
 
 

 

  

Abstract— To be able to determine the position of a static 

object in 3D space by means of computer vision, it has to be 

seen by cameras from at least two different view points. The 

same applies for measuring the position of a moving object 

based on images captured at one single time instant. However, 

if the cameras are not synchronized in time, or if a moving 

object is not visible in all images, one can not rely on using 

matching pictures for making accurate position estimates of 

dynamical objects. 

This paper presents a strategy to track an object with known 

dynamical model, using a series of images where no pair has to 

be captured simultaneously. It even allows tracking of a point 

object in 3D space using a single static camera. 

I. INTRODUCTION 

YNAMICAL vision is important as a means to 
accomplish feedback control based on robotic work-

space sensing and sensor fusion (e.g. force-vision sensor 
fusion). To the purpose of model-based control, the Kalman 
filter [4] constitutes an important component capable of 
handling model-based prediction and predictive control. For 
optimal prediction and noise suppression, the Kalman filter 
requires temporal updates as well as measurement updates. 
Provided that vision data arrive in real time with appropriate 
features extracted, an abundant source of error measurement 
is offered. As vision data deriving from moving objects may 
change depending on the camera positions of multiple 
cameras, the system should be tolerant to missing frames. 
Previous work on how vision and Kalman filtering can be 
used in robot control is presented in [5-10]. In [6] a Kalman 
filter was used to combine joint angles with vision to 
estimate the tool position of a compliant robot in contact 
with the environment. In [3] dynamic objects are tracked 
from a mobile platform using an extended Kalman filter and 
multiple interacting models. 
A method for tracking rigid objects that were partly 
occluded by other objects was suggested in [11]. It does, 
however, require that a graphical model of the object to be 
tracked is available and can be projected onto the image. 

One application presented in this paper is in the 
implementation of a ball-catching robot (Fig. 1). The system 
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has a box with a hole mounted on a robot and cameras to see 
when a ball is approaching the box. The goal is to move the 
box so the ball always hits the hole. To do this, the ball is 
tracked to enable prediction of where the hole of the box 
should be. Even if the ball is not visible in some images or 
the image analysis algorithm fails to detect the ball in some 
images, it is desirable to be able to use the data in other 
images to improve the estimate of the predicted trajectory of 
the ball. The problem is closely related to visual servoing. It 
should be noted, though, that in this case vision is not used 
to determine the state of the controlled object (the robot). A 
robotic ball catcher was described in [12]. It, however, used 
a different tracking algorithm with an Extended Kalman 
Filter [13]. 

II. PROBLEM FORMULATION 

The goal is to track an object with known process model. 
This is to be done with images captured from different view 
points and where possibly no images are captured 
simultaneously. The object to be tracked is described by the 
discrete time state-space model 
 )()()()( khvkhukhxhkhx +Γ+Φ=+ , (1) 

where h is the time step, x is the state vector and u is a 
known input signal. Measurements are assumed to be on the 
form 
 )()()()( khekhxkhCkhy += . (2) 

Note that the C-matrix is time dependent and will depend 
on the camera parameters and the image coordinates at that 
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particular time step. The disturbances v and e are discrete-

time Gaussian white noise processes with zero mean value 

and 
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with a Gaussian distribution of the initial state with 

 [ ] 0)0(E mx =  and [ ] 0)0()0(E Rxx
T =  (4) 

III. METHODS 

A. State estimation 

A Kalman filter will be used to estimate the state of the 

tracked object. Assuming that h is used as time unit, the 

update law is described by (5) – (10). Here, for example, 

)|1(ˆ kkx +  denotes the estimate of x at sample k+1 based on 

measurements up to sample k, and )|1( kkP +  the 

covariance of that estimate. 
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B. Homogeneous coordinates 

Homogeneous coordinates [1] will be used extensively in 

this paper. Thus it is convenient to define “~” according to 
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where 1x  and 2x  are homogeneous coordinate vectors. 

The projection matrix, cP , of a camera is a 3 by 4 matrix 

such that 

 Xx cP~  (12) 

where X is a point in space and x is its projection onto the 

image plane. 

