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Abstract— The safety problem in multi-vehicle systems seeks
to establish collision-free and live vehicle motion, and it is
a prominent problem for many configurations of these en-
vironments. Past work studying this problem in the context
of free-range vehicular systems through abstractions based
on Resource Allocation System (RAS) theory, has implicitly
assumed that its resolution through maximally permissive
supervision is NP-hard, and therefore, it has typically pursued
suboptimal (i.e., more restrictive) solutions. The work presented
in this paper offers formal proof to this implicit assumption,
closing the apparent gap in the existing literature.

I. INTRODUCTION

The safety problem in multi-vehicle systems seeks to
establish collision-free and live vehicle motion, and it is
a prominent problem for many configurations of these en-
vironments. In this work, we are particularly interested in
the manifestation of this problem in the operational context
of free-range vehicular systems, where a number of mobile
agents travel concurrently along their respective paths within
a confined planar area [1]. In the last years, this problem
has received extensive attention with most of the proposed
solutions adopting a continuous-time modeling approach; an
indicative sample of this type of research are the works
presented in [1], [2], [3], [4], [5], [6], [7], [8]. However,
a significant limitation of (most of the) approaches based on
continuous time modeling, is that they do not scale well to
situations involving large fleets and/or complex operational
environments. On the other hand, those approaches that
resort to more distributed/decentralized computation in an
effort to tame these complexity problems, frequently are of
a more heuristic nature and they fail to provide the formal
safety and/or liveness guarantees that might be necessary in
many practical applications. Motivated by these remarks, the
relevant research community has started considering solu-
tions of a more “hybrid” nature, where the vehicle motion is
largely planned and controlled in a more discretized space
that results from an appropriate tessellation of the underlying
physical terrain, while continuous-time motion models are
used only for planning and coordinating the vehicle motion
within each of the domains defined by the aforementioned
tessellation; indicative examples of this type of work can be
found in [9], [10].

In some of our recent work [11], [12], we have shown
that, in the context of the aforementioned hybrid control
paradigm, collision-free and live motion of the underlying
traffic system can be established by superimposing a resource
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allocation structure on it and invoking results from the
burgeoning resource allocation system (RAS) theory [13].
More specifically, under the approach(-es) considered in
[11], [12], each agent is abstracted by a disk of radius ρ,
and its overall motion profile is partitioned to a number
of stages in a way that each of these stages implies the
agent’s exclusive access to a certain sub-space of the motion
plane, big enough to cover the lane sector swept by the disk
during the execution of this stage. This last requirement is
further supported by the partitioning (or the “tessellation”)
of the motion plane into a number of “cells” that must
be acquired and released by the agents sequentially and
exclusively in order to execute their designated routes. While
such a tessellation of the motion area can be performed in
many ways, for reasons of convenience and tractability of the
underlying dynamics, the aforementioned past works have
considered rectangular tessellations; see also [14]. In this
paper, similar to [14] and [12], we assume the partition of the
plane into rectangular cells of side size at least 2ρ.1 The cells
of the resulting tessellation can be perceived as “resources”
that must be acquired and released by the agents during the
execution of their specified trips, and the aforementioned
exclusivity of the cell allocation ensures the avoidance of
the agent collision during their concurrent motion. At the
same time, the enforcement of such an allocation paradigm
arises the need for an additional control level – or for a
“resource allocation protocol” – that will ensure that the
applied resource allocation is “live”, i.e., deadlocks will be
avoided and every vehicle will eventually advance to its final
destination.

