
Modeling non-convex configuration space using linear complementarity
problems

Binh Nguyen1 and Jeff Trinkle2

Abstract— In this paper, we proposed a new physical simu-
lation method that can model non-convex configuration space.
The new method employs a novel contact model that take into
account geometry information of objects. It can also be shown
that it reduces the work for collision detection routines.

I. INTRODUCTION

Physical simulation of rigid bodies with Coulomb friction
has come a long way since Lötstedt first developedcomple-
mentarity problems formulations [1], [2]. Till now, there are
various methods that are capable of handling complicated
tasks from video games and virtual reality [3], [4], to
graphics and haptic application [5], to robotics, machine
design and virtual prototyping [6], [7], [8], [9], [10], [11].
However, they all share a common practice: the contact
model between a vertex and a face is used to prevent
penetration. This simple contact model is easy to use but
cannot handle cases where the shape of the free space in
the neighborhood of the contact point is non-convex like
the case in figure 1. Moreover, it requires complicated
collision detection that is often not trivial to implement. In
fact, getting correct colliding information and penetration
vectors in collision detection for this simple contact is an
open problem. In this paper, we discuss a new extended
contact model that can accurately model locally non-convex
contact problems for rigid body systems. We also show that
it requires simpler collision detection than the traditional
model.

A. Background

The goal of a time-stepping method is to produce esti-
mates of a dynamic system states at a discrete set of times.
Given the state at the current time, the task is to formulate
a time-stepping subproblem whose solution yields the state
at the next time in the set. Typical time-stepping methods
for multi rigid bodies systems with unilateral contacts
accomplish this by cycling between two main functions:
one that computes distances between geometric features
of the bodies, and one that takes this list, formulates the
dynamics subproblem, solves it, and updates the system
state. This process is repeated until the final time is reached.
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The most important geometric information in most gen-
eral methods is the set of geometric features (vertices and
faces or edges and edges) that are in contact (distance = 0),
nearly so (distance is positive, but small) or in penetration
(distance is negative). We refer to the list of such feature
pairs as the active (contact) set. This set is needed to
formulate the dynamics subproblem so that it can prevent
inter-penetration of rigid bodies. The active set is normally
obtained from a collision detection software package.

Current time-stepping methods can be classified into
two main types: correction methods [3], [12], [9] report
only pairs that are in penetration or touching and pre-
vention methods [6], [7], [13] that also report pairs that
could collide in the next time step. In correction methods,
constraints are formed to stop the current penetrations
from getting worse. An additional correction steps can be
used to reduce the depth of penetration or eliminate it all
together. Even though correction methods can employ error-
correction step, they have a major drawback: penetration
is unavoidable due to its wait-and-correct behavior and to
numerical errors during simulation. In general, penetration
should be avoided during simulation where possible, not
just because it is physically incorrect but also because
there are cases where geometric information is not suffi-
cient to recover from a penetration. In correction methods,
penetration depth scales with simulation time step and
object speed. It makes correction methods sensitive to those
runtime factors. This dependence increases the complexity
of collision detection for correction methods. It has to
treat high speed objects, bullets for example, in a different
manner than normal objects to avoid ’tunneling’ effect i.e
objects passing through others in one time step. Reducing
the simulation time step to anticipate high-speed objects is
not a good option because object’s speed can vary widely
while a fixed time step is crucial for realtime simulation.
Smaller time steps also increase the computing power
required to simulate a fixed duration.

Prevention methods [6], [7], [13] have less penetration
during simulation, because they anticipate penetrating pairs
before collisions. These methods also have built-in correc-
tion to eliminate of penetrations caused by linearization and
numerical errors. This type of method is also less sensitive
to the value of the time step and object speed because they
can prevent the ’tunneling’ effect by cautiously activating
contact pairs that include the high speed objects. Prevention
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methods also require different active sets than correction
ones. They need collision detection to include not only
penetrating and in-contact pairs but also potentially col-
liding pairs. This difference explains the lack of prevention
methods in popular physics engines as all current collision
detection routines are only designed to work with corrective
methods. The only implementation of this type of method
known to us is our simulation package, dVC [14], which
uses a simple heuristic that compares geometric distances
between possible pairs and a velocity-sensitive constant to
choose the active set. It works well in general, but the
collision detection is also very complicated especially in
three-dimensional cases.

