
Robust and Accurate Road Map Inference

Gabriel Agamennoni, Juan I. Nieto and Eduardo M. Nebot

Abstract— Over the last ten years, electronic vehicle guidance
systems have become increasingly popular. However, their
performance is subject to the availability and accuracy of digital
road maps. Most current digital maps are still inadequate for
advanced applications in unstructured environments. Lack of
detailed up-to-date information and insufficient accuracy and
refinement of the road geometry are among the most important
shortcomings. The massive use of inexpensive GPS receivers,
combined with the rapidly increasing availability of wireless
communication infrastructure, suggests that large volumes of
data combining both modalities will be available in a near
future. The approach presented here draws on machine learning
techniques to process logs of position traces to consistently build
a detailed and accurate representation of the road network and,
more importantly, extract the actual paths followed by vehicles.
Experimental results with data from large mining operations
are presented to validate the algorithm.

I. INTRODUCTION

Lately, the wide availability of commercial digital road
maps has enabled numerous vehicle navigation and guidance
applications. Commercial vector maps cover to a great extent
the major road networks in urban areas, achieving a level
of accuracy in the order of a few meters. The combination
of these digital maps with precise positioning systems has
allowed the development of numerous in-vehicle applications
providing navigation aid and driving assistance. However,
there is a much wider range of potential applications beyond
those aimed at enhancing driver convenience. Accurate road
maps could also be used to improve road safety [1] by means
of lane keeping, rollover warning, obstacle detection and
collision avoidance systems.

A fundamental limitation of commercially available road
maps is their poor accuracy. High-end road safety applica-
tions require decimeter accuracy, and currently this quality
can only be achieved via probe vehicles and surveying
methods. Therefore, maps are costly to produce and update.
Many authors [2], [3], [4], [5] propose that, instead of a
single high-precision probe, a large number of inexpensive
low-precision information sources yield similar or even better
results. With the emergence of low-cost positioning devices
and the accelerated development of wireless communication
systems, integrated data gathering and processing becomes
feasible at a very large scale. This allows maps to be learnt
from large volumes of position data. Even though data is
polluted with noise and outliers, its abundance compensates
for its lower quality. The resulting road map it not only more
accurate and detailed, but can also be updated continuously
as new information becomes available.

Australian Centre for Field Robotics, University of Sydney, Sydney 2006,
NSW, Australia, e-mail: g.agamennoni, j.nieto, e.nebot @acfr.usyd.edu.au.

A. Road maps and road safety
Accurate road maps enable numerous road safety applica-

tions. An important area is mining safety. Every year a large
number of accidents occur involving collisions between haul
trucks and other resources such as light vehicles, graders and
loaders. Many of them are fatal and incur a substantial loss
of equipment and production. Amongst the numerous causes,
the most important one is the operator’s lack of situational
awareness [6], [7], [8]. Open-pit mines are very dynamic and
hostile environments. Drilling, loading and stockpiling areas
are constantly changing and haul roads are continuously
modified accordingly. Visibility is extremely limited by the
bulk of the machinery and the cabin configuration, and is
often severely impaired by harsh environmental conditions
such as fog, dust, rain and snow. This poses a great safety
hazard, especially in difficult areas such as intersections with
tall banks and several different grades.

Fig. 1 shows a snapshot of a typical large-scale mine
with many intersections, loading and drilling areas. During
operation, heavy machinery such as haul trucks, graders,
drills and shovels are closely interacting with light vehicles.
Location “A” is a loading area where haul trucks queue as
they wait to be loaded with ore by the shovel. Location
“B” is an intersection where two roads with different grades
converge Both roads are bounded on each side by a berm,
which is taller than the light vehicles, meant to prevent
trucks from veering off the edge1. Immediately below this
intersection, the road is being widened to provide access to
the drilling area. Once drilling has finished, the area will turn
into a loading site similar to “A”. As this figure shows, the
opencast mine scenario can be very complex.

