
  

  

Abstract—Constrained trajectories for a formation of N 
aircraft are optimized in terms of kinetic energy, fuel and 
energy consumption. Each aircraft moves from an initial 
position, converges to an assigned waypoint, unique for the 
formation, passes through m assigned waypoints, avoids a 
designated area and finally passes through a given surface. 
Airplanes are modeled as 3DOF point masses that always 
maintain a minimum distance between them. Most of the 
solutions are in closed form and their optimality is guaranteed 
by necessary and sufficient conditions. 

I. INTRODUCTION 
N a complex tactical and rescue mission, the members of a 
formation of aircraft typically have to accomplish four 

relevant tasks: T1) leave assigned initial positions and pass 
through a waypoint unique for all the vehicles, T2) intercept 
m distinct waypoints, T3) avoid a no-fly zone between two 
consecutive waypoints and T4) fly through a given surface. 
The formation must also be kept as tight as possible while 
minimizing a cost index and avoiding collisions. 

This sort of complex mission planning is often addressed 
with purely numerical solutions in which trajectory 
parameterizations are often selected arbitrarily, with no 
relevance to the cost index of interest. The approach 
presented herein instead uses Calculus of Variations (CV) to 
construct trajectory parameterizations that guarantee the 
optimization of a cost index, thus eliminating the heuristics 
associated with arbitrary parameterizations.  Furthermore, 
employing the necessary and sufficient conditions provided 
by CV, some of the solutions to the path planning problem 
can result in analytical closed form [1]. 

The optimal path planning problem for formations of 
aircraft has been widely investigated in the past decades and 
several approaches have been attempted. Among the most 
valuable ones it is worth to remind the games theory, used to 
model conflict scenarios where two or more players compete 
to achieve a predefined target [2], [3]. Although 
computationally demanding, genetic algorithms 
demonstrated to be quite promising in addressing the 
trajectory generation problem for large formations as shown 
for instance in [4] and [5]. A more classical approach is 
represented by dynamic programming, which shares the 
same foundations with CV although its numerical aspects 
have been more exploited than the analytical ones [6]. 
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A possible numerical technique to avoid collisions is to 
wisely select the positions and velocities of waypoints along 
trajectories [7], [8]. In the formulation exposed herein the 
waypoints are specified a priori and for synchronous 
missions they even induce collisions between the members 
of the formation, as for T1. By employing CV, instead, we 
show how collisions are always guaranteed to be avoided. 
Moreover, for T3 we show how to use CV to optimally 
switch between optimal systems and how to verify that the 
optimality conditions for switching points are met. 

In this paper the problem of planning the trajectory of a 
formation of N aircraft for the tasks T1-T4 is addressed 
optimizing the kinetic energy, fuel, and energy consumption. 
Solutions provided are modular, in the sense that a new 
mission can be created by arranging in a different order the 
tasks or suppressing some of them. 

The paper is structured as follows: par. II and III provide 
the physical and the mathematical background of the 
problem, par. IV and V present analytical and numerical 
results achieved and finally par. VI draws the conclusions. 

II. PHYSICAL BACKGROUND 
Fixed an inertial reference frame, the generic i-th aircraft, 

schematized as a 3 DOF point mass, can be uniquely 
identified by the position vector ( ) 3

ix ⋅ ∈ . Define 

( ) ( )i iv t dx t dt= , ( ) ( )i ia t dv t dt= . The acceleration 

induced by the controllers is ( )cia ⋅  and ( ) ( )ci cia t dv t dt= . 
The formation moves in a constant gravity environment 
whose acceleration is g. Assuming that all aircraft are 
identical, the accelerations due to aerodynamic forces are 

( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆT
a D L Sa t v t v t k v t k v t k v t⊥ ×= − + +  where 

/ /
/ / 2

D L S
D L S

SC
k

m
ρ

= , ρ is the air density, S is the reference 

area, CD/L/S are the drag/lift/side force coefficients, ( )v̂ ⋅ , 

( )v̂⊥ ⋅ , and ( )v̂× ⋅  are the corresponding velocity unit vectors. 
Mutual aerodynamic interferences are neglected and 
superposition yields ( ) ( ) ( )i ci aia t a t a t g= + + . 

