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Abstract— This paper develops and tests a novel rapid
updating technique for use with a nonlinear branch and bound
optimisation method, tailored for finding optimal trajectories
for a vehicle constrained to avoid fixed obstacles. The key
feature of the rapid updating technique developed is the ability
to increment and re-arrange the existing search tree reducing
the amount of computation taken to find a new plan. The rapid
updating techniques developed are combined into a receding
horizon control and compared to full cold start method. The
rapid updating technique demonstrated an average 62% solve
time improvement over a cold start. The rapid updating
method is also demonstrated for removal of obstacles from the
environment and very large scale problems with 60 obstacles.

NOMENCLATURE

(rx(t), ry(t)) Position at time t

(vx(t), vy(t)) Velocity at time t

(rx0, ry0, vx0, vy0)Initial position and velocity

(rx,m, ry,m) mth Collocation point

(rxT , ryT ) Target position

t0 Start time

tf Final time

(robs
x,p , r

obs
y,p ) Position of centre of obstacle p

Rp Radius of obstacle p

N The total number of obstacles

vmax, vmin Maximum and minimum speeds.

amax Maximum acceleration.

Ps Optimised path for a particular subproblem

Pinc Incumbent path

I. INTRODUCTION

This paper develops a rapid updating technique for single

vehicle trajectory optimisation from obstacle branch-and-

bound (OBB) path optimisation, previously developed by

the authors [1]. The OBB method’s key unique property

is the ability to solve for the globally optimal solution of

the nonconvex problem whilst retaining the full nonlinear

dynamics model of the vehicle. The original OBB method

however assumed all obstacles positions and radii were

known at the time of solving. This paper seeks to remove that

assumption allowing updating of the path with addition and

removal of obstacles as they are detected. These problems are

important for the control of autonomous Uninhabited Aerial
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Vehicles (UAVs) and air traffic management in free flight

operations [2], [3].

Many approaches have been investigated for solving path-

planning problems, all attempting some form of simpli-

fication to achieve practical computation. The fastest of

these include randomised searches [4]–[6] which rapidly find

feasible paths through fields of obstacles, retaining accurate

dynamics models but having no guarantee of optimality.

Also graph-based methods, such as Voronoi diagrams [7],

[8] or visibility graphs [9], approximate the trajectories as

joined line segments. The Mixed-Integer Linear Program-

ming (MILP) [10] approach indirectly uses branch-and-

bound optimisation, reformulating the problem in linearised

form and using powerful, commercial software to solve the

MILP problem. Commercial software such as CPLEX [11]

uses various branching strategies guided by finely-tuned

heuristics to solve generic MILP problems rapidly.

There are two elements to a generic branch-and-bound

method [12]: branching, where the problem is iteratively

divided into subproblems, partitioning the search space and

generating a search tree for the algorithm to traverse; Bound-

ing, where the amount of the search tree required to be

solved is reduced by putting a lower bound on any branch’s

solution and fathoming out branches where this lower bound

is worse than the best feasible solution found so far. The

global optimality of any solution obtained from a branch-

and-bound method is guaranteed assuming that the globally

optimal solution to each evaluated subproblem is found [13].

This globally optimal solution in a receding horizon problem

will only apply for the current horizon as information about

obstacles existing beyond the horizon is unavailable. In

receding horizon setups the problem is solved in detail to

a planning horizon, and then has a rough plan from the

planning horizon to the goal. The solution found is then

executed until the execution horizon which is within or equal

to the planning horizon. Once the execution is complete the

problem is then resolved from the vehicle’s new state within

its updated planning horizon. Receding horizon techniques

have commonly been employed alongside MILP trajectory

optimisation [9].

The rapid updating technique for OBB accommodates

changes in the environment while the path is being followed.

Specifically, if an obstacle is added or removed, the revised

globally optimal path for the remainder of the problem can be

found without starting OBB from scratch (or “cold start”).
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The key to rapid updating is the efficient management of

the search tree, enabling a search to be re-started on the

addition or removal of an obstacle. The incumbent node is re-

evaluated first, since the result is a good lower bound on path

length. This approach tries to maximize the preservation of

useful information from the previous solution, thus reducing

the number of other nodes to be revisited. More savings in

computation can be achieved by re-ordering the tree between

updates, as a good tree order reduces further the number of

nodes to be evaluated.

