factors of interest. Usually there are

one or more features corresponding to an object or scene

structure. A measurement of feature i yields a vector of

parameters zi, which describes for example the 2D image

coordinates of a keypoint. At any given point in time, we

usually have a set of features available to measure, and

we define the stacked vector zT = (z1, z2, . . . , zn)� for all

candidate measurements, whose distribution is:

p(zT ) =
∫

p(z1, z2, . . . , zn|x)p(x)dx. (1)

According to the idea of active matching [7], [8], candidate

matches are searched for feature-by-feature. We can factorize
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the above equation as follows:

p(zT ) = p(zj1)p(zj2 |zj1) · · · · · p(zjn
|zj1 . . . zjn−1), (2)

where ji, i = 1, . . . , n, are indicators whose values are taken

from {1,. . . ,n}, and ∀l �= k, jl �= jk. We term the sequence

〈j1, j2, . . . , jn〉 a reasonable search order (RSO). Equation

(2) suggests that the first feature in the search order could

be searched for simply according to its marginal distribution

p(zj1), while the other feature, for example the ith feature,

∀i, 1 < i ≤ n, in the search order, should be searched for

according to its conditional distribution p(zji
|zj1 . . . zji−1).

Obviously, the problem of how to choose a search order

from the extremely large set of n! candidate search orders

needs to be dealt with explicitly. For it, two requisites are

needed: 1) the criterion for defining a good search order; 2)

the method for picking out such a search order. In literature,

the existing criterion, i.e. the mutual information (MI) based

criterion used by [7], [8], considers enhancing computa-
tional efficiency. However, since computational efficiency

has already been greatly enhanced under active matching

framework, it may be more reasonable to put emphasis on

enhancing the probability of correct data association, which

is of the upmost importance for ensuring the convergence

and consistency of estimate. For the sake of this, we suggest

a new criterion, i.e. minimum potential matching errors.

A. Minimum-Error Criterion
When the probability density of x can be characterized as

a multi-variate Gaussian, the observer’s knowledge about the

system is captured by a state vector x̂ and covariance matrix

Σxx. Additionally, we assume the measurement noise ni can

be described by a multi-variate zero-mean Gaussian with

covariance Ri, which is independent for each measurement.

Suppose p(zT ,x) is Gaussian, then we know that p(zT )
and p(zT |x) are Gaussian, and for any reasonable search

order 〈j1, j2, . . . , jn〉, the distributions p(zj1), p(zj2 |zj1),
. . . , p(zjn |zj1zj2 . . . zjn−1) are all Gaussian. We denote

their mean vectors as ẑj1 , ẑj2|j1 , . . . , ẑjn|<j1j2···jn−1>, and

covariance matrixes as Σzj1
, Σzj2 |zj1

, . . . , Σzjn |z<j1···jn−1>
.

These covariance matrixes represent the shape of 2D Gaus-

sian PDFs over image coordinates. Suppose the number of

standard deviations being chosen is Nσ (Nσ > 0, and usually

we can choose Nσ = 2 or 3 to cover the 95% or 99% mass

of probability respectively), then the area of the elliptical

search region of any feature Fji can be calculated as:

Sji
= πN2

σ

√∣∣∣Σzji
|z<j1···ji−1>

∣∣∣. (3)

Let’s denote the actual projection of feature Fji
in image

as f∗
ji

, and suppose f∗
ji

lies within the search region Sji
.

Assume that there are nji ghost points in Sji , which appear

quite similar to the feature Fji and are difficult to distinguish.

Define λji
= nji

/Sji
, and assume it is constant for feature

Fji
during the current matching process, then the probability

that all of the n features can be correctly matched is:

p(correct) =
1

1 + λj1Sj1

× 1
1 + λj2Sj2

×· · ·× 1
1 + λjnSjn

.

(4)

Our objective is to choose an optimal search order

〈k1, k2, · · · , kn〉opt that can maximize (4), or equivalently

minimize its denominator, i.e.

〈k1, k2, · · · , kn〉opt = arg min
〈j1,j2,...,jn〉

ψ

� arg min
〈j1,j2,...,jn〉

(1 + λj1Sj1) (1 + λj2Sj2) · · · (1 + λjn
Sjn

) .

(5)

However, it is quite difficult to find out such an optimal

search order. Generally, the derivative of ψ with respect to the

order 〈j1, j2, . . . , jn〉 is hard to compute explicitly according

to (5), so the minimum value of ψ can’t be calculated

analytically, and the classical hill-climbing algorithms are

also inapplicable. In the following subsections, we will first

analyze the intrinsic characteristics of the features’ search

regions, and then present an efficient and quite effective

method for determining a sub-optimal search order.