Predicting and preventing potential collisions requires
more than just road maps. A comprehensive approach to
risk assessment must incorporate information about the full
standard paths of the vehicles within the map, including
paths taken at the intersections. Fig. 2 shows an example
map where each road is split into a pair of paths, one for
each direction. Paths inside the intersection region reflect the
route that vehicles normally take. Notice how each pair of
paths connect to each other. This clearly shows that, even if
a road map is available, what is really needed is the actual
path that the haul trucks take. In the mine scenario, the latter
turns out to be highly variable, since it changes according to
modifications in the haul roads. The algorithm presented in
this work accurately constructs the current path of the trucks

1Notice the relative size of light vehicles and trucks. A standard 4WD is
less than 4 meters long and 2 meters high, whereas a haul truck is typically
more than three times as large. In fact, the blind spot at the front of a haul
truck is large enough to shadow a 4WD completely.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3946

Fig. 1. Snapshot of the operation of a large opencast mine. Loading and
drilling areas are marked with letters. See text for details.

in all of the mine including intersections. This is an essential
component for evaluating risk in such complex and dynamic
environments.

Fig. 2. Photograph of the operator interface module of a safety system.
The module is fitted inside the cabin of a haul truck and provides the driver
with situation awareness capabilities. Roads are depicted as thick yellow
lines and a large intersection is represented as a light blue polygon. The
blue arrow denotes the vehicle where the module is fitted and the red box
represents a haul truck. Both vehicles are entering an intersection area. In
this situation, knowing the set of possible paths for the vehicles is more
important for the driver than the actual road map.

B. Related work

The problem of automatically generating road maps has
received a lot of attention. Methods abound in the literature,
and two main paradigms can be distinguished according to
the type of data. On one hand, there has been significant
effort placed on constructing road maps from aerial and SAR
images. Some of these [9], [10] define a fully probabilistic
model of the road network. Road generation is then cast as an
inference problem, which is accomplished using numerical
optimization or statistical sampling techniques. Also, the
work in [5] presents a method that uses image processing
tools to generate road maps from GPS data.

The second class of approaches are based purely on vector
data. Some [2] assume the existence of an initial base map.
This initial map is progressively refined by fusing it with
information from GPS receivers. Other approaches assume
no prior knowledge. For instance, in [2] the authors apply
the sweep-line algorithm from the field of computational
geometry to efficiently build a travel graph from vector data.
In [4] the authors introduce an incremental graph-matching
technique specifically designed for real-time applications.
One of the approaches that is most relevant to the one
presented here is the work of [3]. In this case, the strategy
consists of placing road seeds and linking them together
according to transition counts.

This paper is organized as follows. The fundamental
components of the map building algorithm are presented
in Section II and Section III. Results are presented in
Section IV along with a discussion and a comparison to other
mapping algorithms. Finally, Section V draws conclusions
and discusses future research directions.

II. SAMPLING

This section and the next develop the map-building algo-
rithm step by step in two separate parts. Each part is focuses
on a particular processing stage. A basic outline of the two
stages of the algorithm can be seen in Fig. 3. First, the
road network is sampled at a number of nodes along the
centerline. Afterwards, these nodes are incrementally linked
together, yielding the final graph.

Fig. 3. Steps in the map building process. The algorithm takes raw position
data as input and proceeds in two consecutive steps. During the first step,
a set of nodes is constructed by sampling the road network at a series of
points along the centerline. In the second step, the nodes are linked together
to yield a directed graph.

A. Road centerline

Commercial digital road maps usually consist of an at-
tributed undirected graph. Junctions or intersections are
represented as vertices, whereas roads are depicted as a se-
quence of edges. Since the graph is undirected, paths possess
no orientation and hence two-way roads are considered as
a single path. The present approach will depart from this
convention, adopting the view of [3], [4] instead. Roads
will be regarded as a sequence of directed edges, essentially
splitting each bidirectional road into a pair of unidirectional
roads. Taking direction information into account will yield
much better discrimination of the dominant directions in
cluttered areas.

The road centerline is defined as the geometric space of
all points that run through the middle of the road. Any given

3947

point on the centerline must be self-consistent in the sense
that it must equal the statistical mean of all points on the
road that project to it. In this sense, the centerline can be
regarded as a principal curve [11]. As a matter of fact, the
road inference procedure presented here is inspired on the
polygonal line algorithm for principal curves.