The paper is organised as follows. Section II describes the

problem statement. Section III briefly reviews the branch-

and-bound optimisation algorithm. Section IV details tree

re-ordering strategy. Section V details obstacle addition and

Section VI details obstacle removal. Section VII presents the

results of the rapid updating method and a comparison to a

cold start method. Finally, Section VIII presents conclusions.

II. PROBLEM STATEMENT

This paper considers the problem of finding the minimum

time path for a vehicle modelled as a “Dubins-like” car,

i.e. moving in two dimensions with limited rate of turn,

though with bounded speed. The velocity and positioning

relationships are linked by the following constraints:

vx(t) = ṙx(t), vy(t) = ṙy(t)

Speed is constrained between both minimum and maximum

bounds,

v2

min
≤ v2

x(t) + v2

y(t) ≤ v2

max

The acceleration is also bounded, effectively restricting the

turning rate:

|v̇x(t)| ≤ amax, |v̇y(t)| ≤ amax

The initial state is completely specified by the following

constraints:

r(t0) = (rx0, ry0)

v(t0) = (vx0, vy0)

and the terminal constraint is that the vehicle should reach

a specified target regardless of velocities at time tf :

r(tf ) = (rxT , ryT )

Finally, the obstacle avoidance is expressed as a minimum

distance from each obstacle centre. The method has been

demonstrated throughout with the use of circular obstacles:

(rx(t) − robs

x,p )2 + (ry(t) − robs

y,p )2 ≥ R2

p ∀t, ∀p

Overlaps can be accommodated [1] and arbitrary shapes can

be approximated by unions of ellipsoids. The final time tf
is constrained such that

tf ≥ 0

The objective is to find the minimum time path where the

elapsed time, tf − t0 is minimum:

J∗ = min tf − t0

This paper assumes that the objective is the shortest-time

path without loss of generality. The cost function is indepen-

dent of the branch-and-bound method and can be substituted

to solve a variety of problems such as those of minimum fuel

use and minimum risk [14]. The dynamics are discretized

using direct global collocation with Gaussian Radau points

for constraint enforcement [15], [16]. The position and

velocity profiles are parameterized by

r(t) =

ncol
∑

m=1

ψm

(

t− t0

tf − t0

)

rm

v(t) =

ncol
∑

m=1

ψm

(

t− t0

tf − t0

)

vm

where rm = (rx,m, ry,m) and vm = (vx,m, vy,m) represent

the values of the associated variables at collocation point m.

Function ψm is the mth Lagrange polynomial of order ncol

satisfying

ψm(τr) = δm,r

where τr is the rth collocation point and δm,r is the Kro-

necker delta and ncol is the number of collocation points used

to discretise the path. Thus, the path optimisation is approx-

imated by the finite dimensional optimisation with decision

variable P = {rx,1..rx,ncol
, ry,1..ry,ncol

}. The corresponding

conversion of the constraints is familiar and is covered in

detail in Refs. [15], [16] for example.

III. OBSTACLE BRANCH AND BOUND PLANNING

ALGORITHM REVIEW

This section presents full details of the sub steps of the

planning algorithm. Optimisation of the paths and choice

of branching strategy are available in [1]. Define a sub-

problem (A,P ) consisting of a set of active obstacles A ⊆
{1, . . . ,M} and an initial “diverted” path P that satisfies the

initial and terminal constraints and the avoidance constraints

for the active obstacles A but is not necessarily dynamically

feasible. The presence of P defines the clockwise/anti-

clockwise decisions for the active obstacles in that subprob-

lem. Pinc represents the incumbent path, i.e. the best feasible

path found so far as the algorithm progresses. Algorithm 1

details how these are used and updated.

Under the assumption that each path Ps is the optimal

solution to its corresponding subproblem, the properties of

the generic branch-and-bound algorithm hold [13] and at

termination, Pinc is the globally-optimal path.

