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Abstract— A method for implementing the ankle and hip
balance control strategies, well known from studies on hu-
man balance control, is suggested. The moment of the acting
disturbance force is evaluated continuously in real time via
the difference between the ZMP and the ground projection
of the center of mass. Compliant response to the continuous
disturbance is ensured by attaching a virtual spring-damper in
an appropriate way for each strategy. Further on, whenever
the limit of the ankle strategy is reached, a smooth transition
toward the hip strategy is initialized and compliance is ensured
in a continuous way and in agreement with the disturbance.
After the disturbance is removed, the humanoid switches first
back to the ankle strategy, and then returns to the initial
equilibrium (erect) posture. Experimental data taken with a
small humanoid robot (HOAP-2) are presented to validate the
method. See also the accompanying video clip.

I. INTRODUCTION

The balance controller plays a central role within the
overall control architecture of a humanoid robot. Similar
to balance control in humans, the control objectives of the
balance controller can be conditionally divided into two large
groups [1]:

• balance control during proactive (preplanned) activities;
• balance control for reactive motion patterns, in response

to unexpected disturbances from the environment.

Past research has mainly addressed the first type of control
objective, e.g. balance control during steady gait [2], [3],
or while lifting [4], pushing [5], or hitting [6] objects.
Works, that addressed the second type of control objective,
on the other hand, tackled such tasks as: keeping balance on
unstable ground [7], keeping upright posture on a changing
slope [8], walk on uneven terrain [9], maintaining balance
when an obstacle appears suddenly in front of the robot [10]–
[12], and balance recovery after the robot has been subjected
to an unexpected external disturbance.

In this work, we focus on reaction pattern generation and
control in the latter case, assuming that the robot will be
exposed to unexpected disturbances. Research in this area
has been mostly based on experimental data from studies on
human balance control. Researchers have paid a lot of atten-
tion to balance recovery strategies in humans, in response to
disturbance forces generated by horizontal perturbations in
the support surface while standing upright. It was clarified
that while standing on a normal surface, postural control is
ensured via a reaction pattern called “ankle strategy,” which
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Fig. 1. Ankle, hip and step strategies.

restores equilibrium by motions in the ankle joints mainly.
On the other hand, with a support surface shortened in
relation to foot length, a different reaction pattern, called “hip
strategy,” was observed. This pattern produces a horizontal
shear force against the support surface, with little or without
any motion in the ankles, but with a predominant motion in
the hips [1], [13]–[16]. In addition to these two strategies, a
third strategy was identified — the “stepping” or “stumbling”
strategy [15]. This strategy is invoked when certain boundary
values (in position and/or velocity) during the hip strategy
are exceeded. The three strategies are outlined in Fig. 1.

Further on, a hypothesis exists that human postural control
relies upon synthesis of complex motor actions by combining
a limited number of simple response patterns, as some of
the above mentioned [14]. It was pointed out [13] that from
63 possible combinations of leg muscle contractions, only
six may be used in practice: four stemming from forward
and backward ankle and hip strategies and two additional
synergies from upward and downward motions, due to a
“suspensory” strategy, generating reaction patterns in the
vertical direction. In [1], it is mentioned that the ankle
strategy includes also knee torque, and that the hip strategy
adds hip torque to the ankle and knee torque. The role of the
knee motion has been examined also elsewhere [13], [17].
Some authors use the name “combined strategy” for such
reaction patterns [16].

In the field of humanoid robots, suggestion have been
made about possible ways to adopt the ankle and hip
strategies, so far [7], [18]–[20]. We have succeeded [21]
in implementing the ankle and hip strategies as balance
recovery patterns in response to impact disturbances on the
back or on the chest of a small humanoid robot HOAP-2 [22].
In our case, the hip strategy was actually implemented as a
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combined strategy, involving an inverted double-pendulum
model. We applied thereby the Reaction Null Space method,
developed originally for base disturbance control of free-
flying [23] or flexible-base mounted space robots [24]. We
also have shown that the same method is useful for other
types of disturbances, such as sudden motions in the support
surface, i.e. slipping [25] and rotations [26].