III. MATHEMATICAL BACKGROUND 
Kinetic energy consumption is modeled as 

( ) ( )2

1

t T
i ci cit

J v t v t dt= ∫ , energy consumption as 
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( ) ( )2

1

t T
i ci cit

J a t a t dt= ∫ , and fuel consumption as 

( ) ( )2

1

t T
i ci cit

J a t a t dt= ∫ , where  t1 and t2 define a fixed time 

interval to move between  waypoints. Minimization of the 
cost functionals Ji belongs to the family of unconstrained 
endpoint problems known as the problem of Lagrange [9]. 

Given ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1 1 2 2, | ,i i i ipy C t t y t y y t yΩ = ⋅ ∈ = = , 

where { }0,..., 1i p∈ − , ( ) [ ]1 2: , ny t t⋅ ⊂ → ,  ( )
1

iy  and 
( )
2
iy  are given, define the cost index

 
( )( ) ( ) ( ) ( ) ( )( )2

1

', , ,...,
t p

t
J y f t y t y t y t dt⋅ = ∫ , where ( ) ( )py ⋅  

is the p-th derivative of ( )y ⋅  with respect to t. The Problem 

of Lagrange aims at finding ( )*y ⋅ ∈Ω  such that 

( )( ) ( )( )*J y J y⋅ ≤ ⋅ . Euler Necessary Condition (ENC), 

Legendre Necessary Condition (LNC), Weierstrass 
Necessary Condition (WNC) and Jacobi Necessary 
Condition (JNC) and associated sufficient conditions 
contribute in determining local and global minima [1]. 

Collision avoidance can be accounted for by the theorem 
of multipliers as in par. A. Avoiding a no-fly zone can be 
modeled as an endpoint problem with inequality constraints, 
as in par. B. Finally, assuming that an endpoint lies on a 
given surface is a point to surface problem as in par. C. 

A. The Theorem of Multipliers 
This theorem restates the ENC [1] in integral form for the 

constrained Problem of Lagrange [9], [10]. Consider the 
problem of Lagrange and constrain it with q n< functions 

( )( ),i t y tφ  such that ( )( )*, 0i t y tφ = , i=1,…q. If ( )*y ⋅  is a 

local minimum for ( )J ⋅  on Ω, then there exist multipliers 

0λ , ( )1λ ⋅ ,..., ( )qλ ⋅  such that ( )0
1

0
q

i
i

tλ λ
=

+ ≠∑ , [ ]1 2,t t t∀ ∈ , 

and ( )*y ⋅  is also an extremal for the cost index 
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2
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it

f s y s y s s s y s dsλ λ φ
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑∫L  (1) 

 

B. Endpoint Problem with Inequality Constraints 

Let ( ) [ ]1 2: , nt tϕ ⋅ ⊂ →  be a constraint function of 

class pC . Finding ( )*ŷ ⋅ ∈Ω  such that ( )( ) ( )( )*ˆJ y J y⋅ ≤ ⋅ , 

( )y∀ ⋅ ∈Ω  and such that ( ) ( )*ŷ ϕ⋅ ≥ ⋅ , where the inequality 
is meant component-wise, is the scope of the endpoint 
problem with inequality holonomic constraints. A useful 
result to address this problem is given next [11].  

Lemma 1  If ( )*y ⋅  is an extremal for the corresponding 

unconstrained endpoint problem and violates ( )ϕ ⋅  for some 

( ) [ ]3 4 1 2, ,t t t t t∈ ⊂ , then ( ) ( )*ŷ t tϕ=  in ( ) ( )5 6 3 4, ,t t t t⊆  

and ( ) ( )* *ŷ t y t=  elsewhere [11]. 
Points t5 and t6 determine the location of the switching 

points. Lemma 1 defines the switching points but not how to 
choose them. The following theorem is useful for this issue. 

Theorem 1 Let ( )*y ⋅  be an extremal of ( )( )J y ⋅ , then 

the optimal switching point is located at ts such that 
 
 ( ) ( )* ands sy t tϕ=  

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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where ( ) ( ),...,if ⋅ ⋅  is the derivative of ( ),...,f ⋅ ⋅  with respect 

to the i-th argument [11]. 
Both for Lemma 1 and Theorem 1, ( )*y ⋅  just needs to be 

an extremal for ( )( )J y ⋅ , i.e. it needs to satisfy the ENC [1]. 