Suppose that an estimate of the centerline at a given point
is available. Consider that the centerline is estimated to pass
through p tangent to q at some point. This pair of vectors
define a plane π oriented in the direction of q. Also, assume
a set of position data traces is also given. Each trace x =
{xn} is composed of a finite sequence of position samples
xn ordered according to time. The sequence of points is
interpolated by a curve zn, called the trajectory. Because
trajectories must be curves and hence must be continuous,
interpolation can be linear or polynomial.

The road centerline is estimated as follows. Let zn =
{zn(t)} be the trajectory, parameterized by t, that interpo-
lates the n-th position trace in the data set. Let Tn be the
set of all parameter values in zn whose corresponding points
intersect π with strictly positive orientation,

Tn =
{
t : (zn(t)− p)Tq = 0,

dzn
dt

(t)Tq > 0
}

(1)

The union of all the images under zn and dzn/dt,

X =
⋃
n

zn (Tn) = {xk},

Y =
⋃
n

dzn
dt

(Tn) = {yk},

each contain a finite number of column vectors of the same
dimension and hence can be arranged in the rows of a pair
X, Y of matrices.

Fig. 4. Cross-section of the road centerline. Trajectories intersect the
normal plane at a series of points, depicted as grey dots. Pairwise similarities
are drawn between them to derive a weighted graph, represented as grey
dashed edges. This graph is then used to cluster the points on the plane and
construct a partition.

An illustration of the point sets can be seen in Fig. 4. The
set X provides a picture of the cross-section profile of the
road at p. A road network is composed of many roads, each
with its own centerline. It is not known beforehand which
data trace follows which road. These correspondences must

be inferred as part of the map-building process. However, it
is certain that points in the same road will tend to lie close to
each other, or in other words, they will tend to form clusters
in the normal plane. The next step consists of performing
clustering on π in order to derive a partition of X and Y
into points that belong to (p,q) and points that do not.

B. Clustering

The dominant set framework [12] is a pairwise clustering
method particularly effective at finding compact groups of
points. To apply this method, a suitable similarity measure
must be derived. Thorough experimentation led to the con-
clusion that distance and angle are the only two critical
factors for clustering on the normal hyperplane. Let

dij = ‖xi − xj‖, aij = cos−1 yi · yj
‖yi‖‖yj‖

denote the Euclidean distance between points xi and xj
in X , and the angle between their corresponding derivative
vectors in Y , respectively (see Fig. 4). It was found by trial
and error that the expression

w(i, j) ∝ e−d
2
ij/ε

2 + κ (1− cos aij) (2)

yields very good results. This similarity function arises from
the product of an isotropic Gaussian and a circular Von Mises
density. Both ε and κ are positive scalars that control the
concentration of the distribution around its mean.

These parameters account for uncertainty in the model.
The first one corresponds to the standard deviation of the
Gaussian distribution and has units of distance, while the
second is the angular concentration of the Von Mises density2

and is dimensionless. Both parameters quantify the scattering
in position and the dispersion in direction. Increasing the
value of ε, or decreasing the value of κ, equates to admitting
a higher noise level in the data. However, their choice
also involves a compromise between accuracy and noise
immunity. Too large a value can result in significant errors,
whereas a low value can lead to over-segmentation.

The similarity measure is used to build an undirected
graph. Applying Eq. 2 to all elements of (X,Y) yields a
similarity matrix. A cluster is extracted from the graph via
a simple fixed point iteration (refer to [12] for details). This
yields a a weight vector w having as many elements as X and
Y and dwelling on the closed standard simplex. As explained
in [12], the elements of the weight vector are nonnegative and
sum to one. Its support σ(w) = {k : wk 6= 0} is dominant
with respect to the index set of X and Y . Furthermore, wk
reflects the extent to which the k-th point belongs to the
cluster. That is, wk can be interpreted as the belief that
xk and yk belong to the current road. Hence the weight
vector provides a measure of uncertainty in trace-to-road
association.

2In practice, an equivalent and more intuitive parameter is used instead.
The circular deviation δ relates to the angular concentration via

δ2 +

(
I1(κ)

I0(κ)

)2

= 1,

where Ij denotes the modified Bessel function of order j.

