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Abstract— Current rover localization techniques such as
visual odometry have proven to be very effective on short to
medium-length traverses (e.g., up to a few kilometres). This
paper deals with the problem of long-range rover localization
(e.g., 10km and up). An autonomous method to globally localize
a rover is proposed by matching features detected from a
3D orbital elevation map and rover-based 3D lidar scans.
The accuracy and efficiency of the algorithm is enhanced
with visual odometry, and inclinometer/sun-sensor orientation
measurements. The methodology was tested with real data,
including 37 lidar scans of terrain from a Mars-Moon analogue
site on Devon Island, Nunavut. When a scan contained a
sufficient number of good topographic features, localization
produced position errors of no more than 100m, and as low as a
few metres in many cases. On a 10km traverse, the developed
algorithm’s localization estimates were shown to significantly
outperform visual odometry estimates. It is believed that this
architecture could be used to accurately and autonomously
localize a rover on long-range traverses.

I. INTRODUCTION

The ongoing Mars Exploration Rover (MER) missions

have proven to be historic landmarks in space exploration.

However, they are also humbling reminders of the challenges

ahead. For example, the MER Opportunity has operated on

Mars for over 5 years now, but has only driven a total of

about 20km due to mechanical/energy limitations and a lack

of autonomy [1]. An important goal for future generations of

rovers will be to overcome these deficiencies to allow them to

explore sites hundreds of kilometres away from their landers

[2]. Rovers will consequently require an autonomous long-

range localization system to aid them in their journey.

Currently, a rover employs a variety of techniques to deter-

mine its pose at any given time. The MERs were first local-

ized with radio tracking [3], descent trajectory modeling, and

by comparing orbital to ground camera imagery [1]. After

leaving their landers, localization has been accomplished

primarily with dead-reckoning techniques such as wheel

odometry, visual odometry (VO) and local bundle adjustment

(BA). Wheel odometry is not computationally intensive, but

is vulnerable to sensor noise and mechanical disturbances

(e.g., wheel slippage) [4]. Computer vision techniques, such

as VO and BA, complement wheel odometry when needed.

VO is automated and can work in real-time, but is compu-

tationally very demanding. It has yielded impressive results

in the past with error as low as 0.1% over a 10km traverse

[5]. BA can offer further gains in accuracy [6], but efforts

to automate the process are ongoing [7]. Despite significant
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Fig. 1. Matching rover’s 3D map (bottom) to a 3D orbital map (top).

advances in the technology, such dead-reckoning approaches

are not suitable for long-range localization (e.g., more than

10km) since they will always exhibit unbounded error growth

with distance traversed [8].

Global localization techniques can be used to correct dead-

reckoning pose estimates once these become unreliable. On

Earth, the Global Positioning System (GPS) is commonly

used for this purpose. However, the satellite infrastructure

required for such a system is not feasible for non-Earth

applications. This paper proposes an alternate solution that

aligns a rover-based three-dimensional (3D) local map to a

satellite-based 3D global map, as shown in Figure 1.

In this research, the local map is a point cloud obtained

from a time-of-flight lidar (Light Detection and Ranging).

This instrument can measure distance to far-away objects by

rapidly firing a laser and measuring the time for reflected

beams to return. In a surveying configuration, a lidar can

sample terrain with centimetre-accuracy at a range of up

to 1.5km, making it a vital guidance and navigation sensor.

Lidars have been tested in numerous applications on Earth

[9], [10] and in space [11], [12].

The global map may be acquired from a satellite-based

laser altimeter (e.g., LOLA, MOLA2), or by extracting 3D

information from a stereo pair of high-resolution satellite

images (e.g., LROC, HiRISE) [13]. Current satellites have

extensive and accurate coverage of the Moon and Mars (see
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Table I). Therefore, relevant map data could be loaded into

a rover even before it begins its mission. This would allow

the rover to autonomously localize without requiring any

additional map data from Earth.

TABLE I

SUMMARY OF SATELLITE MAPS FOR MARS AND THE MOON.

Target Instrument Coverage Horiz. Res. Vert. Res.

