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Abstract— Robotic vehicles operating in outdoor environ-
ments, commonly referred to as unmanned ground vehicles
(UGV), are confronted with unstructured/semi-structured envi-
ronments that are variable in nature. The geographical location
significantly influences the environment’s appearance, there are
longer term seasonal cycles, as well as immediate affects such
as the weather and lighting conditions. This environmental
diversity has long caused researchers considerable grief, as
developing a generalized terrain classification algorithm has
proven to be very difficult. Researchers have skirted this
problem by relying upon ranging sensors and constructing 2
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D

or, more recently, 3D world representations. Although geometric
representations have been used extensively orientation errors
limit the lookahead distance. An important UGV capability is
high speed traversal, hence extending the lookahead distance
that in turn increases the maximum attainable vehicle speed is
an active area of research. This focus on high speed traversal
in variable environments has pushed researchers to investigate
techniques that allow learning from experience, in a more
human like manner. This paper presents Defence R&D Canada
– Suffield’s progress in extending a 2

1

2
D world representation

using vision and learning to infer geometry.

I. INTRODUCTION

Early research in mobile robot navigation, targeting in-

door environments, focused on the construction of geo-

metric world representations [1], [2]. This approach was

later adapted to unstructured outdoor environments [3], [4].

The geometric representation approach produced robust and

reliable results upon which researchers could implement

obstacle avoidance and navigation capabilities [5], [6], [7].

Although a powerful technique, the geometric world repre-

sentation is not without limitations. The most significant lim-

itations, the shallow incidence angles for long ranges and the

orientation error, govern the accuracy of range registration.

Thus, the geometric approach with its limited lookahead dis-

tance produces a myopic world view [8], [9], [10]. This near

sightedness of typically 20 m hinders navigation and limits

the maximum attainable speed to 1 − 4 m/s, significantly

impairing a vehicles utility. The maximum speed limitation,

resulting from this approach, has been addressed in struc-

tured environments. Through the use of imagery, approaches

have been devised that allow for high speed road traversal

[11], [12], [13], [14], though these specific implementations

do not adapt to environmental changes. Techniques have been

developed that allow for the traversal of unstructured roads

such as trails or paths. These include visual techniques to

estimate the road shape [15], [16], up front learning ap-

proaches [17], [18], probabilistic techniques [19] and model

based approaches [20]. Researchers have also investigated

off road traversal using vision, tele-operator feedback, and

supervised learning [21]. Recently, researchers have tackled

the problem of environmental variability. These approaches

build upon multiple sensing modalities that limit the need

for a priori knowledge. Successful implementations correlate

imagery and range data to infer geometry [22], [23]. A

more common approach incorporates self-supervised learn-

ing, in which relationships between differing data sources

are learned in near real-time, thus, allowing the system to

adapt as the environment changes [24], [25], [26], [27]. The

need for real-time adaptation has also been identified by the

U.S. Defence Advanced Research Project Agency (DARPA)

and investigated in the Learning Applied to Ground Robots

(LAGR) project. This project targeted perception-based, off-

road navigation through the incorporation of learned be-

haviours [28]. Run as a competition in a manner similar to

the DARPA Grand and Urban Challenges, research groups

were challenged by fixed trials. This competition based

approach, although stimulating friendly competition, limited

the relevance of the results. With a narrow focus on percep-

tion based autonomy, the baseline hardware was supplied

and could not be modified. As a result, the researchers

were not allowed to investigate alternative sensing modalities

that may have been beneficial. For example, laser ranging

devices and multi-spectral cameras where not considered.

Additionally, the tight test schedules served as a disincentive

to pursue higher risk approaches. Even with these limitations

the project demonstrated that self-supervised learning can

improve navigation in unstructured terrain [29], [30], [31],

[32].

This paper details Defence R&D Canada’s (DRDC) on-

line, self-supervised learning algorithm that maps visual

features to their inferred geometry. The paper is divided

into five sections. Section II explains the motivations that

drive this research and Section III details the implementation.

Experimental results are provided in Section IV and the

report finishes with the conclusions given in Section V.

II. MOTIVATION

DRDC unmanned ground vehicles, similar to the vehicles

that competed in the DARPA Grand Challenge [33], [34]

operate in unstructured/semi-structured terrain that features

roads of various types, flat prairie and semi-rural settings.