The aim of the present work is twofold. Our first goal
is to implement the ankle and hip strategies to respond to
continuous disturbances. The second goal is to tackle the
problem of smooth transitions between the two strategies,
thus opening the way for generating more sophisticated
response patterns.

II. BACKGROUND AND NOTATION

A. General form of the equation of motion

The equation of motion of an unconstrained underactu-
ated system having a tree-like topological structure with n
rotational joints, e.g. a humanoid robot in midair, is:
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where

H l ∈ �n×n :link inertia matrix
Hb ∈ �6×6 :inertia matrix of the base
Hbl ∈ �6×n :inertia coupling matrix
cl ∈ �n :link Coriolis and centrifugal forces
cb ∈ �6 :base Coriolis and centrifugal forces
gl ∈ �n :link gravity force vector
gb ∈ �6 :base gravity force vector
τ ∈ �n :joint torque vector
θ ∈ �n :joint coordinate vector
νb ∈ �6 :base twist (spatial velocity)

In the above notation, “base” denotes a suitably chosen
reference link. Note also that no external forces are present.

Let us assume now that the robot stands on the ground,
balancing on one of its legs. Balance is controlled via the
interaction wrench between the foot and the ground1. Hence,
we select the foot in contact with the ground as the base. The
equation of motion is rewritten then as:
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Here, the subscript “b” (base) has been changed to “f”
(foot). Newly introduced terms on the r.h.s. are the constraint
force and external force terms including the ground reaction
wrench wg and the external force wrench we, respectively.
The J{◦}-terms denote proper transforms.

1No slip is assumed henceforth.

B. The Reaction Null Space of a humanoid

A humanoid robot can be described as an underactuated
mechanical system with redundant DOFs. Balance control is
ensured through appropriate link motion and the respective
interaction wrenches between the links in contact with the
environment. A measure for balance stability can be deduced
from the Zero-Moment-Point (ZMP) [27]. Although the ZMP
has been widely used as a means to control balance while
standing or walking so far, it should be noted that ZMP-
based stability measures do not account for the full state
of the feet. Furthermore, the ZMP can be deduced only for
ground contacts on flat surfaces.

Note, on the other hand, that there are many situations in
practice whereby contact conditions cannot be simplified as
in the case with the ZMP. In such situations, the full state
of the links in contact must be accounted for. To deal with
this problem, we transferred the concept of Reaction Null
Space (RNS) from the field of space robotics [23], [24] to
the field of humanoid robots [21]. Through the RNS, it is
easy to obtain all link motions that keep the contact states
unchanged. Further details follow below.

Consider first the dynamic wrench acting at the foot:

wd =
d

dt


 mtṙcm

rcm × mtṙcm +
n∑

j=0

(Ijωj + rj × mj ṙj)


 ,

(3)

where rcm is the position of the total center of mass, Ij , ωj ,
mj , rj stand for the inertia matrix, angular velocity, mass
and center-of-mass position for link j, respectively, and mt

is the total mass (=
∑

mj).
The dynamic wrench can be represented as a function of

the generalized coordinates (ξf , θ) and their time deriva-
tives:

wd = Hf ν̇f + wfl(θ, θ̇, θ̈, ξf , νf ). (4)

Here ξf denotes the spatial displacement of the foot. Note
that we have separated the inertial wrench Hf ν̇f from the
imposed wrench wfl. The latter is imposed on the foot
through the motion of all other links; it is due to the inertial
and nonlinear couplings between the foot and the rest of the
links. From the upper part of (2), we can write:

wfl(θ, θ̇, θ̈, ξf , νf ) = Hflθ̈ + cf . (5)

The dynamic equilibrium of the foot can then be expressed
as:

wd + gf − JT
gfwg − JT

efwe =

Hf ν̇f + wfl + gf − JT
gfwg − JT

efwe = 0.
(6)

Assume now that the robot is initially motionless, in static
equilibrium (the foot is at rest on the ground and the links are
not moving). Hence, νf = wfl = 0, gf = JT

cfwc+JT
gfwg.