B. Simple contact model and locally non-convex configu-
ration space

The common contact model in current methods is the
simple one between a point and a face (or edge in planar
case). An active constraint associated with this simple
contact model keeps the distance ψin between its point and
face from becoming negative. Usually for the ith active
contact, the constraint has the form:

0 ≤ λin ⊥ ψin(q, t) ≥ 0 (1)

where ψin is a signed distance function or gap function for
the ith contact with the property ψin(q, t) > 0 implies sep-
aration, ψin(q, t) = 0 implies touching, and ψin(q, t) < 0
for interpenetration. Note that in general, there is no closed-
form expression for ψin(q, t) so usually approximation
values are used instead. λin is the force or impulse needed
to prevent ψin from becoming negative.

Compactly, we can write the non-penetration constraint
for all contacts as

0 ≤ λn ⊥ ψn(q, t) ≥ 0 (2)

where ψn and λn are the concatenated vectors of all the
signed distance functions and normal forces (impulses)
respectively.

Equation (2) over-constrains the system at those contacts
where the local configuration space is non-convex. It can
be illustrated in two simple cases below.

In figure 1, if we write the constraints in form (2) then
the result must satisfy : ψ1n ≥ 0 and ψ2n ≥ 0 which means
in the next time step, the particle P cannot leave cone (I)
while physically, it should be allowed to pass through cone
(II) and (IV). In the case of figure 2, formulation (2) is
infeasible as there is no point in space that has non negative
distances with all lines that support the active edges (the
ones that intersect with the circle interior in the figure).

In conclusion, current methods not only cannot simulate
the particular cases shown in figures 1 and 2 but also rely on
complicated collision detection routines to find the active

Fig. 1: Locally non-convex C-space

P
Active set sphere

Fig. 2: A more complicated scene resembling a robot
moving through a room

set. It is not trivial to implement collision detection algo-
rithms needed for penetration prevention. In fact, the current
development of continuous collision detection suggests that
only geometric information is not enough to find active
set. Even so, one can always find the cases where collision
detection fails to identify the right active set with this simple
contact model.

C. Previous works and summary of results and contribu-
tions

Kevin Egan [15] proposed a way to handle non-convex
configurations but his method requires a trial-and-error
parameter tuning process to approximate the non-convex
region. Also, it is not easy to relate the formulation used in
[15] to physical laws. The method proposed in this paper
can be shown to closely follow the underlying physics
model and also accurately captures the non-convexity.

Recently, Glocker et al [11] proposed a class of methods
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Fig. 3: A test case where robot need to insert a rectangular
block into a closely fitted hole

that do not use complementarity conditions but rather use
mathematically equivalent prox functions to model contact.
These methods can also be classified as prevention or cor-
rection because they use the same simple contact model and
rely on the same collision detection to identify the active
set. Note that it is easy to switch between prox function
and complementarity forms. The prox function form loses
the physical interpretation of the complementarity one.

This paper extends the current simple contact model to
include not only the geometric features but also information
about the relations between them. The main advantages of
the new contact model proposed in this work are two fold:
it solves the problem that all current simple contact models
have with locally non-convex configuration spaces and it
reduces the dependency of the simulation results on the
internal details of collision detection.

II. MODELING NON-CONVEX CONFIGURATION SPACE

A. New contact model

This new contact model begins with the assertion that we
need at most one impulse to prevent penetration between a
vertex and a convex shape. Thus, the new contact between
two bodies is defined by:
• A vertex in the first body.
• A convex portion of the second body.
The physical meaning of current contact model described

in [3], [6], [9] is that when activated, it prevents the vertex
from penetrating the half space that contains the contact
face. The new contact model extends the idea by replacing
that one contact face with a convex shape (defined by a list
of faces) and physically prevents the contact vertex from
penetrating the shape interior.