Moon LOLA [14] Total 50-100m 10cm
LROC [14] >10% 50cm NA

Mars MOLA2 [15] Total 100m 1m
HiRISE [16], [17] 2% <1m <1m

Having obtained local and global maps, a means of

matching them is then required. In feature-based matching,

interest points are first extracted from the global and local

maps, and then matched in search of global-local feature

correspondences. If at least three, non-collinear feature cor-

respondences are found, a rigid 3D transformation can be

expressed that aligns the two maps [18].

The most prominent features visible to both a low-

resolution orbital map and a high-resolution lidar map are

topographic peaks. Since one side of a peak will always

be hidden from the rover, features from the lidar map will

only be partially describable as shown in Figure 1. It will

therefore be difficult to compare features between the two

maps if a descriptor-based approach is used, such as spin-

image matching [19]. A more convenient alternative is to

search for similar feature constellations, where the spacing

between features now effectively acts as the descriptor. This

method is known as the Data-Aligned Rigidity-Constrained

Exhaustive Search (DARCES) [20].

Previous work has investigated these 3D matching tech-

niques in the context of localization [10], [9]. Localization

has been attempted with VO and BA on a network of 2D

images and orbital data with some success [7]. However, au-

tomation is problematic. The VIPER algorithm [21] matches

the skyline in a panoramic image to predicted skylines at

various positions on a 3D global map. The final solution is

not very accurate (>100m).

This paper investigates a novel global localization algo-

rithm using 3D data. The overall architecture is outlined in

Section II, followed by a description of the methodology in

Sections III through V. Sections VI to VIII present results

from field tests at a Mars/Moon analogue site in the Canadian

Arctic.

II. ARCHITECTURE

The architecture is developed for the general case where a

rover traverses over some distance and occasionally stops

to scan the terrain with the lidar as shown in Figure 2.

The general formulation can also be simplified by omitting

odometry to examine single-scan localization.

The goal is to determine the rover’s pose at each scan

site with respect to the global map’s reference frame, F−→o.

The rover pose at scan site ℓ is defined as a transformation,

Tℓo := {tℓo,Sℓo}, from F−→o to the rover’s local frame F−→ℓ,

where tℓo and Sℓo are, respectively, the translation vector

Scan A Scan C

Scan B

Odometry:
Odometry:

· · ·
{

ρ
BA
A ,CBA

}

{

ρ
BC
B ,CBC

}

Fig. 2. Rover traverses to lidar scan sites collecting odometry along the
way (e.g., the odometry-measured translation and rotation from site A to B
are, respectively, ρρρBA

A and CBA.)

and rotation matrix from F−→o to F−→ℓ. An overview of the

procedure is presented in Figure 3 and is summarized as

follows:

(a) Feature Detection: Features are detected from the

global and local maps.

(b) Feature Matching: DARCES obtains global-local fea-

ture correspondences and an initial estimate of the

rover’s poses.

(c) Pose Refinement: Global-local feature correspondences

are used in combination with orientation and odometry

measurements to refine rover pose estimates.

The sections to follow discuss these in further detail.

III. FEATURE DETECTION

Features must first be detected (box (a) in Figure 3) from

the global map (the global features) and from the local

map (the local features). It is assumed a global elevation

map is given with resolution Lxy, as well as one or more

local elevation maps. Generally, the most prominent features

common to both maps are topographic peaks. These peaks

are detected using a local maxima detector based on mor-

phological dilation1 [22], [23]. Other feature detectors could

also be used within the presented framework.

The scan is leveled using pitch and roll measurements

(e.g., inclinometer). This ensures the +z-direction of the

global and local maps roughly coincide. The local map is

gridded to the global map resolution with nearest-neighbour

interpolation. This speeds up the detection process and

ensures the scale of global and local features is the same.

Morphological dilation replaces lower grid values with

neighbouring higher grid values, effectively blurring out low

elevations. Once dilation is completed for all points on the

grid, the blurred map is compared to the original map. Cells

with no change in value are interpreted as local maxima.

Ddetect

Fig. 4. Pixelated circle
with n = 5.

The dilation window is chosen to be

a pixelated circle (Figure 4) to make

the window’s coverage more uniform

in all directions. The radius of this

circle limits the size of the detected

features, as well as the distance be-

tween features. The minimum dis-

tance between features, Ddetect, de-

pends on the global map resolution,

Lxy, such that Ddetect := n×Lxy where

n is the circle’s cell radius.