C. Point to Surface Problem 
This is a variant of the problem of Lagrange and only the 

relevant differences from the endpoint problem [1] will be 
highlighted. Assume one of the endpoints lies on a smooth 
surface ( )( ) 0S z t = , where ( ) : nS ⋅ → . For the problem 

addressed herein let p=2 and n=3. Therefore define 

( ) ( ) ( ) ( ) ( )( ) ( ){ }2 * ' * '
1 1 2 2 2| , 0,i i

S y C y t y S y t y t y∞Ω = ⋅ ∈ = = = , 

{ }0,1i∈ , ( ) [ ) ( ) ( ){ }2 2
1 1 1: , | , ,nC y t y C t T T t∞ = ⋅ +∞ → ⋅ ∈ ∀ > , 

and *
2 1t t> . The scope of the problem of Lagrange now, is to 

find ( )* Sy ⋅ ∈Ω , such that ( )( ) ( )( )*J y J y⋅ ≤ ⋅ . ENC, LNC, 

JNC, and WNC developed for the original problem of 
Lagrange, still hold but their boundary conditions become 
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where { }1,...,j n∈ , λ  and μ  are arbitrary constants, iy  is 

the i-th component of the vector ( )y ⋅ , 

( ) ( ) ( )( ) ( ) ( ) ( )( )
* *
2 2

' '' ' ''
* * * * * *

' ''
*

, , , , , ,
j

j j
t t t t

f t y t y t y t f t y t y t y td
dty y

= =

∂ ∂
ϒ = −

∂ ∂

 The final time *
2t  is determined from (3). 

IV. FORMATION PATH PLANNING 
To keep the formation tight and model the collision 

avoidance constraint, we impose that ( ) ( )
2i j ijx t x t r− = , 

where ijr ∈  is given. For the present study, the only way 
to accomplish T1 is to let all the aircraft pass through the 
unique assigned waypoint one at the time; the remaining 
tasks do not require the elements of the formation to alter 
this initial order. Then the i-th aircraft has to keep a given  
distance ri(i-1) from the (i-1)-th aircraft impling a chief-
deputy logic between two consecutive aircraft as justified in 
par. A. Applying the theorem of multipliers the path 
planning problem reduces to finding the minimizers for 

  

 ( ) ( ) ( )( )2

1

2 2
0 1 12

t

i i i i i i i i
t

I J x t x t r dtλ λ − −= + − −∫  (4) 

 
where we assume that λi is a nonzero constant. A discussion 
about the choice of the multipliers is beyond the scope of the 
present paper but a survey is provided by [15]. Another way 
to address collision avoidance is presented in [2], where the 
unconstrained problem is considered and collision avoidance 
is achieved once the cost index Ji is optimized. 

A. Optimal Trajectories Through  m+1 Waypoints 
Tasks T1-T2 are addressed in this paragraph. 
Theorem 2 (Consumed Kinetic Energy Optimization) 

Assuming that g=0 and ( ) 0aia t = , the index Ii  associated to 

( ) ( )2

1

t T
i ci cit

J v t v t dt= ∫  through (4), is optimized by 

 
 ( ) ( ) ( )( )* * *

1ci i i ia t x t x tλ −= −  (5) 

 
where the * denotes the candidate minimizer for Ii. 

Proof  (brief): Employing the theorem of multipliers one 
can specialize (4) and then prove that 0 0iλ ≠ . As in [1], the 

ENC applied to ( )( )i iI x ⋅  leads to (5). The Strengthen LNC 

is verified because the second variation of the integrand of Ii 
at ( )ix ⋅  is 2 0ℑ  , where ℑ  is the identity matrix and the 
curly inequality indicates that the matrix is positive definite 
on n . Consequently, the integrand of Ji, ( ) ( )T

ci civ v⋅ ⋅  , as 

well as any extremal of Ii , ( )ix ⋅ , are regular. 

The accessory problem consists in finding 1ct t≠  and 

( )η ⋅  not identically zero such that 
 
 ( ) ( ) ( ) ( )''

1, 0, 0.i ct t t tη λη η η= = =  (6) 
 
If 0iλ > , tc does not exist and therefore the strengthen 

JNC holds for any interval [ ]1 2,t t . If 0iλ < , then 

2 1 it t π λ− ≤ −  for the strengthen JNC to hold.  
Thus, if the strengthen JNC holds, the sufficient condition 

for local minima [1] is verified and therefore the chosen 
control law is proven to actually provide a local minimum 
for the assigned cost index. Since the integrand of Ii is 
convex, the trajectory found is a global minimum [1], [16]. 