As mentioned above, in the past literature, this requirement
for live resource allocation in the considered traffic systems
has been addressed through the adaptation of a set of
results developed for the problem of deadlock avoidance
arising in more generic resource allocation systems [13]. The
derived resource allocation policies have been based on the
implicit assumption that, similar to the more generic cases of
sequential resource allocation, enforcing the liveness of the
considered traffic systems in a maximally permissive manner
is an NP-hard problem, and therefore, these policies tend to
sacrifice permissiveness for computational tractability. How-
ever, when viewed from a more theoretical standpoint, the
computational complexity of maximally permissive deadlock
avoidance in the aforementioned traffic systems is an open
issue. The topology of the agents’ paths and the geometry of
the tessellations employed in the specification of the resource
allocation that takes place in these traffic environments,
imply additional constraints for the structure of the resulting

1The requirement that the size of the cell side is at least 2ρ, is introduced
for the ease of exposition of the subsequent developments. Some further
reflection on these developments will reveal that they hold true even when
the aforementioned assumption is removed.
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RAS. These constraints are not satisfied by the reductions
that have been employed in the past for the establishment of
the NP-hardness of maximally permissive deadlock avoid-
ance / liveness-enforcing supervision in various RAS classes,
and therefore, the relevant proofs are not directly applicable
to the new cases considered herein.

This work addresses the theoretical gap identified in the
previous paragraph. The presented results are structured as
follows: In the next section we discuss the aforementioned
tessellation of the motion plane, the induced partitioning
of the agents’ motion processes into (discrete) stages, and
the resource allocation system that models the resulting
discretized dynamics. Section III further formalizes these
discrete dynamics through a DFSA model of the consid-
ered traffic system, and eventually, Section IV defines the
(state) safety problem for free-range vehicles and proves its
NP-completeness. Finally, we conclude by discussing the
practical implications of this result and pointing out some
other vehicle systems in which the complexity of the safety
problem is still an open question.

II. THE TESSELLATION OF THE MOTION PLANE, THE
DISCRETIZATION OF THE AGENTS’ PATHS, AND THE

INDUCED RAS

We consider a set of autonomous mobile agents that move
in a finite planar area A ⊂ R2. Each agent is represented by
a disk of radius ρ, and its center follows a pre-specified path
that is given in the parametric form: xc = xc(t), yc = yc(t),
t ∈ [0, T ]. It is assumed that the agents stay off the system
before they start their travel, and that they are retired from
the system upon reaching their destination. However, during
their concurrent motion in the system, the agents share the
available space, and in order to avoid collisions, they may
need to modify their velocity profiles. Such a coordination
can be achieved through a hybrid control based on the
tessellation of the motion plane into a number of areas, called
“cells” [12]. Then, in the range of a cell, an agent controls its
motion independently of the other agents, while cell crossing
requires the permission of a supervisor, whose decisions
depend on the system state, and which may temporarily
prevent an agent from proceeding on its path.

More specifically, the motion area is abstracted as a grid
of horizontal and vertical lines spaced at a distance d ≥ 2ρ
and centered at the origin of the coordinate system (x, y).
The resulting cells will be denoted by W = {w[i, j] : i ∈
{−I, . . . ,−1, 0, 1, . . . , I}, j ∈ {−J, . . . ,−1, 0, 1, . . . , J}},
where −I, I, −J , and J are taken large enough to encom-
pass the entire (finite) area A, that supports the agent motion.
Then, given a point (x, y) ∈ A and a cell w[i, j], we define

(x, y) ∈ w[i, j]⇐⇒ (i− 1) · d ≤ x ≤ i · d
∧ (j − 1) · d ≤ y ≤ j · d (1)

The size d of the grid, that defines the length of the cell
edges, should be selected by considering the efficiency of the
system. In general, a smaller value of d can accommodate
a larger number of agents, and therefore, can lead to a
higher space utilization, but at the same time, it will lead
to more disruption of the agent travels by the superimposed
supervisory control, and possibly to more congested traffic
and longer delays.
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Fig. 1. The mapping W(C) and the partitioning of the motion place
induced by it.