IV. TRANSFORMING IMAGE DATA FOR KALMAN FILTER 

From the position of a feature point in a single image it is 

possible to determine a line in 3D-space along which the 

point must be. In this paper this line will be referred to as the 

viewline (cf. Fig. 2). The viewline parameters then have to 

be related to the process model states in some way to be 

possible to use as input to the Kalman filter. 

A. Extracting viewlines 

To determine the viewline for a point in an image, first 

two lines through the point in the image are chosen. The 

easiest way to do this is to take one horizontal and one 

vertical line. Each of these lines uniquely defines a plane 

through the focal point and the projection of this line onto 

the image plane. Finally the viewline can be determined as 

the intersection of these planes. A line l in an image can be 

represented as the points fulfilling the equation 

 0=xl T , (13) 

where 
T

lll )( 321=l  and 
T

yx )1(=x . 

A plane � in space can similarly be represented by the 

points fulfilling 

 0=X�
T , (14) 

where 
T)( 4321 ππππ=�  and 

T
ZYX )1(=X . 

Moreover, if the plane � is projected onto the line l, then 

 Xx cP~ , (15) 

where cP  is the projection matrix of the camera. Inserting 

(15) into the equation for the image line (13) we get 

 XlXlxl
TT TT

cc PP )(~0 == . (16) 

Hence it can be can concluded that the points that project 

onto the line l reside in the plane defined by 

 l�
T

cP= . (17) 

If the coordinate of a feature point in an image is (x, y), a 

convenient choice of lines through this point is 
T

x)01(−=xl  and Ty)10( −=yl  (cf. Fig. 2) 

corresponding to the planes defined by 
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The viewline can then be described as the intersection of the 

planes x�  and y� . 

B. Flying ball example 

To illustrate how the viewlines are transformed into Kalman 
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Fig. 2. Illustration of viewline. An object projected onto 

some image point, can be located anywhere along the 

corresponding viewline. 
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filter input data, a simple example of a dynamical model is 

used; a ball flying under the influence of gravity and without 

air friction. The state vector is 

 ( )T

dddddd zyxzyxx ���= , (19) 

where the first three states represent the position and the last 

three states represent the velocity in the coordinate system of 

Fig.1. The process model matrices of (1) are 
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C. Including constraints into the Kalman filter 

The planes in (18) each put the constraint 

 0=X�
T  (21) 

on the feature point position X. This can be rewritten as a 

constraint on the state vector (19) of the process: 
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If �  is normalized so 12

3

2

2

2

1 =++ πππ , 4π−  can be 

interpreted as the signed length of the orthogonal projection 

of the feature point position onto the direction 

( )321 πππ . 

Each image with a measurement of a feature position 

gives two constraints, each specified by a row vector c in 

(22), one in the x direction and one in the y direction of the 

image. If several images are available, this can be handled 

simply by adding rows in the C-matrix of (2): 
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where a and b denote different images and x and y the 

different measurement directions. Similarly the 

measurement vector y of (2) is composed of the negative 

fourth component of the planes �  in (21): 

 ( )T

bybxayaxy �4444 ππππ −−−−=  (24) 

If no measurement at all is available at some time step, the 

last term of (5), (7), (8), and (10) simply disappears. 

D. Measurement time offset 

This section describes a way to handle the case when there is 

a small known difference between the measurement time 

and a sampling instant of the time-discrete model. 

Assume that, instead of at the Kalman filter sampling time 

kt , an image is captured at ttt ki ∆+= . Using the flying 

ball example (19), and the approximation 

)()()( kki txttxtx �⋅∆+≈ , (22) results in the constraint 
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which can be written in the same form as (22): 
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E. Initialization 

Initial values of x̂  in (8) and P in (10) have to be chosen. A 

lower bound on appropriate values of )0(P  is determined by 

the requirement that )0(x̂  should have negligible influence 

on )(ˆ kx  for as small k as possible. A good guideline for this 

is to make sure that 

)()0()()()0()()(2 kCPkCkCPkCkR
TT

≈+ . 

An upper bound on appropriate values of )0(P  is 

determined by the finite numerical accuracy of computers. 