Given the outdoor terrain and large, mobile vehicles, a key

research objective is high speed traversal.
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A. High Speed Traversal

High speed traversal poses unique challenges. Sensor data

must be acquired, processed and obstacles identified in real

time allowing the UGV to make decisions in a timely manner.

Speed significantly complicates this process as the traversal

distance is proportional to the vehicle’s speed.

1) Processing Time Window: The UGV has a finite time

window in which it must acquire sensor data, create a world

representation, identify obstacles, chose an action, and then

execute that action. Figure 1 shows a graphical representation

for a typical time window. The first four slices of the

time window, data acquisition, world representation, obstacle

identification and action determination, are independent of

vehicle speed1. The final time slice, the action execution, is

dependent upon speed as will be detailed in the following

section.

Aquire 
Sensor
Data

Time

Time Window

Representation
World Identify

Obstacles
Determine
Action

Execute
Action

Fig. 1. Process Time Window

B. Action Execution

When confronting an obstacle a UGV relies on two

strategies, either manoeuvre to avoid or stop. For high speed

traversal the first strategy is limited by the vehicle’s dynamic

stability and the ability to plan a safe trajectory. Although

manoeuvring to avoid obstacles is a desirable and necessary

capability, for reasons of safety most UGV’s are configured

such that an emergency stop will preclude all collisions.

Pivtoraiko et al. [35] have compiled normalized braking

force, Fb/mg, data obtained for an off-road vehicle during

the CMU PerceptOR program. These tests encompassed

vehicle speeds ranging from 1 − 4 m/s and a variety of

terrain slopes and surfaces. The vehicle controller behaved

akin to an anti-lock braking system, not allowing the wheels

to lock and thus maintaining steering. The normalized brak-

ing force, obtained in these off-road trials, ranged in value

from 0.15 to 0.45, much less than typical values reported

for passenger vehicle tires on dry asphalt, 0.71 [36] and

0.85 [37]. Stopping times and distances, computed using the

PerceptOR normalized braking force data, for a range of

vehicle speeds and terrain slopes are presented in Figure 2.

C. Sensing Limitations

In order to make timely decisions the world must be

represented at a range that is adequately distant from the

vehicle. The maximum sensing range or lookahead distance,

lmax, shown in Figure 3, is the maximum range at which an

obstacle, e.g., a step change in the height of the terrain, can

be detected.

1Assuming all other configuration parameters, such as the lookahead
distance, remain constant.
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Fig. 3. Laser Mounting Geometry

The Raptor UGV uses a Velodyne HDLaser rangefinder

as its primary sensor. Given a typical mounting height, h, of

roughly 2 m and a lookahead distance of 30 m, the incidence

angle, ϕ, is 3.8◦. A Novatel HG1700 Span INS provides pose

estimation, with an orientation accuracy of ±0.013◦. The

Velodyne HDLaser’s azimuth accuracy is ±0.09◦. Given a

moving platform, finite data acquisition and processing time,

interpolating to the exact orientation for each laser scan has

additional uncertainties that could degrade this accuracy by a

factor of 3 or more. Thus, orientation errors as large as ±0.3◦

are expected. At 30 m an error of ±0.3◦ corresponds to an

error in elevation of ±16 cm, a significant obstacle for the

Raptor UGV. Given typical braking distances of 20 − 25 m
at 36 km/hr, as shown in Figure 2, the 30 m sensing range

effectively limits the UGV’s maximum velocity to under

30 km/hr.

III. INFERRING GEOMETRY

A purely geometric representation limits a UGV’s looka-

head distance to approximately 30 m. This research extends

the lookahead distance by inferring geometry through a near-

to-far learning paradigm. It uses the local data, available

from laser rangefinders and visual images, to learn the re-

lationships between visual cues and the measured geometry.

The unique attributes of this approach include:
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• Generalized and self-supervised learning that occurs on-

line in real-time,

• Local to global feature mapping, where the local fea-

tures correspond to geometry and the global features

correspond to visual cues,

• The learning implementation has a memory, yet is

capable of forgetting and re-learning when applicable,

and,

• This implementation can learn trails and paths without

requiring human input or supervision.