We shall say that an agent (with its disk) centered at
(xc, yc) lies in cell w[i, j] if and only if (iff ) (xc, yc) ∈
w[i, j].2 On the other hand, we shall say that an agent
centered at (xc, yc) occupies cell w[i, j] iff there exists
(x, y) ∈ w[i, j] with ||(x, y) − (xc, yc)|| ≤ ρ, where || · ||
denotes the Euclidean norm.3 Clearly, this definition induces
a mapping W from the motion area, A, to the powerset of
W , 2W , that maps to any point (x, y) ∈ A the cell subset
W(x, y) ∈ 2W consisting of the cells occupied by an agent
centered at (x, y). A graphical illustration of this mappingW
is given in Figure 1. We note that the adopted tessellation is
defined by the grid of the solid horizontal and vertical lines,
and the mobile agents are depicted by the grey disks in it.
The reader should notice that an agent can occupy one cell
(as in the case of R1), two neighboring cells (as in the case
of R2), three neighboring cells (as in the case of R3), or
four neighboring cells (as in the case of R4). We also notice
that for the tessellation schemes considered in this work, the
number of cells occupied by a mobile agent that is located at
(xc, yc) is effectively determined by the relative positioning
of (xc, yc) with respect to another partitioning of the motion
plane, that is induced by the original tessellation scheme and
the agent geometry. In Figure 1, this induced partitioning
is defined by the depicted dashed lines and its detailed
derivation, including a complete analytical characterization,
can be found in [12].

In order to avoid collisions among the agents, it is required
that at any point in time, a cell can be occupied by only one

2It should be noticed that according to Equation 1, an agent can lie in
more than one cells at the same time. Especially, in the (rather singular)
case that the agent center is located at the intersecting point of two grid
lines, the agent will lie in all four neighboring cells.

3In order to maintain a simple notation, in the entire discussion of this
manuscript we have assumed that the system agents are homogeneous with
respect to their disk size. If, however, this is not the case, but each agent Rk
occupies a disk of distinct radius, ρk , the concepts and structures defined
in the rest of this section still apply, but they are customized for each agent
through their parameterization by the agent radius ρk . Furthermore, all the
results of the paper remain true provided that the grid size of the applied
tessellation satisfies d ≥ 2maxk ρk .
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Fig. 2. Example paths for two mobile agents, and the corresponding resource allocation profiles that are defined by the path partitioning into maximal
segments with the same cell occupation. The right part of the figure details the profile obtained for agent R1.

TABLE I
THE RESOURCE ALLOCATION INDUCED BY THE PATH SEGMENTATION OF FIGURE 2

Agent R1

Stage No. Required resources
j c(1, j)
0 w[0, 1]
1 w[0, 0], w[0, 1]
2 w[0, 0], w[0, 1], w[1, 1]
3 w[0, 0], w[0, 1], w[1, 0], w[1, 1]
4 w[0, 0], w[1, 0], w[1, 1]
5 w[0, 0], w[1, 0]
6 w[1, 0]
7 w[1, 0], w[2, 0]
8 w[2, 0]
9 w[2, 0], w[2, 1]
10 w[2, 1]
11 w[2, 1], w[2, 2]
12 w[2, 2]

Agent R2

Stage No. Required resources
j c(2, j)
0 w[3, 1]
1 w[3, 1], w[2, 1]
2 w[2, 1]
3 w[2, 1], w[1, 1]
4 w[1, 1]
5 w[1, 1], w[0, 1]
6 w[0, 1]
7 w[0, 1], w[−1, 1]
8 w[−1, 1]

agent. Hence, the cells defined by the proposed tessellation
constitute fictitious resources of unit capacity. Furthermore,
under the proposed zoning scheme, the paths designated to
the different agents are naturally segmented to a number of
stages, with each stage corresponding to a maximal path
segment with constant cell (i.e., resource) occupation. The
resulting stage sequences define the corresponding resource
allocation processes that must be observed by each agent. In
particular, in the proposed regime, an agent must secure the
cells associated with a certain stage before it can proceed
to the execution of the path segment corresponding to that
stage. Also, in certain cases, an agent can enter a new stage
of its path by simply releasing some of the cells held in its
previous stage. Figure 2 exemplifies the abstracting notion of
the resource allocation profile, by applying it on the motion
profiles, p1 and p2, of two agents, R1 and R2. Path p1

consists of thirteen (maximal) segments p1
0 - p1

12, and path
p2 consists of nine such segments, p2

0 - p2
8. Also, Table I

specifies the cells occupied by the two agents at the various
stages of their route.