B. Intrinsic Characteristics of the Search Regions

First, let’s look into the problem of how to calculate the

mean vectors ẑj1 , ẑj2|j1 , . . . , ẑjn|<j1j2···jn−1> and covari-

ance matrixes Σzj1
, Σzj2 |zj1

, . . . , Σzjn |z<j1···jn−1>
for any

given search order 〈j1, j2, . . . , jn〉.
We define xm to be the vector which stacks the object state

x and candidate measurements zJ = (zj1 , zj2 , . . . , zjn)�.

Note that zJ is a rearranged version of zT . Given the

knowledge of the state x (i.e. mean x̂ and covariance Σxx),

our knowledge of the stacked vector xm can be described by

its mean vector and full covariance:

x̂m =

⎛
⎜⎜⎜⎜⎜⎝

x̂
ẑj1

ẑj2
...

ẑjn

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

x̂
hj1(x̂)
hj2(x̂)

...

hjn
(x̂)

⎞
⎟⎟⎟⎟⎟⎠ (6)

Σxmxm
=
[

Σxx ΣxzJ

ΣzJx ΣzJ

]
=⎡

⎢⎢⎢⎣
Σxx Σxzj1

· · · Σxzjn

Σzj1x Σzj1
· · · Σzj1zjn

...
...

. . .
...

Σzjnx Σzjnzj1
· · · Σzjn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

Σxx Σxx
∂hj1

∂x

�
· · · Σxx

∂hjn
∂x

�

∂hj1
∂x

Σxx
∂hj1

∂x
Σxx

∂hj1
∂x

�
+ Rj1

· · ·
∂hj1

∂x
Σxx

∂hjn
∂x

�

.

.

.

.

.

.

.
.
.

.

.

.

∂hjn
∂x

Σxx
∂hjn

∂x
Σxx

∂hj1
∂x

�
· · · ∂hjn

∂x
Σxx

∂hjn
∂x

�
+ Rjn

⎤
⎥⎥⎦

(7)

where ẑji
denotes the best guess or prediction of the ob-

servations, hji
(·) is the observation function, and the lower-

right block of Σxmxm
(i.e. the sub-matrix ΣzJ

) describes

the uncertainty in this prediction, which is also known as

the innovation covariance matrix in Kalman filter tracking.

From (6) and (7), we can directly get ẑj1 and Σzj1
. In

order to obtain ẑj2|j1 and Σzj2 |zj1
we take advantage of

the general formula for conditioning one partition of a state

vector and covariance with respect to another, as presented

very clearly by Eustice et al. [13]. First, we partition the
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stacked measurements vector zJ as zJ = (zj1 , z<j2···jn>)�,

then if we learn the exact values of all elements of zj1

(i.e. a match to this feature is found), the state vector and

covariance of z<j2···jn> can be updated as:

ẑ<j2···jn>|j1 = ẑ<j2···jn> + Σz<j2···jn>zj1
Σ−1

zj1
(zj1 − ẑj1)

(8)

Σz<j2···jn>|zj1
= Σz<j2···jn>

−Σz<j2···jn>zj1
Σ−1

zj1
Σzj1z<j2···jn>

(9)

So, ẑj2|j1 can be directly acquired by taking the top two

elements from ẑ<j2···jn>|j1 , and Σzj2 |zj1
can be obtained

by taking the top-left 2×2 block from Σz<j2···jn>|zj1
, and

the lower-right 2(n−1)×2(n−1) block of Σz<j2···jn>|zj1
is

denoted as Σz<j3···jn>|zj1
. The update for the predicted

state of the subsequent features can be obtained simi-

larly by iteratively partitioning the stacked measurements

vector as z<j2···jn> = (zj2 , z<j3···jn>)�, z<j3···jn> =
(zj3 , z<j4···jn>)�, and so on.

Then, based on mathematical induction, we can prove the

following theorem (the details are omitted due to space limit).
Theorem 1: No matter what kind of reasonable search

order 〈j1, j2, . . . , jn〉 is chosen, the product of the areas

of the elliptical search regions for all of the sequentially

searched features will be constant, i.e.