It is worth noting that we can choose any convex subset
of the second geometric body or the whole body itself if
it is convex. If the second body geometry is convex, any
convex hulls of a subset of its vertices belong to the body
geometry also. Thus, it is easy to generate new contact
information for a convex body: a simple heuristic picks

Fig. 4: Left: current contact model (P,2) virtually extends
edge 2, thus prevent P from entering region below the dotted
line. Right: new contact model (P,[1,2,3]) accurately capture
the shape of obstacle and P can move freely outside dotted
region.

all facets with Euclidean distance to contact vertex smaller
than a certain threshold to include in the new contact should
work well. If the shape of second body is not convex, this
new contact model can still accurately model the object by
decomposing the shape into a list of convex shapes, then
attach one contact to each of them when needed.

It is easy to see that the new contact model not only
solves the problems with contacts that have locally non-
convex configuration spaces, it also gives the users more
freedom in forming the active sets. Usually, it is not obvious
how to determine which facet will make contact with a
vertex in next time step to form the active set. This new
contact model gives the collision detection the flexibility
to handle this uncertainty better: it can be conservative
by picking a big convex shape when it is hard to guess
the correct set or even just one facet if it is obvious
(see figure 5). Normally, for current methods, the only
way to tackle uncertainty in set selection problem is to
reduce time step or to use a continuous collision detection
algorithm which is expensive and could lead to exhaustive
exponential search. In reality, all current common physics
engines rely on their collision detection ability to pick
the right active set. Picking the wrong one would result
in unrealistic behaviors. Extra contacts in the active set
lead to unwanted obstacles during simulation while missing
contacts lead to deep penetrations. The new contact model
reduces collision detection complexity because it does not
need the unique contact facet corresponds with the contact
vertex but a list of possible facets that contain it. With this
new contact model, collision detection is well defined and
easier to implement. Actually, one can heuristically pick the
set of facets to form the contact then calculate the geometric
distances between the vertex and all the facets in the list
then feed that information to the dynamic step. The correct
active facet and contact forces will be obtained along with
solving the dynamics subproblem.
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(a) (b) (c)

Fig. 5: There are cases where user can use current infor-
mation to choose the set of edges to minimize the chance
of penetration.(a): the vertex moves relatively slow and is
close to the obstacle so only edge 1 is needed.(b):the vertex
moves fast and the object below is rotating so edge 1,2 and
3 need to be included.(c):Speeds of the vertex and object’s
spinning are very high, so we may need to consider adding
ALL edges.

B. Mathematical implementations

In order to handle the new contact model correctly, we
need to keep the vertex from penetrating the convex shape
in the next time step. This task can be separated into two
main sub-tasks: accurately model the non-convex free space
correspond to the contact shape geometry, find the correct
facet in the shape that the vertex collides with, then find
the correct normal (force) impulse to prevent penetration.
We separate the task into two because they are actually
different. In following parts, we will provide mathematical
equations for each part,we start with a simple contact (with
only two edges or faces) then extend the formulation to a
general one.

1) Simple contact: We have shown that for the case of
locally non-convex configuration spaces, treating all non-
penetration constraints conjunctively will lead to error. For
the case shown in figure 1, we should not constraint both
of ψ1n and ψ2n but only one of them to be nonnegative or
equivalently:

max(ψ1n, ψ2n) ≥ 0 (3)

We leverage the existing Linear Complementarity frame-
work to encode equation (3).

Lemma 2.1: Given a, b ∈ R, b = max(a, 0) ⇐⇒ 0 ≤
b− a ⊥ b ≥ 0

Proof:
=⇒: from b = max(a, 0) need 0 ≤ b− a ⊥ b ≥ 0
• case a ≤ 0: max(a, 0) = 0 ⇒ b = 0 ⇒ 0 ≤ b − a ⊥
b ≥ 0.

• case a > 0:max(a, 0) = a ⇒ b = a ⇒ 0 ≤ b − a ⊥
b ≥ 0.