Theorem 3 (Consumed Energy Optimization) Assuming 

that g=0, ( ) 0aia t = , and ( ) ( )2

1

t T
i ci cit

J a t a t dt= ∫ , according to 

the boundary conditions Ii  can be  globally optimized by  
 

 ( ) ( ) ( )( )
1 1

* * *
1 2 1

t

ci i i i i it t
a t k t k x s x s dsd

τ
λ τ−= + + −∫ ∫  (7) 

 
where k1i and k2i are integration constants. 

Proof (brief): By the strong analogies between the energy 
consumption and the kinetic energy cost indices, eq. (7) is 
deduced as (5) in Theorem 2. The strengthen LNC holds as 
well. A solution to the accessory problem depends on iλ and 
on the velocity and acceleration of the i-th aircraft at t1. If 
the strengthen JNC holds, then the sufficient condition for 
local and global minima are verified. 

Theorem 4 (Fuel Consumption Optimization) Assuming 
that g=0 and ( ) 0aia t = , candidate optimizers for the cost 

index ( ) ( ) ( ) ( ) ( )( )2

1

2 2
1 12

t T
i ci ci i i i i it

I a t a t x t x t r dtλ − −
⎡ ⎤= + − −⎢ ⎥⎣ ⎦∫  are 

solutions of 
 

 ( ) ( ) ( )( )
1 1

* * *
1 2 1ˆ

t

ci i i i i it t
a t k t k x s x s dsd

τ
λ τ−= + + −∫ ∫  (8) 

 
where ( )ˆcia ⋅  is the unit vector of ( )cia ⋅ . 

Proof (brief): Employing the theorem of multipliers one 
can prove that 0 0iλ ≠ . The ENC applied to Ii leads to (8). 
The LNC, but not the strengthen LNC, holds as the second 
variation of the integrand of Ii with respect to ( )cia ⋅  is 

positive semidefinite for any interval [ ]1 2,t t . Sufficient 
conditions for weak local minima require the strengthen 
LNC to be verified. Thus any solution to (8) can be a 
candidate optimal trajectory only. 

Further sufficient conditions still represent an open field 
of research in Calculus of Variations [17], [18]. 

B. No-Fly Zone Avoidance 
The beginning and the end of the no-fly zone for each 

aircraft of the formation are characterized by the m-th 
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endpoint from task T2 and the first endpoint of task T4 
respectively. Our approach imposes selecting analytical 
shapes to model no-fly zones. We assume that the no-fly 
zone is an infinite cylinder of radius r: 

( ) ( ) ( )ˆ cos sin
T

t r t t hϕ = ⎡ ⎤⎣ ⎦ , where h is a suitably large 

constant. For simplicity the constraint can be normalized as
( ) ( )ˆ rϕ ϕ⋅ = ⋅ . Using eq. (2) in the numerical simulations of 

par. V it is possible to find the location of the optimal 
swiching points reminding that p=1 for the kinetic energy 
optimization and p=2 for the other indices. 

C. Optimal Trajectories for the Point to Surface Problem 
The optimization of the trajectory of the formation for the 

task T4 is addressed solving the problem of Lagrange for the 
Point to Surface problem, where the surface is a plane. 

Theorem 5 (Consumed Kinetic Energy Optimization) 
Assuming that g=0 and ( ) 0aia t = , eq. (5) globally 
optimizes the trajectory of the i-th element of the formation  
in terms of the kinetic energy while performing task T4. 

Proof (brief): ENC, the strengthen LNC, and the 
strengthen JNC have been proven to hold in Theorem 2. 
Therefore eq. (5) and the following considerations still hold 
but the boundary conditions have to be modified imposing 
(3). Because the equation of motion cannot be integrated 
analytically, *

2t  has to be evaluated numerically. Numerical 
simulations for the mission scenario considered in par. V 
show that *

2 2t t≤ , where t2 is the maximum final time to 
accomplish task T4.  

Theorem 6 (Consumed Energy Optimization) Assuming 
that g=0 and ( ) 0aia t = , eq. (7) may optimize the trajectory 
of the i-th element of the formation  for the energy 
consumption while performing task T4. 

Proof (brief): As for Theorem 3, ENC, the strengthen 
LNC, and the strengthen JNC hold and therefore eq. (7) can 
be the global optimizer also for task T4 using as boundary 
conditions (3).  Numerical simulations show that * 2t t≤ . 

Theorem 7 (Fuel Consumption Optimization) Assuming 
that g=0 and ( ) 0aia t = , eq. (8) provides candidate 
optimizers for the trajectory of the i-th aircraft in terms of 
fuel consumption while performing task T4. 