Inferred geometry is an attractive approach as the result-

ing inferred geometry terrain map can be analyzed for

traversability using existing capabilities.

A. Visual Images

A visual image’s utility does not degrade with orientation

inaccuracy. As can be seen in Figure 4, the road extends

off towards the horizon and although the road is obvious to

the human observer, autonomous vehicles do not commonly

incorporate visual processing capabilities.

Fig. 4. Typical UGV Perspective

Vision researchers have developed numerous methods for

decomposing an image into regions or segments. Although

this process is relatively straightforward, a purely vision

based approach is confronted with interpreting the region’s

meaning. In structured environments a priori knowledge

is applied to extract meaning from analyzed images. In

outdoor environments the lack of structure, and hence a

priori knowledge, poses a conundrum for researchers. Using

two sensing modalities this conundrum can be surmounted

as shown by Dahlkamp et al [25]. Under this approach the

trapezoidal region is analyzed flatness and drivability using

laser range data. Once identified the region is assumed to

be a road and provides data for a computer vision algorithm

that classifies the entire image as either drivable or not.

B. Self-Supervised Inferred Geometry

This research implements a generalized, self-supervised

inferred geometry technique. The essence of this approach

is:

• Local features are available that are reliable and rele-

vant,

• Global features, extending beyond the local context, are

available but their relevance is uncertain,

• Learn the relationship between the global and local

features harnesses the global feature’s predictive power

by extending the locally relevant features into the global

space.

Figure 5 is a graphical representation. The process that

learns the relationship between the local and global features

may take many forms. For on-line self-supervised systems

the learning algorithm must have near real-time capabilities.

Data Data

Local Features
Mapped into  Global Space

Local Features Global Features

Self−Supervised
Learning

Fig. 5. Self-supervised Systems

1) Locally Weighted Learning: Self-supervised learning’s

power comes from its ability to learn relationships in real-

time, allowing a UGV to adapt to environmental changes

as it drives. Although numerous learning techniques exist,

many are computationally intensive and not well suited

for real-time implementations. Additionally, most learning

algorithms struggle with integrating old and new training

data. Locally weighted learning [38] is a form of lazy

learning or memory-based learning well suited for real-

time implementation. This technique defers processing the

training data until a query occurs, at which time it searches

the database for relevant data. Data relevance is measured

by a distance function, with nearby points assigned a higher

relevance value. Using the relevant data and a statistically

based approximation function, the response to the query

is determined. Given that only relevant data is used, the

approximation function is local and, hence, relatively effi-

cient. This approach is markedly different from most learning

methods, which generally use a computationally expensive,

single global model for all training data.

C. Implementation

This technique uses near-to-far learning where local fea-

tures are situated close to the vehicle, while the global

features are ubiquitous.

1) Local Features: Range data, acquired from a laser

rangefinder, are fused into a 2 1

2
D terrain map, where the

map is a rectangular array of regions and each grid element

captures the terrain elevation. These measured terrain eleva-

tions are the local features.

2) Global Features: Global features are extracted from

imagery. A camera is a suitable sensor for this task as its field

of view extends to the horizon, as can be seen in Figure 4.

Colour is an obvious choice to represent global features and

in this implementation colour is used, but not directly at the

image pixel level. Instead the technique uses a colour map,

which fuses colour information into a grid map structure

where each grid element encodes the mean RGB colour of

the given terrain patch.
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3) Near-to-Far Learning: Under this paradigm, the re-

lationship between local and global features is learned on-

line and in near real-time. Although this approach is similar

to the Dahlkamp [39] technique, it makes no assumptions

about which terrain is or isn’t a road. It simply learns

the relationship between colour and geometry. In order to

learn the relationship between these features there must be a

correspondence between the two feature types; the left frame

of Figure 6 visually shows this correspondence.
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Fig. 6. Correspondence between Maps

The terrain map, shown in yellow, is defined by a square

20 × 20 m2 grid. The camera’s field of view is denoted

by the partially obscured red trapezoid. The region shown

in cyan is the colour grid map, the region where there

is correspondence between the terrain and colour maps.