⇐=: from 0 ≤ b− a ⊥ b ≥ 0 need b = max(a, 0).
• case b− a = 0, b ≥ 0: obviously b = max(a, 0) = a
• case b = 0, b− a ≥ 0: because a ≤ 0 so max(a, 0) =

0 = b

Lemma 2.2: Given a, b ∈ R, b = |min(a, 0)| ⇐⇒ 0 ≤
b+ a ⊥ b ≥ 0

Proof: We call b = |min(a, 0)| and 0 ≤ b+a ⊥ b ≥ 0
as equation (i) and (ii) respectively.

=⇒: (i) holds, need to prove (ii)
• case a ≤ 0: |min(a, 0)| = −a = b ⇒ b + a = 0 ⇒

(ii) holds.
• case a > 0:|min(a, 0)| = 0 = b ⇒ (a + b)b = 0 ⇒

(ii) holds.
⇐=: (ii) holds, need to prove (i).
• case b + a = 0, b ≥ 0 ⇒ a ≤ 0 ⇒ |min(a.0)| =
−a = b

• case b = 0, b+a > 0⇒ a > 0⇒ |min(a.0)| = 0 = b

Using these two lemmas, we can transform the constraint
(3) into linear complementarity conditions as follow:

max(ψ1n, ψ2n) = ψ2n + max(ψ1n − ψ2n, 0) (4)

Then define the variable c as follows:

c = max(ψ1n − ψ2n, 0) (5)

Using lemma 2.1 equation (5) can be written as a linear
complementarity condition:

0 ≤c− (ψ1n − ψ2n) ⊥c ≥0 (6)

Then, the correct non-penetration constraint at the contact
along edge 1 is:

0 ≤c+ ψ2n ⊥λ1n ≥0 (7)

This constraint basically means that when the term c+ψ2n,
which is equivalent to max(ψ1n, ψ2n), becomes negative,
the normal force (impulse) λ1n along edge 1 will be positive
to prevent the penetration.

Similarly, non-penetration constraint along edge 2 is:

0 ≤c+ ψ2n ⊥λ2n ≥0 (8)

Here, λ1n and λ2n are normal forces(or impulses ) to
maintain condition (3). The above non-penetration con-
straint correctly prevents penetration at the contact but it
allows impulses to be generated on both edges, which is
not physically correct. There should only be at most one
impulse along the edge that the vertex will collide with in
the next time step. So we need a constraint that allows no
more than one of λ1n and λ2n to be positive.

Lemma 2.3: Given a, b ∈ R, a = 0, b ≤ 0 ⇔
(max(a, b) ≥ 0) ∧ (max(a, b) + |min(a, 0)| = 0)

Proof: Because max(a, b) ≥ 0 and |min(a, 0)| ≥ 0
then the only way to have max(a, b) + |min(a, 0)| = 0
is both reach equality. From |min(a, 0)| = 0 we can have
a ≥ 0 so to keep max(a, b) = 0 then a = 0, b ≤ 0. The
reverse direction is obvious.
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Using lemma 2.3, we can formulate a non-penetration
constraint along edge 1 as:

0 ≤c− (ψ1n − ψ2n) ⊥ c ≥0
0 ≤ d1 + ψ1n ⊥ d1 ≥0
0 ≤ c+ ψ2n + d1 ⊥λ1n ≥0 (9)

c+ ψ2n ≥ 0

Equations (9) only allows the normal force (impulse) along
edge 1 to be nonnegative when ψ2n ≤ 0 and ψ1n = 0. Note
that ψ2n ≤ 0 and ψ1n = 0 physically means particle P is
touching edge 1 in figure 1.