πN2
σ

√∣∣Σzj1

∣∣ · πN2
σ

√∣∣∣Σzj2 |zj1

∣∣∣ · · ·πN2
σ

√∣∣∣Σzjn |z<j1···jn−1>

∣∣∣
= Sj1 · Sj2 · · · ·Sjn

=
(
πN2

σ

)n√|ΣzT
| = const.

(10)

C. Minimize the objective function
Now we turn back to the problem of minimizing the

objective function ψ presented in (5). The function ψ can

be factorized into the following form:

ψ =1 + (λj1Sj1 + · · · + λjn
Sjn

) +
(
λj1Sj1λj2Sj2 + · · ·

+λj1Sj1λjn
Sjn

+ · · · + λjn−1Sjn−1λjn
Sjn

)
+ · · ·

+
n∏

i=1

λjiSji

(11)

The first term in (11) is constant. And, since λji
, i =

1, · · · , n, are constants, according to Theorem 1 we have

no difficulty to find that the last term
∏n

i=1 λjiSji =(
πN2

σ

)n√|ΣzT
| ·∏n

i=1 λji
, which is also constant.

Besides the first term and the last term, there are n − 1
terms left in (11), which are denoted {Ωk}, k = 1, · · · , n−1,

for short. The kth term Ωk is the summation of Ck
n �

n!
k!(n−k)! sub-terms, each of which is the product of k
arbitrarily chosen non-reduplicate λjiSji , i ∈ {1, · · · , n},

and ∀i, i ∈ {1, · · · , n}, the total times that λji
Sji

appears

in these Ck
n sub-terms are the same.

Theorem 2: No matter what kind of search order

〈j1, j2, . . . , jn〉 is chosen, the theoretical minimum of the

objective function ψ in (11) is:

ψLB = 1 +
n∑

k=1

⎧⎨
⎩Ck

n

(
πN2

σ

)k (√|ΣzT
|
) k

n

(
n∏

i=1

λji

) k
n

⎫⎬
⎭,

(12)

which can be reached if and only if the following condition

is satisfied:

λj1Sj1 = · · · = λjn
Sjn

=

(
n∏

i=1

λji

) 1
n (√

|ΣzT
|
) 1

n

πN2
σ .

(13)

Proof: According to the analysis presented above, we

know that minimizing ψ is equivalent to minimizing the

summation of the n − 1 terms {Ωk}.

∀k ∈ {1, · · · , n − 1}, there are Ck
n = n!

k!(n−k)! terms in

Ωk. Each term is of the form λji1
Sji1

λji2
Sji2

· · ·λjik
Sjik

,

i1, i2, · · · , ik ∈ {1, · · · , n} and i1 �= i2 �= · · · �= ik. And, ∀i,
i ∈ {1, · · · , n}, the total times that λjiSji appears in these

Ck
n terms are the same, being equal to Ck−1

n−1. So, the product

of these Ck
n terms is:

Mk =
n∏

i=1

(λji
Sji

)Ck−1
n−1 =

(
n∏

i=1

λji
Sji

)Ck−1
n−1

=

[(
πN2

σ

)n√|ΣzJ
| ·

n∏
i=1

λji

]Ck−1
n−1

= const

(14)

Then, according to the arithmetic-geometric mean inequality,

we know that:

Ωk ≥ Ck
n·(Mk)

1
Ck

n =
(
πN2

σ

)k×Ck
n×
(√

|ΣzT
|
) k

n

(
n∏

i=1

λji

) k
n

(15)

The equality is satisfied if and only if all of the Ck
n terms in

Ωk are equal, which is equivalent to the condition that all of

the λji
Sji

, i = 1, · · · , n, are equal, i.e. (13) holds.

Now, it is clear that the necessary and sufficient condition

for all of the n−1 terms {Ωk} to achieve their lower bounds

are common, i.e. (13) holds. So, (13) is also the necessary

and sufficient condition for ψ to achieve its lower bound,

which is given by (12).

D. Algorithm for Choosing Suboptimal Search Order

Theorem 2 indicates that, theoretically, the optimal search

order should be the one that the resulted λji
Sji

(which

will be termed weighted search area later on) for all of

the sequentially examined features are equal. However, in

practice, this condition is hard to be satisfied in general cases.