1This was inspired by code found on the Matlab Central repository as
‘localMaximum.m’ by Yonathan Nativ.
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Fig. 3. Overall architecture.

Features must then undergo final processing to elimi-

nate false peaks that might be detected in flat areas. This

is done by ensuring the minimum distance between any

two features is Ddetect and by testing areas for flatness.

Sample feature detection results are shown in Figure 5.

Fig. 5. Detected global features
plotted on global map.

A good uncertainty

model is necessary to

correctly assess the

quality of individual

features and global-local

matches. Global feature

positional uncertainty is

assumed equal to the

position uncertainty of

a measured 3D point

in the global map. The

positional uncertainty of a

measured 3D point from

the lidar is comparatively

very small (<1m) even for measurements far from the lidar’s

origin. However, the effect of occlusions will dominate the

uncertainty in local feature measurements. Local feature

uncertainty is therefore better estimated by the size of a

local feature, Ddetect.

IV. FEATURE MATCHING

The feature matching methodology (box (b) in Figure 3)

is based on the DARCES algorithm [20]. Lidar scans are

processed individually.

A. Hypothesis Search

Hypothesized correspondences must first be generated

between global and local features. A hypothesis is defined as

a group of possible correspondences between three unique

local features, called control points, and three unique global

features. A hypothesis is not guaranteed to be correct due

to noise in feature position measurements. Therefore, many

control point groups are tested to increase the chances of

finding a valid hypothesis.

A hypothesis is generated if the distances between three

global features are similar to the distances between three

local features. This test can be quantified knowing each

feature’s position uncertainty.

B. Hypothesis Evaluation

The validity of a hypothesis is evaluated based on the

transformation it produces between the global and local

frame. For a hypothesis i, the transformation from F−→o to

F−→ℓ, Ti
ℓo :=

{

ti
ℓo,S

i
ℓo

}

, can be obtained using a least-squares

point-alignment algorithm to align the three global and three

local features that comprise a hypothesis [24].

To improve the efficiency and robustness of DARCES,

hypotheses are first screened with a number of simple tests.

A map-boundary test rejects hypotheses that estimate the

rover’s position outside the global map. A z-deviation test

ensures that an estimated z-position is within Ezdev of the

global map’s elevation at the estimated xy-position. Finally,

orientation tests check that estimates and measurements

(e.g., inclinometer, sun sensor) of roll, α , pitch, β , and

heading, γ , differ by no more than Eα , Eβ and Eγ . These

thresholds are set to three standard deviations of the involved

measurement’s uncertainty to ensure that a high proportion

of valid hypotheses fall within the thresholds. For example,

Ezdev := 3σrGz
, where σrGz

is one standard deviation of

the global map z-position uncertainty. These tests are not

theoretically necessary, but are practically very helpful in

speeding up the search for valid hypotheses.

A measure of fitness is then calculated for each hypothesis

by examining how well the hypothesized transformation

aligns lidar scan points to the global map. To more efficiently

and robustly calculate this metric, the full lidar scan is

decimated to half the global map resolution, Lxy/2. These

more evenly-spread points are called the reference points.

For a hypothesis i, the fitness metric, fi, is the average

absolute z-error between the reference points, transformed

to the global frame with Ti
ℓo, and the global map:

fi := −
1

Nref

Nref

∑
j=1

∣

∣zR
i, j − zG

i, j

∣

∣ , (1)

where Nref is the number of reference points, zR
i, j is the z-

position of the transformed reference point j in the global

frame, and zG
i, j is the interpolated global map elevation at the

xy-position of the transformed reference point j. The negative

is applied so that a low error corresponds to a high fitness.

C. Hypothesis Selection

Once a fitness is associated with each hypothesis, a search

is made for valid hypotheses, which are defined as a group of
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Fig. 6. The M-frame alignment problem.

high-fitness hypotheses that have similar position estimates.

The hypothesis with the highest fitness in this valid group

is then returned along with its associated transformation

estimate and global-local feature correspondences. If no valid

group is found after all combinations of control points have

been exhausted, then DARCES returns no solution.