Similarly, a non-penetration constraint along the second
edge is:

0 ≤ d2 + ψ2n ⊥ d2 ≥0 (10)
0 ≤c+ ψ2n + d2 ⊥λ2n ≥0

2) General contact case: In general, the contact has the
form (P, [1, 2, ...n]). We can extend simple case formula-
tions (9) and (10) as follow:

0 ≤ c2 − ψ2n + ψ1n ⊥ c2 ≥0
0 ≤ c3 − ψ3n + c2 + ψ1n ⊥ c3 ≥0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 ≤cn − ψnn + cn−1 + · · ·+ c2 + ψ1n ⊥ ck ≥0
0 ≤ d1 + ψ1n ⊥ d1 ≥0

· · · · · · · · · · · · · · · · · · · · · · · · (11)
0 ≤ dn + ψnn ⊥ dn ≥0
0 ≤ d1 + c2 + · · ·+ cn + ψ1n ⊥λ1n ≥0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 ≤ dn + c2 + · · ·+ cn + ψnn ⊥λnn ≥0

c2 + · · ·+ cn + ψ1n ≥ 0

where c2, · · · , cn, d1, · · · , dn and e are new variables,
ψ1n, ψ2n, · · · , ψnn are distances between the vertex of this
contact and the edges.

A problem arises here, in (11), the last inequality is not
in the form of a linear complementarity condition. We will
discuss about how to solve this problem in the next section.

In comparison, the same type of constraints based on
most of current methods has the form:

0 ≤ ψin⊥λin≥0, i = 1 · · ·n (12)

C. Solution method

Here we briefly present two possible solution methods.
1) Optimization method: It is natural to formulate

equations (11) as a LPCC (Linear Program with
Complementarity Constraints) form [16]:

minimize c′ ∗ x+ d′ ∗ y
subject to A ∗ x+B ∗ y ≥ f

0 ≤ y ⊥ q +N ∗ x+M ∗ y ≥ 0
x ≥ 0
x ∈ Rn, y ∈ Rm, f ∈ Rk

This is the most robust but slow solution method.
2) Linear Complementarity Problems method: Indeed,

we can recast the inequality:

c2 + · · ·+ cn + ψ1n ≥0

as a complementarity condition:

0 ≤c2 + · · ·+ cn + ψ1n − α · e ⊥e ≥0

where α is a non-negative number and e is a dummy
variable.

III. NUMERICAL RESULTS

In this section, we present two examples to compare our
new method with the old ones.

A. Box-ramp

We simulate a box falling then sliding down a cracked
ramp. Note that the crack is small so physically, the box
should be able to slide to the end of the ramp.

(a) t=0.0000 (b) t=2.7360 (c) t=3.2080

Fig. 6: New method, time step h = 0.008

(a) t=0.0000 (b) t=2.7760 (c) t=3.3120

Fig. 7: Old method, time step h = 0.008.

With the old contact model, the interaction with the crack
caused the block to tumble. This example is motivated
by the fact that Computer-Aided Design (CAD) software
sometimes produces flawed models.
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B. Peg in hole

We simulate a box falls under gravity into a hole with a
minimal clearance below (box width = 9.99, hole width =
10). Physically, the box should be able to fall through until
making contact with the hole’s floor.

(a) t=0.0000 (b) t=1.2720 (c) t=1.4720 (d) t=2.0000

Fig. 8: New method, time step = 0.0125.

(a) t=0.0000 (b) t=1.2800 (c) t=1.4000 (d) t=1.6640

Fig. 9: Old method, time step = 0.0125

All examples are solved using PATH [17] using the
method mentioned in previous section.

IV. CONCLUSION AND FUTURE WORKS

In conclusion, this paper identifies some problems of
current contact model that all major physics engines are
using. The biggest draw back of simple single vertex-
single facet contact model is that it cannot accurately model
contact that has locally non-convex configuration space as
shown in figures 1,2. This paper presents a new contact
model that includes multiple facets that can accurately
model such contacts. This new model also reduces the
complexity of collision detection routines.

For future works, the authors focus on better solution
methods. One possible direction is to use linear comple-
mentarity problems over cones because the inequalities in
equations (11) form a cone.

This work was supported by the National Science Foun-
dation under grant CCF-0729161. Any opinions, findings,
and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] P. Lötstedt, “Coulomb friction in two-dimensional rigid body sys-
tems,” ZAMM - Zeitschrift fr Angewandte Mathematik und Mechanik,
vol. 61, no. 12, pp. 605–615, 1981.