3948

C. Closing the iteration

In order to close the iteration cycle, the centerline estimate
must be updated. The update is performed using the weight
vector obtained from the clustering procedure by assigning

p←
∑
i

wixi = wTX, q←
∑
i

wiyi = wTY. (3)

Notice how each element in the sum is weighted by its
corresponding belief, meaning that each estimate is assigned
the weighted average of all points that project to it. There-
fore, upon convergence, p and q will be self-consistent with
respect to X and Y respectively.

Algorithm 1 Centerline sampling routine.
1: function SAMPLE({zn},p,q)
2: repeat
3: p̂← p, q̂← q
4: Construct Tn, X and Y as in (1).
5: for xi ∈ X , yi ∈ Y do
6: wi ∝ SIMILARITY(xi,yi,p,q)
7: for xj ∈ X , yj ∈ Y do
8: Wij = SIMILARITY(xi,yi,xj ,yj)
9: end for

10: end for
11: w = CLUSTER(W,w)
12: p← wTX, q← wTY
13: until SIMILARITY(p̂, q̂,q,q) < τ/2
14: end function

Algorithm 1 summarizes the centerline estimation routine.
This routine accepts an initial estimate as input and iter-
atively improves it until reaching a tolerance threshold τ .
Function SIMILARITY evaluates the similarity in (2), and
routine CLUSTER returns a fixed point of the replicator
dynamic map. Deriving a convergence bound for this routine
is nontrivial, the greatest difficulty being the fact that the
data set is not finite3. Moreover, in some cases it may not
converge. This happens for certain geometric configurations
of the data that generate empty X and Y sets. Even so, in
practice it has been observed that convergence is achieved
over 99% of the time, with a tolerance of 10−3 rarely
requiring more than four iterations.

So far, this section focused on a single point on the road
centerline. It showed how an initial estimate can be refined to
yield it self-consistent. In order to capture the full extent of
the road network, a number of points {pm} and {qm} must
be deployed along all of the traces. A simple but effective
strategy consists of uniformly sampling the road network
by taking each data trace in turn and placing estimates
regularly along its trajectory. Once all the estimates are in
place, Algorithm 1 is called for each of them in turn. Upon
completion, a set of self-consistent centerline points and
a corresponding set of weight vectors is obtained. Weight
vectors quantify the uncertainty in the association of roads

3While data traces are finite, the trajectories that interpolate them contain
uncountably many points.

to traces and are of central importance in the second stage
of the algorithm. This stage deals with how to link points
together to generate the network topology and is described
in the following section.

III. LINKING

The preceding section described the first stage of the
algorithm. During this phase, a number of estimates of the
road centerline were drawn. These estimates will now serve
as anchor points upon which the rest of the map will be built.
In the next step they will be linked together to capture the
network topology. This section explains the details.

A. Transition matrix

Linking is performed by connecting points to one another
with directed edges. Together, the set of nodes and edges
form a directed graph that comprises the skeleton of the road
map. The decision of whether two given points should be
connected or not is based on a measure that quantifies the
strength of the connection. This measure, called the transition
likelihood, reflects how certain it is for that edge to form part
of the graph. A high likelihood means the edge is bound to
belong to the graph, whereas a low likelihood indicates that
the corresponding points are weakly coupled and should not
be connected.

Recall the intersection set defined in (1). This set is
composed of all parameter values in trajectory n that map to
points on the normal plane with strictly positive orientation.
For each tk ∈ Tn, it is said that the n-th trajectory passes
through the centerline point at time tk if its corresponding
weight wk is nonzero. Let A be the transition count matrix
for all points. That is, Aij equals the number of times a
trajectory passed through point i and subsequently through
j. The matrix is row-normalized,

Aij ←
Aij∑
k Aik

, (4)

so that its elements can be interpreted as transition probabil-
ities. This yields the transition matrix.

B. Linkage criterion

The transition matrix provides a measure of the strength of
each connection. Its support σ(A) = {(i, j) : Aij 6= 0} is a
set of edges connecting nodes together, each edge weighted
by its corresponding transition likelihood. Due to noise and
ambiguity present in the association of traces to nodes, σ(A)
may contain edges that are superfluous. Therefore, instead of
incorporating all of them, only a subset E ⊆ σ(A) of non-
superfluous edges is selected. This set constitutes the edge
set of the final graph.