V. POSE REFINEMENT

In the pose refinement stage, outlier feature correspon-

dences are first rejected with RANSAC (Random Sample

Consensus) [25]. The remaining, inlier feature correspon-

dences are then combined with odometry and orientation

measurements into a Simultaneous Localization And Map-

ping (SLAM) problem to refine pose estimates (box (c) in

Figure 3). The Multi-frame Odometry-compensated Global

Alignment (MOGA) algorithm, solves this problem by mini-

mizing the errors between all available measurements and de-

sired estimates. This is essentially a batch SLAM algorithm

that fuses relative and absolute pose measurements over an

entire rover traverse. MOGA will be summarized here, but

full details can be found from [26].

The main goal is to estimate the transformations from

the global frame, F−→o, to each of the M local frames, F−→ℓ.

This M-frame alignment problem is depicted in Figure 6.

Input measurements are assumed to be corrupted with white,

zero-mean, Gaussian noise. The four types of measurement

are global feature positions
(

r
f j
o

)

, local feature positions
(

r
fℓ,k
oℓ

)

, odometry measurements of the rotation
(

Coℓ+1oℓ

)

and translation
(

ρρρ
oℓ+1oℓ
oℓ

)

between adjacent local frames, and

orientation measurements
(

Coℓo

)

. The covariance matrices

associated with these measurements are, respectively, R
f j
o ,

R
fℓ,k
oℓ , Q

oℓ+1oℓ
oℓ , and R

oℓo
oℓ .

There are 3(2M + N) design parameters to be estimated.

The three types are estimated rotations
(

Soℓo

)

, estimated

translations,
(

t
oℓo
o

)

, and estimated feature positions,
(

p
l j
o

)

.

The optimal design parameters will be obtained by min-

imizing the sum of squared errors between estimates and

measurements. The four types of error are between estimated

and globally-measured feature positions
(

J f j

)

, between es-

timated and locally-measured feature positions
(

J fℓ,k

)

, be-

tween estimated and odometry-measured frame transforma-

tions
(

Joℓ+1oℓ

)

, and between estimated and measured orien-

tation
(

Joℓo

)

.

To allow all design parameters to be optimized simul-

taneously, each of these error terms must be expressed as

a function of a common design parameter column, z. The

overall objective function, J(z), is then

J(z) :=
N

∑
j

J f j
(z)+

M

∑
ℓ

Nℓ

∑
k

J fℓ,k(z)+
M−1

∑
ℓ

Joℓ+1oℓ
(z)+

M

∑
ℓ

Joℓo(z),

(2)

where maximum likelihood is assured by weighting each

term with the inverse covariance of the involved measure-

ment. For example, the objective function contribution of

global feature Fj is J f j
(z) := 1

2
e f j

(z)T R
f j
−1

o e f j
(z), where

e f j
(z) is the error between the estimated and globally-

measured feature positions.

The optimal design parameter column, z∗, is sought by

minimizing the objective function through unconstrained op-

timization: z∗ := argminzJ(z). The Gauss-Newton algorithm

[27] is used to solve this nonlinear least-squares problem.

When optimizing with Gauss-Newton, the objective function

must be quadratic, which is not immediately the case due to

the rotations involved. Therefore, it is necessary to linearize

the error terms of J(z) at each iteration and solve for z∗,

giving the direction to the minimum of the local quadratic

approximation of the objective function. This solution is used

to update the nominal design parameters. Convergence to a

local minimum is achieved when the relative change in the

objective function is less than Econverge.

Single-frame localization can be obtained by dropping the

odometry terms, but otherwise proceeding in the same way.

VI. FIELD DATA

A realistic dataset was collected from a Mars/Moon ana-

logue site on Devon Island, Nunavut [28] at 75◦22’N and

89◦41’W. In total, 37 lidar scans were used to test the single-

scan localization performance of the algorithm. A long-range

rover traverse was simulated by connecting 23 lidar scans

with real odometry data collected by a pushcart outfitted

with a variety of rover engineering sensors (sun sensor,

inclinometer, stereo cameras). The resulting 10km path is

comparable in length to the distance traversed by the MERs

to date. The orientation of the lidar and cart were matched

by imaging a reference target in both systems [26].