It is clear from the above discussion that, in the pro-
posed regime, the agent motion dynamics must be com-

plemented with a resource allocation protocol that will
enable each agent to acquire mutually exclusive access to
the cells required at each particular stage of its motion
process. Consequently, the considered system of free ranging
agents is naturally abstracted to a sequential resource allo-
cation system (RAS) according to the modeling paradigm
of [13]. In particular, following the classification of [13],
the resulting RAS presents strong similarity to the class
of Linear-Conjunctive-RAS (L-CON-RAS), as it involves
linear resource allocation sequences where, however, some
processing stages might require the simultaneous – i.e.,
conjunctive – allocation of more than one resource units. On
the other hand, a key attribute that differentiates the resource
allocation taking place in the considered vehicle systems
from the broader resource allocation schemes belonging into
the L-CON-RAS class, stems from the fact that the resource
allocation and/or de-allocation that takes place during the
transition between two consecutive processing stages, must
observe a “resource proximity” relation that is defined by
the adopted tessellation. More specifically, in the considered
RAS systems, the allocation corresponding to a particular
processing stage must be interpretable as the occupation of
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a number of neighboring cells by the corresponding mobile
agent, while the variation of the allocations between two
consecutive processing stages must be interpretable as the
occupation of some new neighboring cells and/or the release
of some previously held ones, during the agent motion. The
sub-class of L-CON-RAS that possesses the aforementioned
additional features will be characterized as FREE-RANGE-
RAS.

Formally, a FREE-RANGE-RAS can be specified by a
triplet Φ = (W,P,D), where: (i) W is the set of the system
resources (cells), (ii) P = {P1, P2, . . . , Pn} is the set of
the system processes (agents’ motion processes along their
respective paths), where each process Pi, i = 1, . . . , n,
consists of Ξi1,Ξi2, . . . ,Ξili consecutive processing stages,
and (iii) D : Ξ = {Ξij | i = 1, . . . , n; j = 1, . . . , li} →
2W is the resource allocation function associating every
processing stage Ξij with the subset of resources required
for its execution in the way satisfying the aforementioned
constraints with respect to the underlying tessellation. It is
further assumed that a process executing a non-terminal stage
Ξij , i = 1, . . . , n; j = 1, . . . , li − 1, must first be allocated
the resources D(Ξi,j+1) in order to advance to its next stage
Ξi,j+1, and only then it can release the no-more required
resources D(Ξi,j+1) \D(Ξij). Finally, as stated earlier, the
considered resource allocation protocol further requires that
no resource is allocated to more than one process at a time.

The next section provides a formal characterization of the
behavioral dynamics of FREE-RANGE-RAS by means of
a deterministic finite state automaton (DFSA) [15]. How-
ever, before closing the discussion of this section, and for
reasons that will become clear in the sequel, we distin-
guish a particular type of the agent paths that consist only
of horizontal and vertical segments joining the centers of
the consecutive cells that they lie on. We shall refer to
these paths as central vertical-horizontal paths, and spec-
ify them by the sequence of the traversed cells, p =
w1, w2, . . . , wu. The motion process of an agent that follows
such a path consists of 2u−1 stages that, respectively, require
the following resource sets: {w1}, {w1, w2}, {w2}, . . . ,
{ww−1}, {wu−1, wu}, {wu}. For example, the path depicted
in Figure 3 is specified by the resource sequence p =
w[0, 0], w[0, 1], w[1, 1], w[2, 1], w[2, 0] and consists of nine
stages, which require the respective cell subsets: {w[0, 0]},
{w[0, 0], w[0, 1]}, {w[0, 1]}, {w[0, 1], w[1, 1]}, {w[1, 1]},
{w[1, 1], w[2, 1]}, {w[2, 1]}, {w[2, 1], w[2, 0]} and {w[2, 0]}.
The reader should particularly notice that the specification of
a central vertical-horizontal path p = w1, w2, . . . , wu deter-
mines uniquely the underlying resource allocation process.