IV. SEARCH TREE ORDERING

This section first illustrates the importance of tree ordering

for updating and then presents an algorithm to achieve good

ordering. Fig. 1(a) shows the optimal path from SI to SF

avoiding the obstacles, with the associated solution tree in

Fig. 1(b) and the optimal leaf node ringed. The branching

strategy has been carefully chosen to minimize solution

time [1] and in this case, obstacle 3 has entered the tree

last. Suppose now that the vehicle has reached point SP

and a change in the size or position of obstacle 2 has been
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Algorithm 1. Branch and Bound Path Planning
1. Pinc ← NULL

2. Set list of active subproblems to (∅, P0) where path P0 connects the start to the goal in a straight line

3. while list of active subproblems is not empty

4. do select a subproblem (A, Pi) from the list of active subproblems with the least incursion on an active obstacle and remove it from that list

5. solve the subproblem (A, Pi) for the shortest feasible path Ps avoiding active obstacles A

6. if path Ps intersects inactive obstacles {1, . . . , N} \A and Ps is shorter than Pinc

7. then select the first obstacle pb (the “branching obstacle”) intersected by path Ps

8. add (A⊕ {pb}, Pa) to the list of active sub-problems where Pa is a diverted path avoiding anti-clockwise around obstacle pb

9. add (A⊕ {pb}, Pc) to the list of active sub-problems where Pc is a diverted path avoiding clockwise around obstacle pb

10. else if path Ps is shorter than Pinc

11. then Pinc ← Ps

12.return Pinc
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(a) Path

(b) Original tree (c) Re-ordered tree

Fig. 1. Re-ordering tree to suit updating

detected. The search must restart at the point in the tree

where obstacle 2 was introduced, marked SP in Fig. 1(b).

Proceeding downwards, it will revisit decisions regarding

obstacle 3, despite the fact that they are irrelevant to the

remaining problem. However, suppose instead that the tree

has been re-ordered to the form in Fig. 1(c), in which the

obstacles appear in the order in which they are encountered

along the path. Now, the change found at SP involves a

smaller subtree, concerning only the relevant obstacles to

the remaining problem.

It is impossible to ensure that the initial solution generates

a tree ordered as in Fig. 1(c). For example, in Fig. 1(a), only

once constrained to pass left of both obstacles 1 and 2 does

the path intersect obstacle 3. Instead, it is necessary to re-

order the tree after the solution. This has no effect on the final

path: stating the vehicle must go to the left of obstacle 1 and

to the right of obstacle 2 is the same as stating the vehicle

must go to the right of obstacle 2 and the left of obstacle 1.

A node can be moved up the tree without any resolving as

long as the obstacle in question is totally present. Obstacles

which are not apparently present in subtrees are considered

in a state of flux. They exist within the problem but have

not been activated during Algorithm 1. We can therefore if

required enumerate and solve them to fill out the tree where

re-ordering requires.

Algorithm 2 defines the method behind re-ordering a tree

to a desired order. The algorithm is performed on the order

for the optimal path branch. Essentially, it swaps nodes until

the desired order is achieved. Once the initial solution is

complete, re-ordering can be performed as a background task

while the vehicle is moving, providing it is complete before

any changes are detected requiring an update to the path.

V. RAPID UPDATING FOR ADDITION OF OBSTACLES

Algorithm 3 describes the method used to add an obsta-

cle to a solved problem. The key advantage here is that

fathoming and tree restriction is used to try and minimise

the amount of the overall search tree that needs to be re-

evaluated. Previously discovered information is not discarded

by updates. A change to the incumbent path is only required

if the new obstacle intersects the path (Line 4). First, a simple

diversion of the incumbent either side of the new obstacle

is tried (Lines 5 and 6). Then, the subtree for the remaining

path is re-tested, to see if an alternative route could now be

better (Lines 7–12).

VI. RAPID UPDATING FOR REMOVAL OF OBSTACLES

This case, solved by Algorithm 4, is more complicated

than that of obstacle addition. Even if the removed obstacle

was not in contact with the incumbent path, an update may

be necessary: the removal may open up a route that was

previously suboptimal. Therefore the condition for an up-

date (Line 4) is based on whether the removed obstacle was

active or not, i.e. whether its presence had ever influenced

the solve process. It would then be possible to go back

to the nodes associated with the removed obstacles and

resolve those subtrees from scratch, but this would discard

potentially useful information regarding other obstacles in

the old subtrees. Instead, the algorithm tries to limit the

amount of data lost when pruning the obstacle out of the

search tree. It re-attaches re-usable subtrees if it can (Line 9)

and re-activates leaf nodes to resolve only the lowest level of

problems (Lines 12–15), rather than down a whole subtree.
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Algorithm 2. Tree Reordering Algorithm
1. Oe ← the desired order of nodes

2. Oc ← the current order of nodes

3. while Oe 6= Oc

4. do for i = length(Oc) : 1

5. if Oc(i) < Oc(i− 1)

6. then disconnect the child nodes of the nodes Oc(i) and Oc(i− 1).