Proof (brief): By applying the ENC eq. (8) is obtained as 
in Theorem 4. The LNC holds but not its strengthen 
formulation as in Theorem 4. Therefore any solution to (8) is 
a candidate optimal solution only. Tackling the Point to 
Surface Problem, the boundary conditions are given by (3). 

V. NUMERICAL SIMULATIONS 
For the sake of clarity, a formation of only three aircraft is 

considered: the chief (C), the first deputy (FD) and the 
second deputy (SD). All quantities are non-dimensional. For 
each cost index, the vehicles leave from the positions (-1,-
1,1), (-2,-2,3) and (-3,-3,2) respectively, pass through 

(0.1,0.1,0.1) of the inertial reference system (Task T1), pass 
through the waypoints (3,3,3), (2,2,2) and (2,2,1) 
respectively (Task T2), avoid a no-fly zone represented by 
an infinite cylinder of radius 1 parallel to the z axis and 
passing trough (4.5,2,0) (Task T3) and finally reach the 
planar surface defined by x=10 from (7,2,-2), (7,2,0) and 
(7,3,1) respectively (Task T4). Hereafter are reported the 
trajectories of all the tasks optimizing cost indices selected. 
The time interval [T1 T2] assumed for each task is always 5. 

The minimum distance imposed between the airplanes is 
0.5 and this constraint is always respected. 

 
Fig. 1:Kinetic Energy Optimization – Tasks 1 and 2 

 

 
Fig. 2: Kinetic Energy Optimization – Task 3 

 
For the consumed kinetic energy optimization it was 

numerically established that the trajectory of the Chief 
Aircraft has switching points at (4.31, 3.12, -1.22) and (5.45, 
3.23, -1.64), the trajectory of the FD has switching points 
(4.34, 3.21, 0.13) and (5.43, 3.17, -0.05), the trajectory of the 
SD has switching points (4.13, 3.03, 1.02) and (5.49, 3.01, 
0.97). The corresponding trajectories are depicted in Fig. 1 - 
Fig. 3. Note that the trajectories lie on the surface of the 
cylinder that represents the no-fly zone (Fig. 2). 
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Fig. 3: Kinetic Energy Optimization – Task 4 

 
For the consumed energy optimization, the simulations 

provided the following results. 

 
Fig. 4:Energy Consumption Optimization – Tasks 1 and 2 

 

 
Fig. 5: Energy Consumption Optimization – Task 3 

 
The trajectory of the Chief Aircraft has switching points at 

(3.57, 1.12, -1.87) and (4.46, 1.94, -1.93), the trajectory of 
the FD has  switching points (3.71, 1.28, -0.33) and (4.48, 
1.95, -0.24). However the trajectory of the SD does not have 
switching points. Fig. 4 - Fig. 6 illustrate the trajectories. 

 

 
Fig. 6: Energy Consumption Optimization – Task 4 

 
Lastly, for the optimization of fuel consumption we 

obtained the following results. 

 
Fig. 7: Fuel Consumption Optimization – Tasks 1 and 2 

 

 
Fig. 8: Fuel Consumption Optimization – Task 3 

 

1976



  

The trajectory of the Chief Aircraft has switching points at 
(3.69, 2.23, -2.43) and (5.37, 2.91, -2.25), FD has switching 
points (4.21, 2.31, -1.27) and (5.47, 2.11, -0.68), the 
trajectory of the SD does not have any switching point (see 
Fig. 7 - Fig. 9 for the trajectories). 

 

 
Fig. 9: Fuel Consumption Optimization – Task 4 

VI. CONCLUSIONS 
Necessary and sufficient conditions provided by the 

Calculus of Variations have been employed to uniquely 
determine the trajectories that minimize the consumed 
kinetic energy, the energy consumption, and the fuel 
consumption of a formation of N aircraft executing a 
complex tactical and rescue mission. Calculus of Variations 
actually guarantees their optimality. Each aircraft was 
modeled as a 3DOF point mass moving in a constant gravity 
environment and subject to aerodynamic forces. Avoidance 
of collision is guaranteed by Calculus of Variations 
imposing a chief-deputy logic in the control law. The 
problem of optimizing the trajectory of the formation while 
avoiding the no-fly zone has been addressed introducing the 
concept of switching between optimal systems. Conditions 
for optimal switching have been considered and numerically 
verified. The feasibility of the approach has been verified 
and illustrated by numerical simulations. 
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