The linking problem can be formulated as follows. Let
{GE} be a family of graphs parameterized by their edge set.
Each member is a directed weighted graph GE = (V,E,w).
All members share a common vertex set V and a unique
weight function defined as w : (i, j) 7→ Aij . Also, every
edge set is constrained to range over the support of A,

E ⊆ σ (A) = {(i, j) ∈ V × V : Aij > 0} ,

3949

meaning that members of {GE} cannot have more connec-
tions than the original graph Gσ(A).

The search for the most suitable graph is cast a maximiza-
tion problem. Specifically, it is formulated as the problem of
finding the graph with the largest overall weight,

max
E⊆σ(A)

∏
(i,j)∈E

Aij , (5)

amongst all possible subgraphs of Gσ(A). As it is, this
optimization is ill-posed. Because all elements of A lie
on the unit interval, the objective function monotonically
decreases with the cardinality of the edge set. Therefore, it
can be trivially maximized by setting E = ∅. To avoid such
vacuous solution, a set of constraints is added.

The idea is to restrict the set of possible graphs so that
connectivity is preserved. That is, if two vertices of Gσ(A)

are connected, then the corresponding vertices of GE must
also be connected. Mathematically, this constraint can be
expressed in terms of the transitive closure of GE ,

λE(i, j) ≥ λσ(A)(i, j) ∀ i, j ∈ V, (6)

where λE is the local edge connectivity defined in (7).
The constraint set ensures that the optimum graph does not
become disconnected as edges are pruned.

The complete minimization problem consists of solving
(5) with respect to E, subject to (6). This problem is
combinatorially hard and there is no general algorithm for
solving it efficiently. However, it is possible to find a feasible
suboptimal solution by means of a simple greedy strategy. By
performing a locally optimal search over possible subgraphs,
the worst-case complexity becomes linear in the number of
vertices and quadratic in the number of edges.

C. Suboptimal linkage

Having defined the objective function, the next step con-
sists of deriving an efficient method for solving it. Notice
that each edge e = (i, j) must be the path with the largest
weight between vertices i and j. This suggests a simple
iterative method for monotonically increasing the overall
weight. Namely, starting from the edge e with the largest
transition likelihood, the shortest path between its endpoints
is computed. If this path is not equal to e, then the edge still
satisfies the constraints in (6) and hence yields a feasible
graph. Therefore, removing it increases the overall weight in
(5), bringing the graph closer to the optimum.

Algorithm 2 Linking routine.
1: function LINK(A)
2: E ← SORT(σ(A)) . Sort in descending order.
3: for (i, j) ∈ E do
4: E ← E − {(i, j)}
5: if λE(i, j) < λσ(A) then . Test connectivity.
6: E ← E ∪ {(i, j)}
7: end if
8: end for
9: end function

Pseudo-code for the linking routine can be found in
Algorithm 2. Routine SORT arranges the edges in descending
order according to their likelihood. Once sorted, each edge
is then tested by removing it from the graph and checking
how its connectivity changes. If it decreases with respect
to the complete graph, the edge is incorporated back again
into the edge set. Otherwise, it is discarded. A skeleton of
the map is obtained once the linking routine has converged.
This skeleton is the final representation of the road network.
It consists of a set of road centerline estimates linked together
by the directed edge set.

IV. RESULTS

This section shows experimental results. A large and rich
data set is used to test the performance of the algorithm
in several different settings. Comparisons between this and
other approaches are also presented.

A. Experimental data

Over 10 megabytes of raw double-precision data was used
as a benchmark for the algorithm. Position data was collected
at an opencast mine in Western Australia and corresponds to
five days of operation of more than 15 resources. Around 400
position traces were constructed with almost no preliminary
processing. The only preprocessing performed is a simple
outlier rejection method based on distance. Namely, consec-
utive position samples that lay more than 100 meters apart
were considered as outliers and removed from the data.

Fig. 5 shows the final road map overlaid on an aerial
photograph of the mine. The photo spans an area of 10.5 by
3.5 kilometers. The only two factors that strongly affect the
outcome of the algorithm are ε and κ. The standard deviation
ε was set to 15 meters, roughly equal to the width of the
haul trucks. The circular dispersion κ was selected as 1/8,
corresponding to δ = π/4 radians, after a small number of
tuning instances. Initial point estimates of the road centerline
were placed 30 meters apart.