When )()()()()()()(2 kCkPkCkCkPkCkR
TT

≈+  and 

)()()()()()()(12 kCkPkkCkPkkR
TT

Φ≈Φ+  the first and 

third term of (10) are approximately equal, but of opposite 

sign. This means that two matrices with large elements are 

subtracted, resulting in values close to zero. Hence the 

calculations are very sensitive to round-off approximations. 

Following the above recommendations, the value of )0(x̂  

should be of little importance. Still, in practical applications 

there usually is a known approximate region in the state 

space, in which the tracked object is expected to be when it 

is first detected, and this can be used to choose an 

appropriate initial value. 

As an example, assume that the goal is to track a ball 

thrown by a human. The initial position should clearly be set 

to some point in the field of view of the cameras, since this 

is where it will first be detected. Choosing )0(P  

corresponding to a standard deviation that is much larger 

than the size of the field of view makes sure that the actual 

chosen initial value is of little importance. Assuming that 

nothing is known about the direction of the throw, a 

reasonable estimate of the initial velocity is zero. Choosing 

the initial standard deviation to be a value much bigger than 

what a human thrower can produce, makes sure convergence 

is quick when measurements arrive. 
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V. OUTLIER DETECTION 

Before a measurement of a feature is used in the Kalman 

filter, a check can be made to verify that the measurement is 

close to what is expected, based on the state estimate. 

Otherwise the measurement is discarded. 

Each measurement is associated with a measurement 

vector, y(k), a measurement covariance, )(2 kR , and a 

matrix, C(k), relating the measurement to the state according 

to )()()()( kekxkCky += , cf. (2). To simplify notation, the 

time indices are omitted in the rest of this section. Further it 

is assumed that the covariance, P, of the state estimate, x̂ , is 

known. Based on the state estimate, the expected 

measurement and its variance become 
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Now let yyd ˆ−=  be the difference between the actual 

measurement and the expected measurement. Assuming that 

the errors in y and x̂  are uncorrelated the covariance of d is 
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The variance in the direction of d is 
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where d  is the 2-norm of d. The measurement is 

considered to be an outlier if 

 σpd > , (30) 

i.e. if the distance between y and ŷ  is larger than p standard 

deviations, where p is a tuning parameter. 

VI. RESULTS 

The tracker was implemented and tested on series of images 

of a flying dart, captured by two cameras. The images had a 

resolution of 656× 480 pixels and were captured every 20 

ms. The darts were detected in real-time with a processing 

time of less than 4 ms per image on a desktop PC. The 

measured positions of the dart, as seen by the two cameras, 

are shown in Fig. 3. 

A. Using two cameras alternately 

Figs. 4 – 7 show the result when the tracker acted on the data 

in Fig. 3. To demonstrate that the dart can be tracked without 

any pair of images being captured simultaneously, half of 

the images were left out, so the images from Camera 1 were 

used only at time steps ...5,3,1=k  and the images from 

Camera 2 were used only at time steps ...6,4,2=k . 

Fig. 4 shows the position estimates with uncertainty 

ellipsoids around each estimate. The state estimate was 

initialized to (x, y, z) = (0, 0, 3) and quickly converged to a 
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Fig. 4. Tracked positions of the dart with uncertainty ellipsoids at 

every position estimate. 
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Fig. 3. (Upper) Example images of a thrown dart. (Lower) Sequence of measured dart positions. 

Measurements classified as outliers by (30) are marked with circles. 
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smooth parabola. The uncertainty ellipsoids of the first time 

steps have been left out in Fig. 4, since they are very large, 

but they can be seen in Fig. 6. Note the significant difference 

in scale between the different graphs. The variance (10) was 

initialized to 210  in all directions. When the first 

measurement was received, the ellipsoid almost reduced to a 

line, parallel to the viewline of the dart in that image. In the 

next few time steps the ellipsoid shrunk significantly at 

every step and stabilized after 4 measurements, Fig. 5 

showing the velocity estimates with uncertainty ellipsoids 

around each estimate. The state estimate was initialized to 

)8,0,0(),,( −=zyx ���  and its variance was set to 210  in all 

directions. The first uncertainty ellipsoids are left out, but 

are shown in Fig. 7. The sizes of the ellipsoids were hardly 

affected by the first measurements, and a reasonable 

estimate was obtained after four measurements. This 

conforms well to the intuition of the problem. To have a 

good velocity estimate in the directions perpendicular to the 

viewlines of one camera, images from that camera must be 

captured at two different times. In order for the estimate to 

be good in the direction parallel to these viewlines, images 

have to be captured at two different times from some other 

direction too. 