7. swap the places of the nodes in the tree labelling Oc(i− 1) the new left child of Oc(i)

8. create an additional node Na branching on the same obstacle as Oc(i− 1) and label it as the right child of Oc(i)

9. reconnect the two out of the three children disconnected in step 6 to their appropriate parents either Na or Oc(i− 1)

10. if remaining unattached child node’s subtree does not contain the obstacle described in Oc(i− 1)

11. then if is the obstacle always passed anti-clockwise or clockwise throughout the subtree

12. then enumerate the obstacle to the side it is always passed on in the subtree and attach the child node to the relevant
parent out of Na or Oc(i− 1). Create an additional node Nb as the remaining child node.

13. else duplicate the subtree headed by the unattached child node and activate the obstacle described in Oc(i−1) and
Na attach the two child nodes one to each parent node and resolve leaf nodes.

14. else discard the subtree headed by the remaining unattached child node and create nodes Nc and Nd to place in the
remaining child slots of Na and Oc(i− 1)

15. swap Oc(i) and Oc(i− 1) in the overall list of Oc

Algorithm 3. Obstacle Addition Algorithm
1. pd ← the newly detected obstacle

2. Ninc ← the leaf node corresponding to the incumbent path Pinc

3. Nhead ← the node corresponding to the head of the subtree describing the remaining stretch of the incumbent path Pinc

4. if pd intersects the incumbent path Pinc

5. then branch on obstacle pd from node Ninc and evaluate the two newly created nodes Na and Nc.

6. Pinc ← the shorter of the two paths generated by Na and Nc

7. for all leaf nodes with Nhead as an ancestor

8. select a leaf node Ni

9. if the path described by Ni is longer than Pinc or the Ni is an infeasible path

10. then the node Ni is fathomed/inactive again and does not need to be resolved.

11. else the node Ni is reactivated to be resolved.

12. Resolve all active nodes using the standard branching algorithm with Pinc as the starting incumbent path.

13. return Pinc

Algorithm 4. Obstacle Removal Algorithm
1. pd ← the obstacle to be removed

2. Ninc ← the leaf node corresponding to the incumbent path Pinc

3. Nhead ← the node corresponding to the head of the subtree describing the remaining stretch of the incumbent path Pinc

4. if pd was active in the incumbent path Pinc

5. then Nremove ← the node which branched on pd and is an ancestor of Ninc

6. if Nremove has child nodes (to be known as Na and Nc)

7. then Nanc ← be the node out of either Na or Nc which is the ancestor of Ninc

8. if Na and Nc branch on the same obstacle

9. then replace Nremove in the tree with the subtree headed by Nanc and activate the leaf nodes of the subtree.

10. else pnext ← the next obstacle encountered by the path for Nremove if pd does not exist

11. if either Na or Nc branches on pnext

12. then replace Nremove in the tree with the subtree headed by either Na or Nc respectively and activate the leaf nodes of
the subtree..

13. else replace Nremove in the tree with the subtree headed by Nanc and activate the leaf nodes of the subtree.

14. Remove any other nodes with pd in the subtree headed by Nhead and activate any nodes which have changed.

15. Resolve all active nodes using the standard branching algorithm.

16. return Pinc

VII. RESULTS

The results in this section were generated using

MATLAB [17] for the algorithm implementation, and

SNOPT [18] as the nonlinear optimiser through an

AMPL [19] interface on a 2.4GHz PC with 2GB RAM.

The obstacle addition technique is combined with a receding

horizon method with varying sensor ranges. This is then

compared to an alternative method where instead of updating
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Fig. 2. Cumulative Solve Time Comparisons for 60 Obstacle Problem

the existing tree the problem is cold started from the new

position every time a new obstacle is sensed.