Fig. 5. Final road map superimposed on an aerial photograph of the mine.
The map is drawn in black. Although details are not appreciable at this
scale, it serves to contemplate the magnitude of the problem.

The algorithm was implemented in MatLab R© and tested
on an Intel R© Core

TM
Duo CPU with a 2.33 GHz proces-

sor and 2 Gb of RAM. Execution took 83 minutes, with
Algorithm 1 accounting for almost all of the running time.
Over 4100 seeds were placed during sampling, giving an
average of roughly 1.2 seconds per sample. This amount
is not excessive given the dimensions of the map and

3950

considering that no specialized storage structure was used
for implementing Algorithm 1.

B. Details of the inferred road map

Fig. 6 shows a typical road junction from the data set.
Position traces exhibit a considerable amount of dispersion
along the cross section. Notice how drivers tend to take either
very sharp or very wide turns and often cross over to the
opposite lane. A similar scenario is depicted in Fig. 7, which
shows what is possibly the most difficult intersection area
found in the data set. Here, the high degree of clutter makes
inference a very challenging task. Even so, in both cases the
mapping algorithm is able to reconstruct the network.

Fig. 6. Typical road junction inferred from the data set. The road map is
represented as a directed graph. It is depicted as a set of black arrows, each
one connecting two centerline point estimates together.

Fig. 7. Complex intersection area from the data set. This area is particularly
difficult to infer because of the large amount of clutter in the middle.

A different situation is presented in Fig. 8. Here, a heavily
traveled road forks into two at a junction. Examination of the
data reveals that the road was blocked for a period of time. A
temporary obstruction, possibly another vehicle, caused truck
drivers to swerve and cross change lanes in order to avoid
a collision. Still, the road map was correctly inferred. The
centerline follows the most intuitive path and does not appear
biased towards the middle of the road. This robustness stems
from the update equation in the road sampling scheme.

Even when data does not abound, the approach remains
robust to noise and outliers. The crossing in Fig. 9 con-
tains only a small amount of data traces, some of which

Fig. 8. Heavily traveled junction with an obstruction. A two-way road
splits into two at a junction. An obstruction was present at the intersection,
temporarily blocking the heavily transited road.

are relatively noisy. Trucks approaching the crossing tend
to reduce their speed almost to a complete halt. Because
measurements are less accurate at lower speeds4, this data
is often noisier than normal. However, the approach still
manages to accurately trace the centerline and capture the
underlying topology.

Fig. 9. Road crossing with sparse data. Two double-lane roads intersect
each other, creating a narrow crossing. Data in this area is less abundant
and tends to be noisier.

It is also interesting to test the algorithm in particular re-
gions of the mine where vehicles take multiple paths. Fig. 10
shows a wide tipping area where trucks drop their load.
Drivers back against the berm and dump the ore over the
edge. Data traces fan out due to trucks tipping on different
spots along the perimeter. The road appears over-segmented
because the algorithm cannot find any dominant direction.
This is not surprising, since it is specifically designed to
detect coherence within the data.

C. Comparison with other methods

Two other road mapping methods were also coded. The
first is the image-based algorithm of [5]. Segment histogram
resolution was set to 2 meters, which is more than enough
given the dimensions of the trucks. A linear squared expo-
nential filter was used to smooth the histogram. After some
tuning, a filter width of 1.5 meters was found to give the

4Speed estimation in a GPS unit is more accurate at higher speeds, when
the ratio of positional error to positional change is lower.

3951

Fig. 10. Large open tipping area. The approach presented in this article
does not perform well in this case. Situations like these could be handled
with techniques specifically aimed at detecting these areas.

best results. The segmentation threshold was also selected
by trial and error, being 0.1 an acceptable value. Execution
required 27 minutes in total.

The result of applying the method of [5] is shown in
Fig. 11. The approach does not use heading information and
hence the resulting graph is undirected. The topology of the
intersection is captured at a large scale. However, the inferred
map lacks fine-grained information about road direction and
vehicle paths. During parameter tuning, a compromise was
made between granularity and over-segmentation. Smaller
values for the filter width and segmentation threshold reveal
more fine-grained information but at the same time yield a
much noisier map.