The initial values of the state estimate were chosen to be 

close to what is expected when a person is standing in front 

of a dart board, throwing a dart towards it in a setup like the 

one in Fig. 1. 

B. Using images from only one camera 

It is actually possible to track objects using only a single 

fixed camera, since the object is observed from slightly 

different angles as it moves across the image. Fig. 8 shows 

the result when only measurements from the left part of Fig. 

4 were used. The uncertainty ellipsoids were initially very 

oblong, since the position in the direction of the viewlines 

was very uncertain. As the dart moved and got observed 

from different angles, the estimate variance decreased 

drastically. The estimated trajectory based on the images 

from both cameras is plotted with a thick line for reference. 

The uncertainty ellipsoids point toward the reference track, 

indicating that the state variance estimate is a good measure 

of the uncertainty. 

In Fig. 9 the different thin curves represent tracked 

positions based on exactly the same measurement data, but 

with different initial values of the Kalman filter. The state 

was initialized to values in different directions from the 

actual value and up to 70 m away. The standard deviation of 

the initial estimate was set to 100 m in all directions. After 6 

- 9 measurements all tracks converged to approximately the 
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and ellipsoids indicate the uncertainty at each time step. The tracked 

trajectory computed using all images from both cameras is plotted 
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same values, showing that the tracker is robust to bad initial 

values of the Kalman filter, even in this ill-conditioned setup 

with only one camera. 

C. Ball catcher 

The tracker was used in the implementation of a ball-

catching robot shown in Fig. 1. The experiments were 

performed on an open robot control system for an industrial 

manipulator (ABB IRB 140) at the RoboticsLab, Dep. of 

Automatic Control, LTH, Lund University. The 

accompanying video submitted with this paper shows the 

robot as it catches thrown darts and balls. The video can also 

be downloaded from the web [14]. 

VII. DISCUSSION 

No explicit triangulation was done in the proposed 

procedure. However, if the rows in C of Eq. (23) correspond 

to measurements in many different directions over time, an 

estimate with low variance in all directions can be obtained. 

A benefit of this approach is that it easily handles any 

number of cameras. In (23) and (24) two more rows are 

simply added to C and y for every camera that captured an 

image at the same sampling instant. Another advantage is 

that a measurement can be used even if there are no valid 

measurements from any other cameras, so that no 3D 

position estimate could be made from the data from only that 

sampling instant. It was shown that a dart can be tracked 

using a single camera. Accuracy is, however, significantly 

improved if two or more cameras at different positions are 

used. 

If a continuous-time model of the process is available, the 

procedure can be generalized to completely aperiodic 

measurements. The expressions (1) – (10) then have to be 

recalculated at every measurement to reflect the actual time 

that passed since the previous measurement. 

Each row of C and y in (23) and (24) describes a 

hyperplane in the state space. The above proposed procedure 

can thus be extended to any feature that can be expressed as 

a hyperplane in the state space. When tracking a dart, like in 

Sec. VI, the model (20) could be extended to track the 

orientation of the dart, along with the position, to allow more 

accurate tracking. To do this, an Extended Kalman Filter 

[13] may be needed to capture the nonlinear dynamics. In 

the robotic context the dart-catching application is an 

example of eye-hand coordination [2]. 

The performance of the ball catcher was limited by the 

accuracy of the image analysis and the speed and 

acceleration of the robot, which were limited to 0.5 m/s and 

13 m/s
2
 respectively. The diameters of the ball and the hole 

were 5 cm and 6 cm respectively. The catch rate was 

approximately 50 %. Performance was the lowest for 

trajectories that were far from normal to the box front or that 

forced the robot to move far from its initial position. 