The results shown in Fig. 2 demonstrate a large scale

example where a 60 obstacle case with a sensor range of 10

units has been used. The path shown in Fig. 2(a) is the final

path found by the rapid updating method with the detection

radius at the current point shown by the dashed line. Fig. 2(b)

shows a cumulative time plot of the solve time for this

problem when solved by three individual methods. The first

using the rapid updating method has a low gradient with

many steps requiring no significant computation, due to the

added obstacles not intersecting the current path. Conversely

the second method, that of a cold start from the current point

each time a new obstacle is sensed, follows a far steeper

gradient and requires computation at every step, though

this tails off near the end as a clear path lies between the

current point and the goal. The full presolve uses the original

nonlinear branch and bound technique proposed in [1] and

assumes all obstacles are known before the problem begins.

All computation is done in the first step and no updates

take place after that. The overall solution time of the rapid

updating method remains closer to that of the full presolve

than that of the cold start. The rapid updating and cold start

methods will find the same path, however are not guaranteed

to find the same path as that of the full presolve since only

sensor information is known when solving.

The next set of results compare the differences in overall

solve time and the number of steps required for rapid-

updating and cold start implemented on 20 instances of 30

obstacles with sensor ranges varied between 5 to 20 units

in 5 unit steps (80 cases considered overall). Fig. 3 shows

the mean and standard deviations of the two methods over

the sensor ranges. Fig. 3(a) displays the differences in the

mean solve times of the 20 cases for each method and each

sensor range. The mean solve time for the rapid updating

method varies only marginally between the different sensor

ranges, because a large number of the obstacles added as the

sensor ranges grow do not require a full updated solve as

they do not interact with the path. Fig. 3(b) firstly highlights

that predominantly the number of update steps required to

solve the cases does not vary between the two methods (any

fractional differences relate to numerical rounding in the

simulation of the sensor). An update step occurs each time a

vehicle detects a new obstacle and since both methods find

the same solution they would encounter the same number of

obstacles from start to goal. Fig. 3(b) highlights the trade

off of sensor range and mean number of update steps for the

solution. Whilst the sensor range is small very few obstacles

are known initially so the initial solution will need more

updates during the trip to the goal. However a small sensor

range also will restrict the vehicle from detecting outlying

obstacles and thus reduce the number of updates to reach

the goal. Fig. 3(c) combines the previous two figures to

determine the mean time per update step, including the initial

step where multiple obstacles are detected and solved. Other

update steps will only introduce one obstacle at a time and

thus as the sensor range increases the standard deviation

of the time per step increases. Overall the rapid updating

method showed an average improvement of 62% of solve

time compared to the cold start method.

The final example shown in Fig. 4 demonstrates the update

steps of an obstacle problem involving obstacle removal. It is

presumed the vehicle either has an initial, inaccurate map and

a more accurate short range sensor. In the example shown

the problem was presolved with all the obstacles available.

Then as it progressed the short range sensor updates the

map and if needed the path will update using the obstacle

removal method proposed. Fig. 4(a) shows the initial solution

of the presolve with all the obstacles apparently known in

the map. The vehicle proceeds along this path until it detects

the absence of obstacle 1 (Fig. 4(b)). The obstacle removed

has no effect on the path so the vehicle continues until it

detects the absence of obstacle 2 (Fig. 4(c)). Obstacle 2 was

effectively blocking a hole in a wall of obstacles and with it

gone a faster route is presented. The vehicle adjusts its path

and proceeds to the goal (Fig. 4(d)). The problem took 6

seconds to update from the initial presolve compared to the

cold start update method which took 15 seconds to update

the same problem.

VIII. CONCLUSIONS

In this paper we have implemented a rapid path updating

technique, returning the optimal trajectory with dramatically

less solve time than a cold start. Re-ordering of the search

tree enables efficient restarting when needed. We have con-
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Fig. 3. Comparisons between Rapid Updating and Cold Start Techniques
with Variable Sensor Range

sidered the effects of sensor range on the effectiveness of

the technique and shown a trade off between solve time per

step and number of steps solved. We have demonstrated the

applicability of the technique on solving very large problems

and on obstacle removal.
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