III. A DFSA-BASED REPRESENTATION OF THE
CONSIDERED TRAFFIC SYSTEMS

This section provides a formal characterization of the
qualitative dynamics of the considered traffic systems and
their behavioral properties of interest in this work, by em-
ploying a variation of the well known deterministic finite-
state automaton (DFSA) [15]. Hence, in the sequel, first we
introduce the considered DFSA model, and subsequently we
employ this modelling framework in order to characterize
the feasible and the desirable behavior of the traffic systems
under consideration.

Automata – otherwise known as state machines – provide
a convenient, general tool for abstracting the qualitative
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Fig. 3. An example of a central vertical-horizontal path. The path
is uniquely specified by the sequence of the traversed cells, p =
w[0, 0], w[0, 1], w[1, 1], w[2, 1], w[2, 0], and it induces nine stages for the
agent’s motion process.

behavior of discrete event systems (DES). In this work, we
shall employ a particular sub-class of this model, that is
formally defined as follows:

Definition 1: A deterministic finite state automaton
(DFSA) is defined as a tuple G = (S,E, δ, s0, SM ) such
that:

1) S and E are finite sets, respectively known as the state
and the event set of the automaton.

2) δ : S × E → S is a partial function, known as the
state transition function of the automaton.

3) s0 ∈ S and SM ⊆ S are, respectively, the initial state
and the set of marked states of the automaton.4

The above DFSA starts its operation from state s0. In each
state s ∈ S, an event e can only occur if the state transition
function δ() is defined on the pair (s, e); in that case, we say
that event e is enabled at s. The occurrence of event e at
s results in a new state s′ = δ(s, e), which can be changed
subsequently by the occurrence of event e′ that is enabled
in state s′, and so on. In order to capture state transitions
arising from strings of events, the state transition function δ
can be naturally extended to S × E∗ as follows:

∀s ∈ S, δ(s, ε) ≡ s

∀s ∈ S,∀u ∈ E∗,∀e ∈ E, δ(s, ue) ≡ δ(δ(s, u), e)

In the above equation, ε denotes the empty string, and E∗
denotes the set of all strings that can be constructed with
the elements of the set E ∪ {ε}. Moreover, it is implicitly
assumed that the involved single-step transitions correspond
to enabled events, i.e., to state-event pairs for which the
original function δ is defined; otherwise, the extended version
of δ is undefined on the corresponding state-string pair. We
say that state s′ ∈ S is reachable from state s ∈ S if there
exists string u ∈ E∗ such that s′ = δ(s, u); the set of all
states reachable from s is called the reachability set of s and
denoted by R(s). The particular set R(s0) is also recognized
as the reachability set of the DFSA G. Graphically, the
dynamics of G can be represented by a directed multi-graph
RG(G) = (V, F ), called the reachability graph of G; the
vertex set V of this graph is defined by R(s0) and its edge
set F is the subset of R(s0) × E × R(s0) such that edge
f = (s, e, s′) ∈ F ⇐⇒ s′ = δ(s, e). Event e is typically
perceived as the “label” of edge (s, e, s′).

4Typically, from a modeling standpoint, arrival to a marked state denotes
the completion of a certain task.
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The DFSA G(Φ) = (S,E, δ, s0, SM ) abstracting the
feasible dynamics of a FREE-RANGE-RAS Φ = (W,P,D)
is defined as follows:

1) The state set S consists of all vectors s =
[s11, s12, . . . , s1,n1 , s21, . . . , s2,n2 , . . . , sn1, . . . , sn,nn ]
∈ {0, 1}|Ξ| such that:
• for each i = 1, . . . , n,

∑ni

j=1 sij ∈ {0, 1}.
• for each i = 1, . . . , n, each q = 1, . . . , n, each
j = 1, . . . , ni, and each r = 1, . . . , nq , it is true
that if sij = sqr = 1 and (i, j) 6= (q, r) then
D(Ξij) ∩D(Ξqr) = ∅.

Each entry sij = 1 indicates that agent Ri is on the
j-th stage of its motion process, Pi.