Rewrite (5) as:

Hflθ̈ + Ḣflθ̇ = 0, (7)

where cf is approximated by the second term on the l.h.s.
Since we have a redundant system at hand, the number of
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joints is larger than the DOF of the foot (n > 6). Therefore,
the general solution for the acceleration can be obtained from
the above equation as:

{θ̈RL} = −H#
flḢflθ̇ + {Nfl} (8)

where (◦)# denotes a generalized inverse and {Nfl} stands
for the kernel of the inertia coupling matrix Hfl. The
kernel can be determined e.g. as the set of vectors {(U −
H#

flHfl)ζ}, U denoting the unit matrix and ζ standing for
an arbitrary n-vector. The kernel {Nfl} is referred to as the
Reaction Null Space (RNS) of a humanoid robot (see also
[21]).

The last equation shows that there is a set of link accel-
erations that would keep the imposed wrench on the foot
zero throughout the motion (wfl(t) = 0, for any t). Hence,
the static equilibrium of the foot will not be disturbed and
the balance will be maintained despite the link motion. Any
acceleration from the set {θ̈RL} can be therefore described
as a reactionless joint acceleration.

Two remarks are due. First, from the definition of the
dynamic wrench (3), it should be apparent that the total
CoM will remain motionless2 under reactionless joint ac-
celerations. Second, in practice, not all of the components
of the imposed wrench will need to be zeroed. The vertical
downward force component, for example, may have nonzero
values without disturbing the balance. The force components
in the plane normal to the vertical may also have limited
nonzero values, that will depend upon the friction coeffi-
cients. In these cases, a straightforward modification of the
above equations can be done, as shown in [24] under the
name “selective Reaction Null Space.”

III. RESPONSES TO CONTINUOUS DISTURBANCES

UNDER THE ANKLE AND HIP STRATEGIES

In our previous work [21], [25], we have introduced
a way of implementing the ankle and hip strategies for
generating response and balance recovery patterns with a
small humanoid robot HOAP-2 [22], subjected to impacts on
the back or on the chest while standing upright. The ankle
and hip strategies are phenomena occuring in the sagittal
plane. Therefore, simple planar models have been used to
develop the response patterns for each of the strategies (see
Fig. 2).

The ankle strategy was modeled with the help of a simple
inverted pendulum (Fig. 2 (a)). A virtual spring–damper was
attached to the ankle joint to ensure compliant response
to the impact force. The initial response rate in that joint
was calculated via impact force estimation from the built-in
acceleration sensor.

The hip strategy, on the other hand, was modeled with the
help of a double–inverted pendulum (Fig. 2 (b)). A virtual
spring–damper was attached to the hip joint, thus ensuring
compliant response to the impact force with predominant
motion in the hip. In addition, the CoM ground projection

2With static initial conditions.
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Fig. 2. Models for ankle (a) and hip (b) strategies.

was kept constant by applying the RNS method. Thus, a
small compensatory motion in the ankle joint was generated.

In what follows, we will describe an extension of the
method, such that the robot will be equipped with the ability
to respond to a continuous external force, in addition to the
impacts.

A. ZMP based ankle strategy

In the absence of external forces, the equation of motion
for the model shown in Fig. 2 (a) can be written as:

(I + ml2g)θ̈1 − mgrx = τ1 − Caθ̇1 − Kaθ1, (9)

where m = m1 + m2 is the total mass, lg is the distance
from the ankle to the CoM, rx = lg sin θ1 is the CoM ground
projection, g is the gravity acceleration, I is the moment of
inertia, and the other parameters are obvious from the model.

Further on, denote by p the position of the ZMP. Then,
the moment equilibrium on the foot can be expressed as:

mg(p − rx) = mr̈xrz + mr̈z(p − rx), (10)

where rz = lg cos θ1 is the vertical projection of the CoM.
A torque in the ankle joint changes the foot moment, hence
we can write: mg(p − rx) = τ1. This is true also for an
external force applied at the CoM: mg(p − rx) = frz .
Incorporating these relations under simplifying assumption
into the equation of motion (9), we can derive the ankle
joint acceleration as:

θ̈ref
1 =

1
I + ml2g

(
mg (p − rx) − Caθ̇1 − Kaθ1

)
. (11)

This is integrated twice to obtain the reference joint angle
to be used as real-time control input for the robot balance
controller.