The colour grid map’s shape is defined by the camera’s

horizontal field of view and is limited by the maximum

practical depth 2. Once the relationship between colour and

elevation has been learned, an extended 2 1

2
D terrain map can

be created. The inferred terrain map geometry is displayed

in the right frame of Figure 6. The partially obscured region

in yellow represents the terrain map derived from range data.

The region in cyan represents the extended terrain map that is

constructed from inferred geometry. Note, the inferred terrain

map has dimensions of 50 m2.
4) Learning Elevation and Colour Correspondences:

The first step in the near-to-far learning process is learning

the relationship between colour and elevation. As shown

in the right frame of Figure 6, the 2 1

2
D terrain map and

the colour map have an overlapping region, shown in cyan,

where both colour and elevation data are present. Both

the terrain map and the colour map are regularly spaced

grids of size 0.2 × 0.2 m2. The maps are co-registered,

thus a given grid index specifies the same terrain patch

in either maps. Locally weighted learning determines the

relationship between elevation and colour. The steps required

to implement this technique are:

• Create a terrain map of elevations,

• Create a colour map that stores mean RGB colour

values,

• Update the database of elevation points and the corre-

sponding colour,

2This is determined by the baseline and pixel density, and for the
Bumblebee stereo camera this depth is approximately 12 m.

• Query the database for the elevation data associated with

a given pixel and predict the elevation, and,

• Update the inferred terrain map, using the pixel co-

ordinate and elevation.

a) Update the Database: This locally weighted learn-

ing implementation requires a database of colour/elevation

tuples. It uses a k-d tree for the database, since the k-d

tree’s data storage allows for the speedy retrieval of data

within the neighbourhood of the query point. The database

is built upon the open source libkdtree++ [40] library. Each

grid element in the colour map that has a defined colour,

(r̄ij , ḡij , b̄ij), for which the terrain map has an elevation,

z̄ij , forming a tuple, [(r̄ij , ḡij , b̄ij), (z̄ij)], the basic data

element in the k-d tree. When new data is acquired the k-d

tree database grows, as tuples are added. Locally weighted

learning delays learning until a query is made into the

database. Even though a k-d tree allows for the fast and

efficient retrieval of data, care must be taken to limit the

database’s size. Unrestricted growth in the database size will

exponentially increase the query time, and given a UGV’s

real-time requirements the database size must be limited to

a manageable size. Restricting the colour space is the primary

means of managing the database size. A 5 bit colour space

has (25)3 = 32, 768 possible colour combinations, while

6 bit colour encompasses (26)3 = 262, 144 combinations.

Additionally, the database is not allowed to contain duplicate

colour space entries. This not only assists in limiting the

database size, but also prompts the system to forget stale

information.

b) Inferring Geometry from Colour: For each camera

pixel, (ui, vi), determine the (xi, yi) coordinate. The coor-

dinate for each pixel is precalculated at startup, assuming a

flat world model, and the results are stored in a pseudo-range

sensor3. Then determine the inferred elevation as shown in

Figure 7.
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Extended
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Image Sensor

(xi, yi)
Coordinate
Camera Frame

(u1, v1), (x1, y1)
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(un, vn), (xn, yn)

CTM

Camera to Map Frame

Query

Predict zi
Database

(xi, yi, zi)

Apply Pose

Fig. 7. Inferring Geometry from Colour

Query the k-d tree with the pixel (ri, gi, bi) colour and

retrieve the estimated elevation. Finally, update the inferred

terrain map with the (xi, yi, zi) data. In this manner, the

inferred terrain map is populated with elevation values, thus

creating a map representation using inferred geometry.

3Given the pseudo-range sensor features high range densities for near
distances, it can be filtered to reflect a uniform, lower density, hence
reducing the computational burden.
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IV. RESULTS

A. Setup

Experiments were conducted using the following setup:

the Raptor UGV shown in Figure 4, a Velodyne HDLaser,

a Point Grey BumbleBee2 Stereo camera, and a Novatel

HG1700 Span INS. For these experiments the real-time data

from all devices was logged using the Miro logging facility

[41]. This logged data included all laser range data, raw

camera images, rectified camera images, disparity images

and the vehicle’s pose. The logged data was then played back

through the geometrical terrain map and an inferred map

was created using the inferred geometry process described

in Section III.