[2] ——, “Mechanical systems of rigid bodies subject to unilateral
constraints,” SIAM Journal on Applied Mathematics, vol. 42, no. 2,
pp. 281–296, 1982. [Online]. Available: http://link.aip.org/link/
?SMM/42/281/1

[3] D. Baraff, “Fast contact force computation for nonpenetrating rigid
bodies,” in SIGGRAPH ’94: Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques. New York,
NY, USA: ACM, 1994, pp. 23–34.

[4] K. Erleben, “Stable, robust, and versatile multibody dynamics ani-
mation,” Ph.D. dissertation, University of Copenhagen, 2005.

[5] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered
projections for frictional contact in multibody systems,” ACM Trans-
actions on Graphics (SIGGRAPH Asia 2008), vol. 27, no. 5, pp.
164:1–164:11, 2008.

[6] D. Stewart and J. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal of Numerical Methods in Engineering, vol. 39,
pp. 2673–2691, 1996. [Online]. Available: http://www.cs.rpi.edu/
∼trink/Papers/STijnme96.pdf

[7] J. Trinkle, “Formulations of multibody dynamics as complementarity
problems,” in Proceedings, ASME International Design Engineering
Technical Conferences, September 2003, vIB-48342 (no page
numbers in CD proceedings). [Online]. Available: http://www.cs.
rpi.edu/∼trink/Papers/Tidetc03.pdf

[8] N. Chakraborty, S. Berard, S. Akella, and J. Trinkle, “A
fully implicit time-stepping method for multibody systems with
intermittent contact,” in Robotics: Science and Systems, June 2007,
in press. [Online]. Available: http://www.cs.rpi.edu/∼trink/Papers/
CBATrss07.pdf

[9] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity
problems,” Nonlinear Dynamics, vol. 14, pp. 231–247, 1997.
[Online]. Available: http://dx.doi.org/10.1023/A:1008292328909

[10] M. Anitescu and G. D. Hart, “A constraint-stabilized time-
stepping approach for rigid multibody dynamics with joints,
contact and friction,” International Journal for Numerical Methods
in Engineering, vol. 60, pp. 2335–2371, 2004. [Online]. Available:
http://dx.doi.org/10.1002/nme.1047

[11] R. I. Leine and C. Glocker, “A set-valued force law
for spatial coulomb-contensou friction,” European Journal of
Mechanics - A/Solids, vol. 22, no. 2, pp. 193 – 216, 2003.
[Online]. Available: http://www.sciencedirect.com/science/article/
B6VKW-486GGK5-1/2/e957e6c9de637dbd56589d2a2f4ae6d8

[12] B. Mirtich, “Impulse-based dynamic simulation of rigid body sys-
tems,” Ph.D. dissertation, University of California, Berkeley, 1996.

[13] S. Berard, J. Trinkle, B. Nguyen, B. Roghani, V. Kumar, and
J. Fink, “daVinci code: A multi-model simulation and analysis
tool for multi-body systems,” in IEEE International Conference on
Robotics and Automation, April 2007, pp. 2588–2593. [Online].
Available: http://www.cs.rpi.edu/∼trink/Papers/BNRTFKicra07.pdf

[14] S. Berard, B. Nguyen, and J. Trinkle, “Davinci code.” [Online].
Available: http://www.robotics.cs.rpi.edu/dvc/

[15] J. C. T. Kevin Egan, Stephen Berard, “Modeling nonconvex con-
straints using linear complementarity,” Rensselaer Polytechnic Insti-
tute, Tech. Rep., 2003.

[16] J. Hu, J. E. Mitchell, J.-S. Pang, K. P. Bennett, and G. Kunapuli, “On
the global solution of linear programs with linear complementarity
constraints,” SIAM Journal on Optimization, vol. 19, no. 1, pp. 445–
471, 2008. [Online]. Available: http://link.aip.org/link/?SJE/19/445/1

[17] M. C. Ferris and T. S. Munson, “Path mcp solver.” [Online].
Available: http://www.cs.wisc.edu/cpnet/cpnetsoftware/

6

2321