B. ZMP based hip strategy

The extension of the hip strategy implementation, as de-
scribed in our previous work [21], [25], is as straightforward
as that of the ankle strategy. We apply again the RNS method.
Considering (7), we note first that, for the double inverted-
pendulum model under consideration, the coupling inertia
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Hfl ∈ �1×2 and the joint coordinate vector contains the
two joint angles (ankle and hip). Further on, integrate (7) to
obtain the constant coupling momentum:

Hflθ̇ = L. (12)

Zero initial conditions are assumed: L = 0. Hence, we
obtain the following set of reactionless joint velocities:

{θ̇RL} = {bn}, (13)

where b is an arbitrary scalar and n ∈ �2 is in the kernel of
Hfl. Referring to the model in Fig. 2 (b), we can write:

n =
[ −m2lg2C12

(m1lg1 + m2l1)C1 + m2lg2C12

]
, (14)

where C1 = cos θ1 and C12 = cos(θ1 +θ2). Then, from (13)
and (14) we obtain the following relation:

θ̇1
ref

=
−m2lg2C12

(m1lg1 + m2l1)C1 + m2lg2C12
θ̇2

ref
. (15)

θ̇2
ref

is the reference hip joint rate. It is calculated from the
single inverted pendulum equation for the upper body link.
Referring to (11), we can write:

θ̈2
ref

=
1

I2 + m2l2g2

(
m2g (p − rx) − Chθ̇2 − Khθ2

)
,

(16)

where I2 is the inertia moment of the upper body, and the
rest of the parameters should be clear from Fig. 2.

IV. TRANSITION BETWEEN ANKLE AND HIP STRATEGIES

Consider the displacement of the CoM during the two
strategies. As seen from Fig. 2 (a), during the ankle strategy,
the CoM is displaced in a way that its ground projection
rx remains within the base of support (BoS). On the other
hand, during the hip strategy, the CoM is displaced only in
the vertical direction, whereas its ground projection remains
stationary (cf. Fig. 2 (b)).

The aim of the transition between the ankle and the
hip strategy is to ensure that, in addition to hip motion
initialization, the CoM ground projection will also move back
swiftly to the position of the erected posture, after reaching
the BoS boundary during the ankle strategy.

In order to ensure such movement of the CoM, we have
to consider the CoM velocity:

ṙ = Jcθ̇, (17)

where Jc ∈ �2×2 denotes the CoM Jacobian matrix. This
equation is projected onto the x axis:

ṙx = Jcxθ̇. (18)

Note that matrix Jcx ∈ �1×2 is related to the coupling
inertia matrix:

Jcx =
1
m

Hfl. (19)
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Fig. 3. Transition between ankle and hip strategies.

From the model, it is straightforward to obtain:

Jcx =
[

rz kmlg2C12

]
, (20)

where km = m2/m. Hence, the solution to (18) can be
written as:

θ̇ = J#
cxṙx + bn. (21)

Henceforth, we will use the pseudoinverse as a generalized
inverse.

V. TRANSITION CONTROL

Consider first the ankle–hip transition phase. By making
use of (14) and (20), (21) can be expanded in the following
form:[

θ̇1

θ̇2

]
=

ṙref
x

r2
z + (kmlg2C12)

2

[
rz

kmlg2C12

]

+ b

[ −m2lgC12

(m1lg1 + m2l1)C1 + m2lg2C12

]
. (22)

From this equation, we can derive the reference ankle joint
rate as:

θ̇ref
1 =

rz

r2
z + (kmlgC12)

2 ṙref
x

+ kw
−m2lgC12

(m1lg1 + m2l1)C1 + m2lg2C12
θ̇2. (23)

The first component on the r.h.s. is responsible for the
rate of the CoM ground projection, while the second one
ensures reactionless joint velocity (see also (15)). Note,
however, that the two objectives are contradictive: the first
component implies motion of the CoM, while the second one
— a stationary CoM ground projection, when generating a
reactionless joint velocity. To deal with this problem, we
introduced a variable weight coefficient 0 ≤ kw ≤ 1.