VIII. CONCLUSIONS 

This paper describes a strategy for tracking dynamical 

objects with computer vision. A novel way of mapping 

image space data to a Kalman filter in 3D space is described. 

It provides a simple way to use data from an arbitrary 

number of pictures captured simultaneously. In combination 

with a dynamical model of the tracked object, it enables 

determination of the position of the object in 3D space 

without any two images being captured at the same time. It 

also allows tracking of objects in 3D space, using only a 

single static camera. 

A method to determine whether a measurement is an 

outlier, based on the covariances of the measurement and the 

position estimate, is presented. 

REFERENCES 

[1] J. Denavit, and R. S. Hartenberg, A kinematic notation for lower-pair 

mechanisms based on matrices. J. Applied mechanics, pages 215-221, 

June 1955. 

[2] B. Espiau, F. Chaumette, and P. Rives, A new approach to visual 

servoing in robotics, IEEE Trans. Robotics and Automation, pp. 313–

326, June 1992. 

[3] Z. Jia, A. Balasuriya, and S: Challa, Sensor Fusion Based 3D Target 

Visual Tracking for Autonomous Vehicles with IMM, Proc. 2005 

IEEE Int. Conf. Robotics and Automation, pp. 1829-1834, Barcelona, 

Spain. 

[4] R. E. Kalman, A new approach to linear filtering and prediction 

problems, Trans. ASME—J. Basic Engineering, 82 (1960), pp. 35–45. 

[5] Y. Ma, S. Soatto, J. Košecká, and S. S. Sastry, An Invitation to 3-D 

Vision, 2004, Springer-Verlag, New York. 

[6] P. Marayong, G. D. Hager, and A. M. Okamura, Control Methods for 

Guidance Virtual Fixtures in Compliant Human-Machine Interfaces. 

2008 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS2008), pp. 1166-1172, Nice, France. 

[7] T. Olsson, J. Bengtsson, A. Robertsson, and R. Johansson, Visual 

Position Tracking using Dual Quaternions with Hand-Eye Motion 

Constraints. In Proc. of the 2003 IEEE Int. Conf. Robotics and 

Automation, pp. 3491-3496, Taipei, Taiwan, September 14-19, 2003. 

[8] T. Olsson, R. Johansson, and A. Robertsson. Force/Vision Based 

Active Damping Control of Contact Transition in Dynamic 

Environments. In Proc. 10th IEEE Int. Conf. Computer Vision, 

Workshop on Dynamical Vision, Beijing, October 2005. 

[9] T. Olsson, R. Johansson and A. Robertsson, High-speed visual robot 

control using an optimal linearizing intensity-based filtering approach, 

Proc. 2006 IEEE/RSJ Int. Conf. Intelligent Robots and Systems 

(IROS2006), October 9-15, 2006, Beijing, China, pp. 1212-1217. 

[10] T. Olsson, R. Johansson, and A. Robertsson, Flexible Force-Vision 

Control for Surface Following using Multiple Cameras, Proc. 2004 

IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS2004), Sept. 

28-Oct. 2, 2004, Sendai, Japan, pp. 798-803. 

[11] Y. Sato, J. Takamatsu, H. Kimura, K. Ikeuchi, Recognition of a 

Mechanical Linkage Based on Occlusion-Robust Object Tracking. In 

Proc. IEEE Conf. Multisensor Fusion and Integration for Intelligent 

Systems, 2003, pp. 329- 334, Tokyo, Japan. 

[12] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I Schaefer, M. 

Hähnle, G. Hirzinger. Off-the-shelf Vision for a Robotic Ball Catcher, 

Proc. 2001 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Oct. 

29-Nov. 03, 2001, Maui, Hawaii, pp. 1623-1629. 

[13] S. F. Schmidt, Applications of state space methods to navigation 

problems, in Advanced Control Systems, C. T. Leondes, ed., vol. 3, 

Academic Press, New York, 1966, pp. 293–340. 

[14] Video of dart and ball catching robot. 

http://www.control.lth.se/user/magnusl/ball_and_dart_catcher_August

2009_0001.wmv 

4530