Fig. 11. Road crossing with sparse data inferred by the method of [5].
Roads are represented as undirected black segments instead of arrows.

The second method is the one described in [3]. Out of
all the techniques in the literature, this is most similar to
the one presented here. It constructs the map in a similar
fashion, by placing seeds along the traces and linking them
together according to transitions. Complexity was reduced by
removing the lane structure inference step because the mine
environment is much less structured than an urban highway.
Roads do not split into lanes and hence clustering lane offsets
is unnecessary. The same parameters were used for sampling
the road centerline, namely ε = 15 meters and 2πδ = π/4
radians, and seeds were placed 30 meters apart. Overall, the
algorithm took 52 minutes to process the data.

Fig. 12 shows the sparse road crossing inferred by the al-
gorithm in [3]. Although it reconstructs most of the crossing
successfully, one of the intersections appears displaced from
its true position. The two roads originating from the north-
east corner intersect at a very narrow angle. The algorithm
mislays the intersection point and places it further ahead from
its real location. This mistake is caused by the clustering
routine, which fails to discriminate between both roads until
they are a long distance from each other.

Fig. 12. Sparse road crossing extracted by the method of [3]. The algorithm
successfully recovers a large portion of the crossing but misplaces one of
the intersection points.

The same happens in Fig. 13. Here, the method somewhat
recovers the shape of the junction but misplaces both the
road split and merge. As before, the clustering routine is
unable to recognize the true position at which the roads meet.
Furthermore, it biases one of the lanes in the main road.
The northbound lane on the heavily transited road is slanted
inwards, bending towards the middle of the road. Again, this
bias stems from the clustering routine.

Fig. 13. Method of [3] applied to the obstructed road junction with heavy
traffic. Again, the algorithm recovers the overall topology but wrongfully
places lane splits and merges.

Last of all, Fig. 14 shows the performance on the complex
intersection. Here, even the inferred topology is not entirely
accurate. There are a number of redundant edges that should
be discarded or fused together. Unfortunately, the simple
linkage criterion used in [3] does not take edge redundancy
into account. It links every pair of endpoints with at least one
nonzero transition, failing to acknowledge the possibility of
spurious connections.

3952

Fig. 14. Algorithm of [3] applied to the complex intersection. In this case
the approach is not able to correctly recover the topology.

V. CONCLUSION AND FUTURE WORK

This paper described an approach for automatically in-
ferring high-precision road maps from position data. The
algorithm was tested with data from an operating mine. Ex-
perimental results clearly show that the desired performance
is achieved. Although it is not possible to quantify the ac-
curacy of the results since there is no absolute ground-truth,
it is arguable that the ground truth can be inferred by visual
inspection of the trajectories of the vehicles. The inferred
roads agree with intuition and they follow what a human
user would draw. The algorithm also succeeds at capturing
the network’s shape and topology. In addition, it compares
favorably to other existing methods in the literature.

The mapping algorithm is scalable to large data sets.
Experiments show that the algorithm obtains high-quality
maps for a medium-sized mine in approximately two hours
without any code optimization. Furthermore, it is not limited
by the size of the data. Even though no experiments were
conducted using data spanning more than five days, this is
not due to memory constraints. The reason is that roads
change relatively frequently, and changes are sometimes
visible within the time scale of one week. Also, notice that
the dimensionality of the data is not present in any of the
equations. The algorithm can also be applied using height
data to construct three-dimensional maps.

Current research is looking into ways of improving effi-
ciency and linking performance, as well as performing place
recognition. With respect to place recognition, it was seen
that performance downgrades in large open areas such as
tipping sites. This feature could be used to detect distinct
places. Also, previous approaches have used position in-
formation [13], [14], [15] to recognize them. These are all
valuable tools that could be used to complement the mapping
process and pose promising directions for future research.