2) The event set is given by E = {eij | i = 1, . . . , n; j =
0, . . . , ni}, where event ei0 represents the start of
process Pi, event eini

represents the end of process
Pi, and event eij , j ∈ 1, . . . , ni − 1, represents the
advancement of Pi from stage Ξi,j to stage Ξi,j+1.

3) For each pair (s, eqr) s.t. the state transition function δ
is defined, the value of the components s′ij of the new
state s′ = δ(s, eqr) is given by:

s′ij =

{
sij − 1 if i = q and j = r
sij + 1 if i = q and j = r + 1
sij otherwise

4) δ(s, eqr) is defined if the tentative state s′ ∈ S.
5) The initial state s0 = 0, which corresponds to the

situation when the system is empty of any processes.
6) The set of marked states is the singleton SM = {s0}.

The designation of state s0 as the only marked state of the
considered DFSA expresses the requirement that all activated
vehicles must proceed to the completion of their trip and
retire from the system. States that provide this capability are
characterized as safe. In the next section we provide a formal
definition of the notion of (state) safety and investigate its
computational complexity.

IV. THE STATE SAFETY PROBLEM AND ITS COMPLEXITY

The state safety problem for the vehicular system intro-
duced in the previous sections can be formally stated as
follows.

FREE-RANGE-RAS state safety: Given a FREE-RANGE-
RAS specified by the triplet Φ = (W,P,D), the induced
DFSA G(Φ) = (S,E, δ, s0, SM ) and a state s ∈ S, is the
initial state s0 reachable from s?

The main contribution of this work is to establish that
in the considered operational regime, the above problem is
NP-complete [15]. This is stated and proven in the sequel.

Theorem 1: For rectangular tessellations with step sizes
greater than or equal to 2ρ, the problem of FREE-RANGE-
RAS state safety is NP-complete in the strong sense.

Proof. In order to prove the theorem,
1) first we show that the considered FREE-RANGE-RAS

state safety problem belongs to the problem class NP ,
2) and subsequently we establish its NP-completeness by

reducing to it the well-known NP-complete problem of
3-SAT [15].

Proof of (1): We remind the reader that a decision problem
is in the class NP iff it can be solved in polynomial time by
a Nondeterministic Turing Machine (NDTM) [15]. Notice
that the size of an instance of the considered problem is
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Fig. 4. Illustration for the proof of Theorem 1: Highlighting the basic
topology of the agent paths that define the FREE-RANGE-RAS employed
in the relevant reduction from 3-SAT.

essentially determined by the size of the data required to
specify function D, which is proportional to the total number
of processing stages, |Ξ|. Since this number bounds also the
length of any event sequence σ that can constitute a feasible
solution to the considered state safety problem, it follows
that the problem can be solved by an NDTM in polynomial
time, and consequently the FREE-RANGE-RAS state safety
problem belongs to the class NP .

Proof of (2): As mentioned above, in order to prove the
NP-completeness of the FREE-RANGE-RAS state safety
problem considered in this theorem, we will provide a
reduction from the 3-SAT problem. We remind the reader
that the 3-SAT problem can be stated as follows:

3-SAT [15]: Given a set of literals X = {X1, X̄1, X2, X̄2,
. . . , Xµ, X̄µ} and a set of clauses Λ = {Λ1,Λ2, . . . ,Λν},
each clause being a disjunction Λq = y1

q∨y2
q∨y3

q , y1
q , y

2
q , y

3
q ∈

X , does there exist K ⊆ X such that the conjunction of the
clauses in Λ is satisfiable, i.e., 1) ∀i = 1, . . . , µ, K does not
contain both Xi and X̄i, and 2) ∀q = 1, . . . , ν, K ∩Λq 6= ∅?