Under the guidance of Theorem 2, we have the following

consideration: intuitively, we should seek to minimize the

deviation of the λji
Sji

, i = 1, · · · , n, from the optimal value

in (13). There are two different cases that have to be noted:

1) If, at the ith step, the weighted search areas of all of the

unmeasured features are larger than the optimal value

in (13), then the feature with the minimum weighted

search area would be chosen at this step, because: on

one hand, the weighted search area of this feature is the

closest to the optimal value; on the other hand, the areas

of the other features’ predicted search regions at the next

step will reduce after the selected feature is measured,

which in turn makes the weighted search areas of those

features get closer to the optimal value.
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2) If, at the ith step, the weighted search areas of some of

the unmeasured features are smaller than the optimal

value, then the feature with the minimum weighted

search area would be chosen at this step, because if

the feature with minimum weighted search area is not

selected at this step, its search region will shrink further

at the next step, making its weighted search area get

more far-away from the optimal value.

To sum up, we propose the following algorithm for choos-

ing a sub-optimal search order.

Algorithm 1: The ith feature in the sub-optimal search

order is chosen as

ji = arg min
ki∈{1,...,n}

ki /∈{j1,...,ji−1}

λki
πN2

σ

√∣∣∣Σzki
|zj1 ,...,zji−1

∣∣∣, (16)

where Σzki
|zj1 ,...,zji−1

is the 2×2 diagonal block of

Σz<ji···jn>|zj1zj2 ...zji−1
which corresponds to feature zki

.

III. PRACTICAL ALGORITHMS FOR

MINIMUM-ERROR ACTIVE MATCHING

Two practical minimum-error active matching algorithms

are presented. The first one is a one-trial sequential match-

ing algorithm termed MED-SCNN (see Fig. 1), which can

simply apply the NN rule to achieve satisfactory consensus

matchings; while the second one is a recursive algorithm

termed MED-JCBB (see Fig. 2), which actually combines

the idea of JCBB [14] and minimum-error active matching,

and can be expected to be more robust than MED-SCNN

when handling some extremely complex situations.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, the effectiveness of our minimum-error

active matching algorithms are experimentally validated

through both simulation and real-world implementation. The

performances of our MED-SCNN and MED-JCBB algo-

rithms are compared with those of ICNN algorithm [5], [14],

original active matching algorithm [7], [8] (will be referred

as MIactive for short throughout the rest of this paper), and

the original SCNN and JCBB algorithms [14].

A. Simulation Study

For simulation study, we make up a setting similar to that

of [7]. We consider a specific visual tracking problem, where

an object is assumed to move and rotate in a plane which is

fronto-parallel to a single observing camera. We parameterize

the location of the center of the object in image coordinates

r = (u, v)� relative to the bottom-left image corner, and

its orientation with the angle ϕ in radians, to give state

vector x = (u, v, ϕ)�. The locations of known measureable

point features are defined in the object coordinate frame O

as fO
i =

(
fO

iu, fO
iv

)�
. Then, the location of the feature in

the image can be calculated by considering the transitional

and rotational transformation. Assume the covariance of

measurement noise as Ri = diag
(
σ2

m, σ2
m

)
, representing

independent uncertainty in horizontal and vertical feature

Algorithm MED-SCNN(ẑT , ΣẑT
, imt, Nσ , η)

Input: the predicted feature positions ẑT and the innovation
covariance ΣẑT

, the current image imt, the gating number Nσ

and the threshold η for template matching response.
Output: matchings zT for the features.
Steps:

1. initialize zT =[ ]; // Null set
2. while is not empty(ẑT )
3. for i = 1: length(ẑT )
4. ai = λi

√|Σẑi |; //Σẑi ith 2×2 diagonal block of ΣẑT

5. end for
6. k = arg min

i
ai;

7. Measure the kth feature in ẑT . Search for all positions in the
neighborhood of ẑk (an elliptical region centered around ẑk

with a shape gated at Nσ of Σẑk
) whose template matching

response is higher than η. Suppose m points have been found,

and denote the points set as
{
y

(j)
k |j = 1, · · · , m

}
.

8. if m > 0
9. for j = 1 : m

10. dj = (y
(j)
k − ẑk)�Σ−1

ẑk
(y

(j)
k − ẑk);

11. end for
12. q = arg min

j
dj ;

13. zT = [zT ,y
(q)
k ]; // choose y

(q)
k as the matching;

14. delete ẑkin ẑT ;
15. delete the corresponding rows and columns in ΣẑT

;

16. ẑT = ẑT + ΣẑT ẑk
Σ−1

ẑk

(
y

(q)
k − ẑk

)
; // positions

17. ΣẑT = ΣẑT − ΣẑT ẑk
Σ−1

ẑk
Σ�

ẑT ẑk
; // innovation cov.