The reference CoM rate is calculated via the simple P
feedback control equation:

ṙref
x = Kpr

(
rd
x − rx

)
, (24)
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TABLE I

MOTION PHASES AND VARIABLES.

Phase Strategy θ1 θ2 Variable of transition

I Ankle (11) - -

II A–H transition
(23)(24) (16)

p
rd
x: rlim

x −→spline rinit
x kw: 0 −→spline 1

III Hip (15) (16) -
IV H–A transition (11) (25) p, rz

V (I’) Ankle (11) - -

Kpr denoting a positive feedback gain. The desired rd
x is

calculated via a fifth-order spline function to ensure smooth
transition between the values rlim

x and rinit
x (= 0), where

rlim
x is the value of the CoM ground projection at the time

instant when p = plim. plim, in turn, is a safety limit for
the ZMP position, usually set close to the foot toe. The
variable weight coefficient kw is also calculated via a fifth-
order spline.

To initialize the hip–ankle transition, the values of the
ZMP (p) and the vertical CoM coordinate (rz) are monitored.
Note that the desired posture at the end of the transition
equals the initial (erect) one (θ2 = 0). With proper values, the
transition will be initialized when θ2 is close to zero. Hence,
a regulator type feedback controller can be employed:

θ̇2 = −Kpθθ2, (25)

Kpθ denoting a positive feedback gain.
At the end, we obtain four distinct phases of motion. These

are summarized in Table I, where A–H stands for ankle–hip,
and H–A for hip–ankle.

VI. EXPERIMENT

For the ankle strategy, the inverted pendulum model (11)
is used. For the hip strategy, the inverted pendulum (16) is
used for the hip joint, while (23) is employed for the ankle
joint. The virtual spring-damper values were set empirically,
as follows: Ca = 10000 Nm·s/rad, Ka = 40000 Nm/rad,
Ch = 1000 Nm·s/rad, Kh = 4000 Nm/rad. The P feedback
gain values were set as Kpθ = 15 s−1 and Kpr = 100 s−1.

The time span for the A–H transition was set to 1 s, within
the spline functions for variables kw and rd

x. The ZMP safety
limit was set as plim = 45 mm. The H–A transition was
initialized when the following condition was met: 264.5 <
rz < 266.5 mm and p < 0.

Five cycles were executed during a time interval of 60 s,
by applying five arbitrary external disturbances to the back
of a HOAP-2 robot. The joint angle time history is shown in
Fig. 4. It is seen that the robot always responded in a stable
way. To gain further insight, we zoom in just at the first
cycle. The respective detailed experimental data, including
joint angles, ZMP position, CoM ground projection and the
difference p − rx, denoting the moment of the disturbance,
are shown in Fig. 5. Snapshots taken during the first cycle
of the experiment are shown in Fig. 6.

Fig. 4. Joint angle data from five cycles of applied disturbances.

Fig. 5. Detailed data for the first motion cycle.
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Fig. 6. Snapshots from the first cycle of the experiment.

From the data, it is seen that the robot is able to react to the
disturbances as desired, switching smoothly between the two
strategies. This can also be confirmed via the accompanying
video clip.

VII. CONCLUSIONS

We described a method for implementing two balance
control strategies, well known from studies on human bal-
ance control, to generate proper responses, when an unknown
continuous external force is applied to a humanoid robot. The
moment of the acting disturbance force is evaluated contin-
uously in real time through the difference between the ZMP
and the ground projection of the CoM. Compliant response to
the continuous disturbance is ensured by attaching a virtual
spring-damper in an appropriate way for each strategy.

Another contribution is the suggested method of transition
control between the two strategies. Transition control is an
important step toward generating more complex responses,
based on simple response patterns, such as the two strategies
under consideration.

The models used in this work are simple planar models.
In a future work, we intend to implement the method in 3D
in order to incorporate a third well known balance strategy
— the stepping strategy— and to explore generation of more
complex reaction and balance recovery patterns via suitable
transitions between the strategies.
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