When localizing, the rover position was assumed to be

within the bounds of a 100km2 global map. The map’s x

and y resolutions were, respectively, 13m and 24m. Global

feature positional uncertainty was estimated to a radius of

23m for one standard deviation. The local maps were col-

lected with an Optech ILRIS3D-ER lidar, which had a range

of about 1.5km, and a positional measurement uncertainty of

less than a metre. However, occlusions in the scan increased
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the uncertainty of a local feature’s position to a radius of

about 45m for one standard deviation.

The VO algorithm was similar to sparse feature correspon-

dence methods [5]. Accuracy was on par with [29].

Heading measurements for A01-A25 were obtained from

a sun sensor [30]. Heading for A26-A37 were computed with

similar accuracy knowing the GPS and local positions of a

distant target [26]. Roll and pitch were zero since the lidar

was leveled before each scan. The uncertainties in heading,

roll and pitch were, respectively, σγ = σα = σβ = 1◦.

Ground-truth xy-position measurements were obtained

from a consumer-grade GPS. It had positional uncertainty

10m after averaging measurements for about 30 minutes.

VII. SINGLE-FRAME RESULTS

In the single-frame configuration, local frames were lo-

calized individually. There was a stochastic aspect to the

DARCES algorithm since control points were randomly

selected. Therefore, robustness was demonstrated by running

100 randomly-seeded trials on each of the 37 scans. The time

to localize a single scan on a Matlab implementation was

about 20 min., most of which was spent in DARCES.

Figure 8 shows localization performance for x and y

positions. Although the algorithm outputs six-degree-of-

freedom localization, only the x and y position performance

is discussed since the others are assumed to be well-known

from measurements (e.g., heading from the sun sensor). Most

trials showed position error well below 50m.
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In the 3,700 trials run, the

algorithm never produced er-

ror greater than 100m. When

the algorithm was unconfident

about the rover’s position, it

produced no DARCES solu-

tion. This occurred when few

features were within the li-

dar’s range (flat areas, A10,

A13), or when features were

too close to the lidar (canyons,

A02, A20-A23). In canyon-

like settings, nearby hills oc-

clude much of the view, leav-

ing few features for the rover

to detect (see Figure 7). Fur-

thermore, a nearby detected

peak is more likely to be a poor

representation of the true peak, which would be occluded at

close range. Future work could investigate how to automat-

ically detect featureless areas when planning a path.

VIII. MULTI-FRAME RESULTS

In this configuration, VO measurements between scans

A01 to A23 were available. This allowed for a single, large

MOGA optimization to be executed. DARCES transforma-

tion estimates served as initial guesses for MOGA. However,

if a particular frame did not have a DARCES solution, its

transformation was estimated using VO to the next-closest,
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solved frame. As shown in Figures 9 and 10, MOGA can now

produce localization estimates for frames with no DARCES

solution using information from all available measurements

in the chain of frames. VO estimates are provided in the

figures with and without the use of absolute heading mea-

surements (i.e., sun sensor). It should also be made clear

that the VO paths made use of ground-truth for frame A01,

whereas MOGA used no ground-truth whatsoever.

Note the significant improvement in the estimates as more

information is given to the estimator. With absolute heading

measurements, VO reduces its error from up to several

kilometres to a few hundred metres. With absolute position

measurements provided by matched features in MOGA,

the error can be further reduced. This improvement can

be attributed not only to VO, but also to feature-sharing

between frames. Sharing features allows a given frame to

use local features from other nearby frames with common

global correspondences to improve estimates.

Frames with no DARCES solution had higher error since

estimates were more dependent on odometry measurements.

Despite these cases, MOGA localized a long-range traverse

with no dependence on distance traversed.

IX. CONCLUSION

This research has produced a number of novel contribu-

tions. A global localization technique was developed that

matches rover-based lidar scans to an orbital elevation map
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using DARCES feature constellations. MOGA, a multiple-

frame, least-squares alignment technique was designed that

uses feature position, orientation and odometry measure-

ments to refine pose estimates. The architecture was also

validated with a realistic Mars/Moon analogue dataset from

Devon Island, Nunavut. With additional future work, it is

believed that the architecture presented in this paper could

be used to autonomously localize a rover over long-ranges

with an accuracy comparable to GPS.
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