18. else
19. zT = [zT , Φ]; // feature ẑk not matched;
20. delete ẑkin ẑT ;
21. delete the corresponding rows and columns in ΣẑT

;
22. end if
23. end while
24. return zT

Fig. 1. MED-SCNN matching algorithm.

location measurements with σm = 1 pixel. We set up a

snapshot in tracking with object state and covariance:

x̂ =

⎛
⎝ 320.0

260.0
0.3

⎞
⎠ , Σxx =

⎡
⎣ 7.0 0.0 0.0

0.0 7.0 0.0
0.0 0.0 0.007

⎤
⎦ . (17)

The size of the object’s projection on the image is set

to be 320×240 pixels. At the beginning of each simulation,

we randomly generate the real state of the object according

to the predicted state and covariance given by (17). Then,

the real positions of the features are randomly generated

within the physical range of the object. We also randomly

generate some spurious points around each of these features

to simulate the spurious candidate matches.

We have made a large amount of simulations with the

number of features varying from 6 to 20. For any setting

of the number of features, we have made 3 × 104 runs of

simulation. For each algorithm, we record the times that

at least one of the features has been erroneously matched.

The total times that the algorithms have obtained erroneous

matching results are shown in Fig. 3. It is clear that the
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Algorithm MED-JCBB(ẑT , ΣẑT
, imt, Nσ , η)

Input: the predicted feature positions ẑT and the innovation
covariance ΣẑT

, the current image imt, the gating number Nσ

and the threshold η for template matching response.
Output: the best jointly compatible matchings zbest.
Steps:

1. initialize zbest=[ ], zT =[ ]; // Null set
2. Sub DJCBB(ẑT , ΣẑT

, imt, Nσ , η, zT );
3. return zbest

procedure Sub DJCBB(ẑT , ΣẑT
, imt, Nσ , η, zT )

1. if is empty(ẑT )
2. if number matched(zT ) > number matched(zbest)
3. zbest=zT ;
4. end if
5. else
6. for i = 1: length(ẑT )
7. ai = λi

√|Σẑi |;
8. end for
9. k = arg min

i
ai;

10. Measure the kth feature in ẑT . Search for all positions in
the neighborhood of ẑk (an elliptical region centered around
ẑkwith a shape gated at Nσ of Σẑk

) whose template match-
ing response is higher than η. Suppose m points have been

found, and denote the points set as {y(j)
k |j = 1, · · · , m}.

11. if m = 0 // no candidate matches have been found
12. if number matched(zT )+length(ẑT ) − 1 > num-

ber matched(zbest) // can do better
13. zT = [zT , Φ]; // feature ẑk not matched;
14. delete ẑk and corresponding rows & columns in ΣẑT ;
15. Sub DJCBB(ẑT , ΣẑT

, imt, Nσ , η, zT );
16. end if
17. else // some candidate matches have been found
18. for j = 1 : m
19. dj = (y

(j)
k − ẑk)�Σ−1

ẑk
(y

(j)
k − ẑk);

20. end for
21. Sort {y(j)

k |j = 1, · · · , m} according to dj ;
22. for j = 1 : m
23. zT = [zT ,y

(j)
k ]; // choose y

(j)
k as the matching

24. delete ẑk and corresponding rows & columns in ΣẑT
;

25. ẑT = ẑT + ΣẑT ẑk
Σ−1

ẑk

(
y

(j)
k − ẑk

)
; // positions

26. ΣẑT = ΣẑT − ΣẑT ẑk
Σ−1

ẑk
Σ�

ẑT ẑk
; // covariance

27. Sub DJCBB(ẑT , ΣẑT
, imt, Nσ , η, zT );

28. end for
29. end if
30. end if

Fig. 2. MED-JCBB matching algorithm.

performances of both MED-SCNN and MED-JCBB are

dominantly better than all of the other algorithms, and we

can observe the following facts:

1) The rate for ICNN to obtain erroneous matching results

is significantly larger than that of any other algorithm.

And, as the total number of features increases, the error

rate of ICNN also increases.

2) The error rates of SCNN and JCBB appear relatively

stable and irrelevant to the total number of features.

3) The error rate of MIactive has a trend to decrease

gradually, but is generally higher than that of JCBB.
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Fig. 3. Statistical results of different algorithms. Since the results of ICNN
are far worse than any of the other algorithms, they are shown separately.