The proposed reduction will construct from any 3-SAT
problem istance (X ,Λ), an instance of the considered FREE-
RANGE-RAS state safety problem, with Φ = (W,P,D) and
state s ∈ S, as follows:

a) The set of resources W consists of the set of (square)
cells depicted in Figure 4.

b) The set of processes is given by P = {Λ1,Λ2, . . . ,Λν}
∪{Z}.

c) The resource allocation function D is implied by the
topology of the paths followed by the agents, which
involves (c.f. Figure 4) :
• two nested rings,
• µ “bridges”, each corresponding to one of the

variables X1, . . . , Xµ of the 3-SAT problem and
consisting of ν cells,

• another cell, marked by Z in the figure.
The agents executing the processes Λq , q = 1, . . . , ν,
are distributed at various (arbitrary) locations at the
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outer ring and each of them has to pursue the following
central vertical-horizontal path:

i) First it enters the inner ring through the cell of
that ring which is next to it.

ii) Subsequently it moves clockwise on that ring
until it meets the entry point of the bridge corre-
sponding to the first variable in clause Λq . If this
variable is not negated in the clause, the bridge
must be crossed from left to right; otherwise, it
must be crossed from right to left.

iii) Upon exiting the first bridge, the agent continues
moving clockwise on the inner ring until it enters
the bridge corresponding to its second variable,
and then it continues in the same way with the
bridge corresponding to its third variable.

iv) Upon exiting the third bridge, the agent must (i)
perform a complete loop of the entire inner ring,
moving in the clockwise direction, (ii) pass to
the outer ring through the cell held by Λν in
the figure, (iii) traverse clockwise the entire outer
ring and eventually terminate at the cell held by
Z.

The agent executing the process annotated as Z must
move in the counter-clockwise sense, initially travers-
ing the outer ring, then entering the inner ring from
the cell next to Λν , and finally traversing this entire
ring before terminating in its entering cell.

d) In state s, all the agents are on the first stages of the
above described routes.

Clearly, the above construction can be polynomial with
respect to the number of literals and clauses of the underlying
3-SAT problem. Next we establish that the considered 3-SAT
problem instance has a solution iff the FREE-RANGE-RAS
state s, that was defined through the above construction, is
safe. For this, the reader should notice the following:

i) Since, in state s, process Z occupies a cell required by
each process Λq for its completion, no Λq can complete
until Z advances to another stage. Furthermore, since
process Z moves on the two rings in a direction
opposite to that of the motion of processes Λq , no state
such that process Z is in one of the two rings while
any other process Λq executes the last part of its route,
as specified by item (c-iv) above, is safe.

ii) A little more reflection will reveal that the target
state, where all processes have run to completion,
is reachable from the considered state s, iff it is
possible to reach a state s′ such that all processes
Λq are accomodated on the bridges and each bridge
is occupied by processes that traverse it in the same
direction.

Now notice that, by observation (ii), state s is safe iff there
exists a safe state s′ as characterized in (ii). Next we show
that existence of such a safe state s′ implies the existence of
a satisficing literal subset K for the 3-SAT problem. Set K
consists of all the literals Xi (resp., X̄i) which correspond to
bridges that are non-empty of process instances in s′ and are
traversed from left to right (resp., from right to left). Indeed,
set K satisfies property (1) posed by the 3-SAT problem, by
means of observation (ii) above and the assumed safety of s′.
It also satisfies property (2) posed by the 3-SAT problem, due
to the specification of state s′ and of K itself. It is easy to see

that the reverse is also true, i.e., the existence of a satisficing
set K for the 3-SAT problem enables the construction of the
safe set s′ postulated by observation (ii). Hence, it can be
concluded that state s of the constructed RAS is safe iff the
considered instance of 3-SAT has a solution.

V. CONCLUSIONS

In this paper we established the NP-completeness of the
“state safety” problem arising in the context of some free-
range multi-vehicle traffic systems that are encountered in
modern technological applications. This result provides a
formal theoretical base to ongoing efforts that seek to address
the safe operation of these systems through suboptimal (i.e.,
non-maximally permissive) supervisory control policies that
manage the underlying resource allocation. On the other
hand, it is interesting to see how these results extend to
other multi-vehicle traffic systems where different tessella-
tion schemes may apply and/or the vehicle motion is confined
to occur on more restrictive guidepath networks (e.g., like in
the case of industrial AGV or monorail systems [16]). The
systematic study of these extensions is part of our current
investigations.
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