B. Inferred Geometry

Figure 8 shows a typical outdoor road. This road is

characterized by gravel track and vegetation in the centre and

at the margins and extends eastward towards the horizon.

Fig. 8. Typical Suffield Track

Using the range data from the laser a 2 1

2
D terrain map

is constructed. The map extends 30 m in front of and to

either side of the vehicle, as shown in (a) of Figure 9. In this

figure, elevation is denoted by colour, where the spectrum red

→ yellow → green represents lower to higher elevations.

The road, the ditches and the exit are clearly identifiable

in the terrain map. The inferred 2 1

2
D terrain map, created

by mapping image colour to geometry, shown in slide (b)

extends the map’s range to 60 m. In this map, the road,

shown in green, is visible as it extends towards the horizon;

the ditches on either side of the road are shown in yellow/red.
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Fig. 9. Road Inferred Terrain Map Results

The slides in Figure 10 show the inferred terrain map

results for an exit leaving the road. Although the exit is only

partially represented in the terrain map, it is visible in the

inferred map. Also of note is that the road and ditches are

not well defined under the inferred terrain map.
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Fig. 10. Trail Inferred Terrain Map Results

Figure 11 shows the inferred terrain map along a trail

where the field to the right is elevated and on the left the field

is depressed. In this case, although the trail is recognizable,

the delineation for ditches and fields are poor. In the image

scene green represents both low and high elevations. Since a

given elevation can only be associated with a unique colour

all green coloured terrain is inferred as elevated, as this is

the last association in the k-d tree.

Using a 5 bit colour space, the overall time required to

update the database and produce an inferred geometry terrain

map is approximately 1.5 sec ±0.5 sec. Although this time

varies depending on the data set, it is close enough to the

near real-time performance required for high speed traversal.

V. CONCLUSIONS

Defence R&D Canada – Suffield has developed a self-

supervised learned trafficability technique that infers geom-

etry from visual imagery. Using visual images and laser

range data, this technique learns the relationship between

colour and geometry in real-time. This technique’s reliance

on self-supervision allows the implementation to adapt to

environmental changes as the vehicle moves.

Geometric world representations, such as terrain maps,

based upon range data, tend to be too myopic to support

high speed traversal. For common UGV platforms the inter-

play between geometry and orientation accuracy limits the

maximum lookahead distance to roughly 20 − 30 m. Using

inferred geometry an extended terrain map has been created

that effectively doubles the lookahead distance. In turn, this

enables higher traversal speeds since traversable terrain can
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Fig. 11. Trail Inferred Terrain Map Results

be identified at longer ranges, giving the vehicle more time

to execute an appropriate response.

The technique described in this paper uses locally

weighted learning to learn the relationship between colour

and geometry. Using the learned relationship between colour

and geometry, this research extended the Raptor UGV’s

maximum lookahead distance from 30 m to 60 m. Experi-

ments have shown that under this approach, a road can be

represented at ranges out to 60 m, even though the laser

rangefinder only scanned out to 30 m. Additionally, given the

technique’s inferred geometry basis, the ability to represent

the road was an inherent capability and was not the result of

any special or specific assumptions. Inferred geometry will

work with other types of environments such as highways,

roads, paths or open prairie, as long as there are features

with distinguishable colours. The implementation operates

under near real-time conditions, and can produce an inferred

terrain map approximately every 1.5 sec. Given a vehicle

speed of under 10 m/s and a lookahead distance of 60 m,

this performance is adequate.

This technique has been implemented on the DRDC

Raptor UGV. Thus far, only the ability to create inferred

geometry terrain maps has been tested. Future work will

investigate techniques that will exploit this longer range map,

thus, enabling higher UGV traversal speeds.

The current inferred geometry implementation is depen-

dant on colour differences between features, thus its per-

formance will degrade when distinguishing colours are not

present. To reduce the impact of such colour invariant

environments, DRDC researchers are adding multi-spectral

capabilities to the technique. This will augment the global

feature set with additional spectral bands. Additionally, it is

expected that lookahead distance can be extended beyond

60 m and that further optimizations will reduce the time

period required to generate an inferred terrain map.
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