4) The error rates of both MED-SCNN and MED-JCBB

are lower than that of JCBB, and have a trend to

decrease as the number of features increases. In general,

MED-JCBB can perform better than MED-SCNN, but

as the feature number increases the difference between

them becomes more and more insignificant. When the

number of features is larger than 10, the error-rate of

MED-SCNN is constantly lower than 1%.

B. Experiment Study

We set up a real-time monocular visual-SLAM system,

using a hand-held low-cost USB web camera to move around

in our lab to capture real-image sequences with a 320×240

resolution at 25 fps. The features are originally detected by

Harris corner detector, and the main body of the SLAM

algorithm uses an Extended Kalman Filter. The location of

the 3D scene features are parametrized by following the

inverse depth parametrization proposed by Civera et al. [9].

Whenever a new feature is initialized, its matching ambiguity

parameter λi is roughly calculated by checking the number

of similar points in its neighborhood, and in the mean time

a relatively large (21×21 pixels in our experiments) image

patch is extracted around this point feature to serve as a long-

term landmark feature template (or descriptor). In order to

adapt to significant scale change and view point change, we

apply the method in [10] to manage the descriptors.

The testing sequence is a desk-top sequence where similar

features are relatively dense. Due the limited space, only the

detailed results of our MED-SCNN algorithm are shown in

Fig. 4, while the statistical results of the other algorithms are

summarized in Table I.

In Fig. 4, the yellow (light) and blue (dark) ellipses denote

the image regions that have been examined by the algorithms.

A yellow (light) ellipse means a match is successfully found

for the corresponding feature and a red cross within the

ellipse denote the matched position; while, a blue (dark)

ellipse says that the corresponding feature is unsuccessfully

matched, and a cyan cross within the ellipse represents the

final predicted position of the feature. All features are num-

bered differently. It is clear that the performance of MED-

SCNN is quite satisfactory, and during the whole sequence

no erroneous matchings are observed, even when the camera

is undergoing a jerk motion such as the case shown in Fig.

4(c). It is not difficult to discover that the features which
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(a) (b) (c) (d)

Fig. 4. Some sample results of MED-SCNN algorithm in desk-top sequence. (a) 37th frame, (b) 76th frame, (c) 78th frame, (d) 133rd frame.

TABLE I

STATISTICAL RESULTS FOR DESK-TOP SEQUENCE

Frames error Frames failed Time (ms)

MED-SCNN 0 0 15.8

MED-JCBB 0 0 15.8

SCNN 62 62 38.5

JCBB 0 0 230.2

MIactive 68 68 51.8

ICNN 139 78 165.6

have been chosen to be measured first by MED-SCNN are

always those features with sufficient distinctiveness, having

no similar spurious matching candidates in its neighborhood

that can lead to matching ambiguity and potential errors (see

the features enclosed by the relatively big ellipses in Fig. 4).

The statistic results of the algorithms in desk-top sequence

are presented in Table I. There are 140 frames in total in

the desk-top sequence, and the correctness of the matching

results are manually checked. The number of frames where

at least one feature has been erroneously matched by the

algorithms are listed in the column ‘Frames error’ in Table

I. And, at any frame, if more than half of the features are

erroneously matched or unmatched, we would count it as

‘failed’. It is obvious that the performance of ICNN is the

worst, in which matching errors occur throughout the whole

sequence. For SCNN and MIactive algorithms, whenever

matching errors occur, catastrophic failure would follow. For

JCBB, though the final matchings obtained are satisfactory,

its computational cost is too high. Both MED-SCNN and

MED-JCBB are quite satisfactory, with the highest efficiency

and lowest error-rate.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, an efficient minimum-error active matching

scheme is proposed for solving the problems about enhancing

the overall computational efficiency and seeking for the

best global consensus matchings as an integrated whole.

Two practical feature matching algorithms, i.e. MED-SCNN

and MED-JCBB, have been presented. As verified by the

statistical simulations and the real-world experiments, both

MED-SCNN and MED-JCBB algorithms are quite efficient

and effective, performing significantly better than the ICNN,

SCNN, JCBB and MIactive algorithms, which are all popular

methods used in the state-of-the-art works on visual SLAM.

An interesting phenomenon that deserves mention is that

MED-SCNN has obtained identical results as MED-JCBB

throughout the real-world experiments, which indicates that

this relatively simpler algorithm may be good enough for

real-world applications. However, as shown by the statis-

tical simulation results, MED-JCBB can be more robust

than MED-SCNN in handling extremely complex situations.

Thus, we plan to examine the performances of these algo-

rithms in more extensive real-world applications in future.
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