APPENDIX I
TRANSITIVE CLOSURE OF A GRAPH

Transitive closure is defined in terms of binary relations.
For a weighted graph, several possible definitions exist. The
one adopted here can be expressed in terms of local graph
connectivity. Let G = (V,E,w) be a weighted graph with

vertex set V and edge set E ⊆ V × V equipped a weight
function w : E → [0, 1]. Two vertices i, j ∈ V are said to be
connected if there exists a path starting in i and ending in j.
A set of paths are said to be edge-independent if no two of
them share a common edge.

Let P (i, j) be the set of all edge-independent paths
between i, j ∈ V . Local edge connectivity is defined as

λ(i, j) =
∑

p∈P (i,j)

∏
e∈p

w(e). (7)

The closure of G is defined as the graph Ḡ with weight
function λ and edge set equal to the closure of E.

Connectivity can be evaluated via simple matrix algebra.
Let A be the adjacency matrix of G. It can be shown that
the adjacency matrix of Ḡ is A + . . . + An, where n is
the number of vertices. Although time complexity O(n3), in
practice it can be made much smaller. Algorithm 2 tests edge
redundancy by checking whether the total weight of all paths
connecting i and j is larger than a given threshold. Hence,
running time is much smaller in practice since the threshold
is often exceeded very early during the query.

REFERENCES

[1] C. Wilson, S. Rogers, and S. Weisenburger, “The potential of precision
maps in intelligent vehicles,” in Proceedings of the 1998 IEEE
International Conference on Intelligent Vehicles, 1998, pp. 419–422.

[2] S. Edelkamp and S. Schrödl, “Route planning and map inference with
global positioning traces,” Computer Science in Perspective: Essays
Dedicated to Thomas Ottmann, pp. 128–151, 2003.

[3] S. Schroedl, K. Wagstaff, S. Rogers, P. Langley, and C. Wilson,
“Mining gps traces for map refinement,” Transactions on Data Mining
and Knowledge Discovery, vol. 9, no. 1, pp. 59–87, 2004.

[4] R. Bruntrup, S. Edelkamp, S. Jabbar, and B. Scholz, “Incremental
map generation with gps traces,” in Proceedings of the 2005 IEEE
International Conference on Intelligent Transportation Systems, Sept.
2005, pp. 574–579.

[5] J. Davies, A. Beresford, and A. Hopper, “Scalable, distributed, real-
time map generation,” IEEE Transactions on Pervasive Computing,
vol. 5, no. 4, pp. 47–54, Oct.-Dec. 2006.

[6] S. Worrall and E. Nebot, “Using non-parametric filters and sparse
observations to localise a fleet of mining vehicles,” in Proceedings of
the 2007 IEEE International Conference on Robotics and Automation,
April 2007, pp. 509–516.

[7] ——, “A probabilistic method for detecting impending vehicle inter-
actions,” in Proceedings of the 2008 IEEE International Conference
on Robotics and Automation, May 2008, pp. 1787–1791.

[8] S. Worrall, “Providing situation awareness in complex multi-vehicle
operations,” Ph.D. dissertation, University of Sydney, July 2009.

[9] M. Amo, F. Martinez, and M. Torre, “Road extraction from aerial
images using a region competition algorithm,” IEEE Transactions on
Image Processing, vol. 15, no. 5, pp. 1192–1201, May 2006.

[10] R. Stoica, X. Descombes, and J. Zerubia, “A gibbs point process for
road extraction from remotely sensed images,” International Journal
of Computer Vision, vol. 57, no. 2, pp. 121–136, 2004.

[11] T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American
Statistical Association, vol. 84, pp. 502–516, 1989.

[12] M. Pavan and M. Pelillo, “Dominant sets and pairwise clustering,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 1, pp. 167–172, 2007.

[13] D. Ashbrook and T. Starner, “Using gps to learn significant locations
and predict movement across multiple users,” Personal and Ubiquitous
Computing, vol. 7, no. 5, pp. 275–286, 2003.

[14] L. Liao, D. Fox, and H. Kautz, “Extracting places and activities from
gps traces using hierarchical conditional random fields,” International
Journal of Robotics Research, vol. 26, no. 1, pp. 119–134, 2007.

[15] G. Agamennoni, J. Nieto, and E. Nebot, “Mining gps data for extract-
ing significant places,” in Proceedings of the 2008 IEEE International
Conference on Robotics and Automation, 2008.

3953

